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= Prior analysis of challenges facing HPC interconnects

= Seven years later
= Exascale interconnect hardware trends
= Plus application and usage model trends
= Near-term research on extensions and optimizations for MPI
= Matching optimizations
= Finepoints — alternative proposal to Endpoints

= New portable programming model for network offloading
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Previous Predictions
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Potential Exascale System
Architecture Targets

System “2015” “2018”
attributes

System peak 200 Petaflop/sec
Power 15 MW 20 MW
32-64 PB

1 Exaflop/sec

System memory 5PB

Node performance | 125 GF 05TF 7TF 1TF 10 TF

Node memory BW | 25GB/s | 0.1 TB/sec 1 TB/sec 0.4 TB/sec 4 TB/sec

Node concurrency 12 0(100) 0(1,000) 0O(1,000) 0(10,000)

System size 18,700 50,000 5,000 1,000,000 100,000

(nodes)

Total Node 1.5 GB/s 20 GB/sec 200 GB/sec

Interconnect BW

MTTI days O(1day) O(1 day)

Sandia
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~+“MPI Will Likely Persist Into Exascale Era

Number of network endpoints will increase significantly (5-50x)
+ Memory and power will be dominant resources to manage

— Networks must be power and energy efficient

— Data movement must be carefully managed

— Memory copies will be very expensive
Impact of unexpected messages must be minimized

— Eager protocol for short messages leads to receive-side buffering

— Need strategies for managing host buffer resources

— Flow control will be critical

— N-to-1 communication patterns will (continue to be) disastrous
Must preserve key network performance characteristics

— Latency

— Bandwidth

— Message rate (throughput)

= o= #CCR

Center for Computing Research

.

.




Sandia
"1 National

Laboratories

b"‘i:e Current Flow Control Strategies
Not Sufficient

Credit-based
— Limit number of outstanding send operations
— Used credits are replenished implicitly or explicitly
— Effectiveness limited to N-to-1 scenario
— Potential performance penalty for well-behaved applications
+ Acknowledgment-based
— Receiver explicitly confirms receipt of every message
— Significant per-message performance penalty
« Round trip acknowledgment doubles latency
— Performance penalty for well-behaved applications
+ Local copying (bounce buffer) mitigates latency penalty
+ Both strategies limit message rate and effective bandwidth
» Flow control implemented at user-level inside MPI library
+ Network transport usually has its own flow control mechanism
— No mechanism for back pressure from host resources to network

nisA &= “CCR
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=" _  Applications Must Become
More Asynchronous

Applications cannot continue to be bulk synchronous
— Overhead of synchronization will limit scaling
— Synchronization increases susceptibility to noise
Network APl must provide asynchronous operations and progress
— Data movement must be independent of host activity
Active Messages
— Polling is fundamental to all AM
— Progress only when nothing else to do
— Polling memory for message reception is inefficient

— Needs hardware support to integrate message arrival with thread
invocation

+ Run-time systems will also need to communicate
— Need to communicate evolving state of the system
— Need a common portable API
— Using TCP OOB connection will be infeasible

= o= #CCR
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L Resiliency Will Impact Network API

» Network will need to expose errors to enable recovery
+ Applications and system components will have different resiliency
requirements
— Reachability errors must be handled by run-time services
— Graceful degradation may be appropriate for some applications
+ May need OOB mechanism for recognizing network failures
— AM or event-driven API would be ideal

— Hardware support for network-level protection
+ RAS system invoking OS via network messages

nisA &= “CCR

Center for Computing Research




Sandia
"1 National

Laboratories

\b,!' _
X Network Interface Controller

Power will be number one constraint for exascale systems
Current systems waste energy

— Using host cores to process messages is inefficient

— Only move data when necessary

— Move data to final destination

+ No intermediate copying due to network

Specialized network hardware

— Atomic operations

— Match processing
Addressing and address translation

— Virtual address translation
« Avoid registration cache

— Logical node translation
« Rank translation on a million nodes

« Hardware support for thread activation on message arrival

= o= #CCR
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"~ High Message Throughput Challenges
+ 20M messages per second implies a new message every 50ns
+ Significant constraints created by MPI| semantics

