
Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Challenges	and	Opportunities	for	HPC	Interconnects	and	MPI

Ron	Brightwell,	R&D	Manager
Scalable	System	Software	Department

Outline

§ Prior	analysis	of	challenges	facing	HPC	interconnects
§ Seven	years	later

§ Exascale interconnect	hardware	trends
§ Plus	application	and	usage	model	trends

§ Near-term	research	on	extensions	and	optimizations	for	MPI
§ Matching	optimizations
§ Finepoints – alternative	proposal	to	Endpoints

§ New	portable	programming	model	for	network	offloading

2

Previous	Predictions

3

4

5

6

7

8

9

10

11

12

13

Exascale Interconnects	Hardware	Trends

14

Many-Core	Processors

§ Throughput-optimized	core	(TOC)	versus	latency-optimized	core	(LOC)
§ TOC

§ Reduces	single	thread	performance	for	network	stack	processing
§ May	be	good	for	progress	thread	for	networks	without	hardware	matching

§ Communication	libraries	are	not	currently	highly	threaded
§ Integrating	threading	and	MPI
§ MPI	Forum	proposals	– Endpoints	and	Finepoints

§ Overhead	of	MPI	tag	matching
§ Avoid	tag	matching	with	MPI	RMA	(or	other	one-sided	alternatives)

§ Trend	to	offload	more	processing
§ Remote	read/write	capability	reduces	core	interference	but	may	increase	memory	interference
§ Increases	potential	for	overlap	of	computation	and	communication

§ Future	processors	likely	a	hybrid	mixture	of	TOCs	and	LOCs

15

Many-Core	Processors	(cont’d)

§ Diminishing	memory	footprint	per	core
§ Diminishing	memory	bandwidth	per	core

§ Increases	importance	of	reducing	intra-node	memory-to-memory	copies
§ Move	away	from	single-copy	models	(MPI,RMA)	to	load/store	(shared	memory)
§ Motivates	a	hybrid	programming	model

§ Network	potentially	servicing	many	upper	layer	protocols
§ Increasing	number	of	network	endpoints	per	node

§ Increasing	numbers	of	threads	and/or	processes
§ Locality	issues

§ Origin/destination	of