* On-load approach

— Roadblocks
« Host general purpose processors are inefficient for list management

« Caching (a cache miss is 70-120ns latency)
— Microbenchmarks are cache friendly, real life is not

— Benefits
« Easier & cheaper

+ Off-load approach

Roadblocks
« Storage requirements on NIC

+ NIC embedded processor is worse at list
management (than the host processor)

Benefits
« Opportunity to create dedicated hardware

+ Macroscale pipelining

Processor Bus Sandia
= D “CCR
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“Minimizing Memory Bandwidth Usage in Network Stack

*  Memory bandwidth is most

. s L= often the limiting factor for on
Branch
® wow node performance

A : + We must minimize the use of
frsction e host memory bandwidth in the
Usage network stack
Memory Usage in Sandia Applications

» Bounce buffers (or any other copying) incur a 2x memory bandwidth penalty

+ A fast off-load approach can minimize host memory bandwidth utilization

— Allows the NIC to determine where received messages need to be put in host
memory and DMA the data directly there, eliminating the need for bounce buffers

— High message rate can reduce the need for buffering of non-contiguous data

nisA &= “CCR
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e Topology

* No single network topology is best for all applications

* Meshes

— Advantages: high local bandwidth, low wiring complexity, ability
to easily add nodes (no distinct steps in expandability curve)

— Disadvantages: high maximum latency, low global bandwidth
— Works well for physical simulations which tend to talk nearest
neighbor
+ Trees
— Advantages: high global bandwidth, low global latency
— Disadvantages: high wiring complexity, lower local bandwidth,
discrete steps in network topology (limiting expandability)

— Works well for random accesses patterns and apps with lots of
global communication

Red Storm
Red/Black Switching

» Hierarchical/Hybrid networks
— Tend to inherent the strengths and weaknesses of the building blocks

« Network routers must be designed to allow different topologies with the
same silicon

NS4 @ E"ﬁs
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Many-Core Processors

= Throughput-optimized core (TOC) versus latency-optimized core (LOC)
= TOC

= Reduces single thread performance for network stack processing

= May be good for progress thread for networks without hardware matching
= Communication libraries are not currently highly threaded

= |Integrating threading and MPI

= MPI Forum proposals — Endpoints and Finepoints

= QOverhead of MPI tag matching
= Avoid tag matching with MPI RMA (or other one-sided alternatives)

= Trend to offload more processing
= Remote read/write capability reduces core interference but may increase memory interference

= Increases potential for overlap of computation and communication

= Future processors likely a hybrid mixture of TOCs and LOCs

CCR
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Many-Core Processors (cont’d)

= Diminishing memory footprint per core
=  Diminishing memory bandwidth per core
® |ncreases importance of reducing intra-node memory-to-memory copies
= Move away from single-copy models (MPI,RMA) to load/store (shared memory)
= Motivates a hybrid programming model
= Network potentially servicing many upper layer protocols
= |ncreasing number of network endpoints per node
= Increasing numbers of threads and/or processes

= Locality issues
= QOrigin/destination of the data being read/written

= More network contexts to avoid serialization of network requests
= More network contexts may increase memory usage
= Need to reduce amount of MPI state per context

= Need more efficient ways of virtualizing network endpoints

Sandia
"" National
Laboratories
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Integrated Network Interfaces ) ..

= Network interface is coherent with processor cores

= Lowers latency by avoiding I/O bus (PCI, QPI, etc.)

= Network atomic operations coherent with core atomic operations

= Lightweight mechanisms for thread sleep/wakeup on memory events

= Better support for “active message” functionality

#CCR
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Heterogeneity ) i

= Cores — accelerators
= |nitiating communication from accelerators
= Trend to on-package coherence for accelerators
= Memory — multilevel
= Coherent transfers to/from accelerator memory
= |mpacts locality of network data structures and target memory spaces
= Performance variability based on target/source memory space

#CCR
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= Network topologies
= |ncreasing switch port counts
= Lower diameter networks with near constant relative global bandwidth as node count increases
= Reduced average latency across the network
= Flexibility to trade off local versus global bandwidth
= More dependence on adaptive routing techniques
= Trend towards better congestion management protocols to reduce average latency

= QOrdering becomes an issue
= Packets/messages between identical source and destination pair can take different paths

= |nter-job interference will continue to be an issue for some topologies
= Bandwidth tapering strategies that offer more local bandwidth
= Offloading collective operations to switches
= Should lower latencies for certain collectives

= Quality of service
= More service levels to give performance guarantees to different types of traffic

#CCR
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Cross-Cutting ) e,

= Non-volatile memory

= Trend towards network attached storage (burst buffer, memory pools)
= Power/energy

= Shutting down idle links
= Protection

= Increasing support for inter-application communication

= Resilience
= Multiple paths with adaptive routing can improve reliability

#CCR
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Convergence of NOC with NIC rh)

= Some say this means off-node will look a lot like on-node
= Latency hiding will support global load/store

= On-node may start to look more like off-node
= Easier to make off node capabilities work on node than vice versa
= DMA engines for efficient on-node transfers
= Matching hardware
= Special-purpose cores for on-node data transformation

= |oad/store model doesn’t work on node
= Locality
= Performance portability
= Resilience
= Scalability

#CCR
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Future Challenges and Potential Solutions ) ..

= Most pressing interconnect challenges
= Parallelism in the network interface
= Resiliency
= Flow control
= Active message semantics
= New types of communication — runtime, workflows, analytics
= Event-driven capability — for resilience and task-based programming models

=  What hardware mechanisms can help?
= More network contexts
= Virtual addressing of endpoints
= Flow control protocols that understand endpoint resources
= QoS mechanisms for isolation
= What else can help?
= |nstrumentation to help understand application resource usage
= Benchmarks that target specific desired capabilities

#CCR
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Systems Are Converging to Reduce Data Movement (@) ..

= External parallel file system is being subsumed
= Near-term capability systems using NVRAM-based burst buffer
= Future extreme-scale systems will continue to exploit persistent memory technologies

" |n-situ and in-transit approaches for visualization and analysis
= Can’t afford to move data to separate systems for processing
= GPUs and many-core processors are ideal for visualization and some analysis functions

= Less differentiation between advanced technology and commodity technology

SyStemS Analviics Parallel File
= On-chip integration of processing, memory, and network Cluster SR
* Summit/Sierra using InfiniBand

System

—

Capacity
Cluster

System ::: CCR
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Applications Workflows are Evolving ) &,

= More compositional approach, where overall application is a composition of
coupled simulation, analysis, and tool components

= Each component may have different OS and Runtime (OS/R) requirements, in
general there is no “one-size-fits-all” solution

= Co-locating application components can be used to reduce data movement, but
may introduce cross component performance interference
= Need system software infrastructure for application composition
= Need to maintain performance isolation
= Need to provide cross-component data sharing capabilities
= Need to fit into vendor’s production system software stack

= Remote message queue abstraction interfaces
* |nterfaces for accessing remote persistent memory o

5.CCR
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Kathy Yelick — ASCAC Talk — What's Missing? ~ [&.

Lowering Overhead for Smaller Messages
Send/Receive '.., 5
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The +in MPI+X i
MPI+X today: x

¢ Communicate on one lightweight core
¢ Reverse offload to heavyweight core
Want to allow all cores to communicate

(but keep the protocol simple!) Lightweight Communication for Lightweight Cores
Lightweight communication is more - DMA (Put/Get)

important with lightweight cores — Blocking and non-blocking (completion signaled on initiator)
Programing Models and Environments ~ 23 — Single word or Bulk
— Strided (multi-dimensional), Index (sparse matrix)
* Signaling Store
— All of the above, but with completion on receiver
— What type of “signal”?
« Set a bit (index into fixed set of bits ®)
* Set a bit (second address sent ©)
* Increment a counter (index into fixed set of counters ®)
* Increment a counter (second agdress for counter ©)

 Universal primitives: compare-and-swap (2" address + value), fetch-and-
add handy but not sufficient for multi/reader-writers ©

* Remote atomic (see above) — should allow for remote enqueue
* Remote invocation
— Requires resources to run: use dedicated set of threads?

DEGAS Overview 24
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Active Messages

= See Paul Hargrove’s list of issues

https://sites.google.com/a/lbl.gov/gasnet-ex-collaboration/active-messages

= Handlers

Who allocates the resources?
What can be called?
Where do they run (context)?
When do they run relative to message delivery?
How long do they run?
Why?
= One-sided messages decouple processor from network

= Active messages tightly couple processor and network
— Active messages aren’t one-sided

— Memory is the endpoint, not the cores

= Lightweight mechanism for sleeping/waking thread on memory update
— Why go through the network API for this? o0

02
o
[ XS
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Portable Programming for Network Offload




Motivation i) fitone

= Slower, more energy-efficient processors

= Remove the processor from the packet processing path (offload)

= RDMA only supports data transfer between virtual memory spaces
= Varying levels of steering the data at the endpoint

= Terabit per second networks are coming

= Modern processors require 15-20 ns to access L3 cache
= Haswell — 34 cycles
= Skylake - 44 cycles

= 400 Gib/s can deliver a 64-byte message every 1.2 ns
= Datais placed blindly into memory

#CCR
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Stream Processing in the Network (sPIN) )

= Augment RDMA and matching tasks with simple processing tasks

= Programming interface for specifying packet processing kernels
= Similar to the way CUDA and OpenCL work for compute accelerators

T

= Tasks that can be performed on incoming packets
= Limited state
= Small fast memory on NIC :"'
= Execute short user-defined functions A 4

= Handlers are compiled for the NIC and passed down at initialization time

= Vendor-independent interface would enable strong collaborative open-source
environment similar to MPI

#CCR
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sPIN Architecture Overview

N,
@ sPIN Network Interface (NIC)

Packet Scheduler

arriving
packets




sPIN is not Active Messages (AM) )

Tightly integrated NIC packet processing

AMs are invoked on full messages
= sPIN works on packets
= Allows for pipelining packet processing

AM uses host memory for buffering messages
= sPIN stores packets in fast buffer memory on the NIC
= Accesses to host memory are allowed but should be minimized

AM messages are atomic
= sPIN packets can be processed atomically

#CCR
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sPIN Approach ) fin

= Handlers are executed on NIC Handler Processing Units (HPUs)

= Simple runtime manages HPUs

= Each handler owns shared memory that is persistent for the lifetime of a message
= Handlers can use this memory to keep state and communicate

= NIC identifies all packets belonging to the same message

= Three handler types
= Header handler — first packet in a message

= Payload handler — all subsequent packets
= Completion handler — after all payload handlers complete

= HPU memory is managed by the host OS
= Host compiles and offloads handler code to the HPU
= Handler code is only a few hundred instructions “*CCR

o’e
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sPIN Approach (cont’d) )

= Handlers are written in standard C/C++ code

= No system calls or complex libraries

= Handlers are compiled to the specific Network ISA

= Handler resources are accounted for on a per-application basis

= Handlers that run too long may stall NIC or drop packets

= Programmers need to ensure handlers run at line rate

= Handlers can start executing within a cycle after packet arrival
= Assuming an HPU is available

= Handlers execute in a sandbox relative to host memory
= They can only access application’s virtual address space
= Access to host memory is via DMA

#CCR
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HPU Messages ) s,

= Messages originating from HPU memory

= Single packet, MTU sized
= May block the HPU thread

= Messages originating from HPU memory
= Enter the normal send queue as if from the host
= Non-blocking

#CCR
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Portals Interconnect Programming Interface ) S

= Developed by Sandia, U. New Mexico, Intel
= Previous generations of Portals deployed on several production massively parallel systems
= 1993:1800-node Intel Paragon (SUNMOS)
= 1997:10,000-node Intel ASCI Red (Puma/Cougar)
= 1999: 1800-node Cplant cluster (Linux)
= 2005:10,000-node Cray Sandia Red Storm (Catamount) b)/
= 2009: 18,688-node Cray XT5 — ORNL Jaguar (Linux) ‘J
= Focused on providing ‘
= Lightweight “connectionless” model for massively parallel systems
= Low latency, high bandwidth portq IS
= |Independent progress
= Qverlap of computation and communication
= Scalable buffering semantics
= Protocol building blocks to support higher-level application protocols and libraries and system services
= At least three hardware implementations currently under development
= Portals influence can be seen in IB Verbs (Mellanox) and libfabric (Intel & others)

#CCR
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National
ortals Hardware and Co-Design Activities
BXI application environment
NODES(0] .
BXI comes with a complete software stackto ~ » Parallel applications can take full ad- » The IPoPtl (IP over Portals) component - T
provide optimal performance and reliability vantage of the capabilities of the BXI makes it possible to have large scale, ef- OOl | aronel
to all traditional HPC components. network using MPI, SHMEM or UPC ficient and robust IP communication for
communication libraries. legacy software. B INSTRUCTIONS | puriojo] | Ger_miolfo) | Gev_siojol
» All components are implemented direct- § Puol] | Ger ol | oerengol | X
» lzegriggset:jv?cz I;)t?elSaIZ‘Isc'?iFr)ll"lplemented using Foemoe o [anom L ananio L pur L Gerwesoe | | GeTeanon
| GLOBALL ' GLOBALL \ GLOBALL
e e e R mE
ortals ustre Network Lriver, ~puiolio] W~ GO ool e
provides the Lustre parallel filesystem NODESINA] 1_; PuTiON) 1 et 1 | e e
with a direct / native access to Portals 4. " = puriovy) = e o) o7 pi-1io)
mocessonn1) | AQCALB AL PONTALS
BXI Kernel services | T R AT CCT
PUTINA) GET_MiN-10) GET_Palin-1)
Please contact hpc@atos.net g INSTRUCTIONS ::;:::H:i :::;:::m :::::x;:: :1‘ PUTIN-AN-3] PUT_HINJNA) GET_PIN-1)IN-1)
; STACK "UYI»; A)IN-L)  OET_MINLJIN-L)  GET_PIN-1)N-1) lm“l“m \mmlmv “T"
W'Illlhl 5”,”[“"“ GET, v{|‘|[.1
. Powering progress Trget Torget Intiator
Fig.5. OVP platform with our Portals accelerator.
EXPERIMENTAL FRAMEWORK AMDI1
RESULTS
FASTFORWARD NIC SOFTWARE STACK AMDDU )
A Al data collected in gem5(€! CPUTYpe  8wide 000, 4Ghz 8 cores
—System call emulation mode (no OS) m ::’zm’:m
4 Portals 4 APl chosen for initial investigation 17 1B, 8-way, 4 cycles
— Supports P i PGAS, MPI —AMD GPU mode L3-Cache 16MB, 16-way, 20 cycles
4 i d in thin e layer over hardware Interfaces Components ~Full Support for HSA DRAM DOR3, 4 Channels, 800MHz
interface ~Tightly coupled system
4 Leverage existing ULPs that have Portals 4 GPU Type 1Ghz, 24 Compute Units
implementations D-Cache 16kB, 648 line, 16-way, 4 cycles
~ GASNet A Portals 4-based NIC model® +Cache 328,648 lne, B-way, & cyces
~ Open MPI Open MPI ~Low-level RDMA network programming API L2Cacke Z080 048 w3 Etwi 24 e
currently supported by:
Portals 4 - - MPICH, Open MP|, GASNet, Berkeley UPC, GNU UPC, and others  Lrkspesd - 0om/uctes
HSA-like Sentme S ~XTQ implemented as an extension of the Portals 4 =
News e remote Put operation ) . e
ey G A SRS
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sPIN Interface for Portals4 (P4sPIN) ) 5.

All packet handlers are associated with a Match Entry (ME)
Extend PtIMEAppend() to enable handler registration

HPU memory is allocated using PtIHPUAlIlocMem()
= Allows user the use same HPU memory for multiple MEs

If no HPU execution contexts are available NIC may trigger flow control
= Similar to running out of host resources
= Completion handler is invoked and notified via flow control flag

#CCR
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SPIN Message Handler Overview

C/C+ C/C+ C/C+ C/C+ C/C+ C/C+ C/C+ C/C+
+ + + + + + + +
Header Payload Payload Payload Payload Payload , , . Payload Completio
Handler Handler Handler Handler Handler Handler Handler n Handler
HeaderPacket 1 Packet 2 Packet 3 Packet 4 Packet 5 Packet N
Multi-packet Message

#CCR
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Header Handler i) S

= Called once per message

= No other handler is started until it is completed

= Access only to header fields, potentially user-defined header info
= Pre-defined headers could be in special registers

= User-defined headers in HPU memory

#CCR
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Payload Handler ) i,

= (Called after the header handler completes

= Payload does not include user-header

= Multiple instances execute concurrently

= Share all HPC memory coherently

= PTL_NUM_HPUS is the maximum number that can be active
= Handlers do not migrate

= PTL_MY_HPU to emulate HPU-private data

#CCR

Center for Computing Research




Completion Handler ) i,

= Called once per message after all payload handers have completed
= Before completion event is delivered to host memory

= Passed in the number of dropped bytes

= Flagindicating whether flow control was initiated

#CCR

Center for Computing Research




HPU Design i) i,

= HPU should have single-cycle access to local memory and packet buffers
= HPU memory is not cached
= HPU instructions should be executed in a single cycle
= Documentation needs to include instruction costs
= Handlers should be invoked immediately after packet arrival or after previous
handler completes
= Handlers require no initialization, loading, or other boot activities
= Context is pre-loaded and pre-initialized
= HPUs can be implemented using massive multithreading
= Pre-emptible to deal with high latency DMAs
= Need enough HPU cores to process at full bandwidth

#CCR
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HPU Memory Size ) i,

= Use Little’s Law
= Handler executes between 10 and 500 instructions at 2.5 GHz and IPC=1
= Minimum delay of 200 ns per packet

= For1Tb/s
= 1Tb/sx 200 ns =25 kB

= More space can be added to hide more latency, likely up to several microseconds

#CCR
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Simulation Environment i) S

= LogGOPSIim
= Network simulator
= Drives the simulation by running trace-based discrete-event loop
= Traced all Portals4 and MPI functions and invocations of handlers
* |Invokes gemb5 for each handler execution and measures execution time
= Communicates with gem5 through special memory mapped region through which an executing
handler can issues simcalls from gem5 to LogGOPSim
= gem>5
= System-level and processor microarchitecture simulator
= Simulates various CPU and HPU configurations

#CCR
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Simulation Settings ) &

= Network uses LogGP model
= 0=65ns (injection overhead)
= 150 million msgs/sec
= g=6.7ns (inter-message gap)
= 400 Gib/s
= G =2.5ps (inter-byte gap)
= 50 ns switch hop latency
= 33.4 ns delay, wire length of 10m
= NIC configuration
= 425 GHz ARM Cortex A15 out-of-order HPU cores using ARMv8-A 32-bit ISA

=  Cores are configured without cache using gem5’s SimpleMemory module configured as a scratchpad that can be accessed in k cycles (k =
1)
= Matching header packet takes 30 ns
= Each packet takes 2 ns for CAM lookup
= Network gap (g) can proceed in parallel
= Host CPU configuration
= 82.5GHz Intel Haswell cores
= 8 MIB cache
= 51 nslatency

= 150 GiB/s bw :" C C R
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DMA and Memory Contention ) ..

= HPU access to host memory via DMA
= Extended simulation by adding support to model contention for host memory

= DMA at each host also uses LogGP model
= 0=0, g=0since these are already captured by gem5
= Discrete NIC
= L=250ns
= G =15.6 ps (64 Gib/s)
= Integrated NIC
= L=50ns
= G=6.7 ps (150 Gib/s)
= DMA time is added to message transmission when NIC delivers data to memory

#CCR
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Micro-Benchmarks ) i,

Laboratories

= Ping-pong latency
= For RDMA, pong is sent by host CPU core
= For sPIN, pong is pre-setup by destination and reply is triggered
= Multiple options for generating the pong

= Ping message is a single packet and pong can be issued with put from HPU memory
= Ping message is larger than a packet and can be issued with put from host memory
= Payload handler could generate pong message from HPU memory for each packet

= Accumulate
= Array of double complex numbers to be multiplied with destination buffer
= For RDMA, data is delivered to temporary buffer and accumulated into destination
= For sPIN, packet handlers fetch data from host memory, apply operation, and write it back
= Results are for coherent memory, which is worse than non-coherent memory

#CCR
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Breakdown of Ping-Pong ) gk
RDMA | Portals 4 sPIN (store)sPIN (store) sPIN (stream)
; i (=1 packet) | (>1 packet) : (>1 packet)
*0 o o "0
. , : : i €

DMA DMA 1DM4 DMA DM
t 1t
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Ping-Pong (Integrated NIC) ) B

RDMA
8] 080ig o olg g0 /P4
f?’: 0.75- : o
@ 0.707 sPIN (both)
=
25
-]
(@]
o
= sPIN (store)/RDMA/P4 \
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SPIN (stream)
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Ping-Pong (Discrete NIC) ) .

RD\MA
Creeeeeet
w8 14. /
B P sPIN (both)
1.2-
= Y |
i: 1-0_ I I I I I I I I
2 4- 23 2% 2° 20 27 8 29510
I_ /
2
8 SPIN (store)/RDMA/P4
<,
Y=
(0]
T
PIN (st
. i (store) SPIN (stream)

2 g o 28 0 o2 i o e

Number of Transferred Bytes CCR
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"" National
Laboratories

Accumulate (Both NIC Types)
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How Many HPUs Are Needed? ) S

= Little’s Law again

= Average execution time per packet of T

= Expected arrival rate of A

= NeedTxAHPUs

= Fixed bandwidth (1/G)

= Packetsize s

" Gapg

= A=min(1/g, 1/(Gxs)

= For 8 HPUs supports any packet size if handler takes less than 53 ns
= For 4 KiB packets, handlers must execute in 650 ns
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Broadcast on a Binomial Tree (Discrete NIC)

20 -
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Matching Protocols ) S

Laboratories

| Short/Exp
Il Long/Exp
[1l Short/Un
IV Long/UN
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Application Performance

program p msgs ovhd spdup
MILC 64 5.7M 55% 3.6%
POP 64 772M  31% 0.7%
coMD 72 5.3M 6.1% 3.7%
coMD 360 28.1M 6.5% 3.8%
Cloverleaf 72 2.7M 52% 2.8%
Cloverleaf 360 15.3M 5.6% 2.4%




Processing Vector Datatypes in Payload Handlers®™

= Stride =2.5KiB
= Blocksize = 1.5 KiB
= Count=8

Main memory

+#CCR
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Strided Receive with Varying Blocksize ) .

2048 4 MiB transfer with varying blocksize
stride = 2 x blocksize

1024 -

>127 RDMA/P4 (int + dis)

11.44 GiB/s

Completion Time (us)
N
&

128 -

SsPIN (int + dis) 46.3 GiB/s
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Distributed RAID Using RDMA and sPIN )

Server Parity node Server Parity node
Client CPU MEM NIC CPU MEM NIC Client CPU MEM NIC CPU MEM NIC
write [l | | write ll I |
— RDMA i . sPIN
:% DMA : old [ ]

neW. E >.

new

new : ut diff [
—~<|_DMA : ~
dlﬁﬂ \‘@ old & b

-
-_-—-.————-
e

-
______
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Update Time in a Distributed RAID-5 System (@)
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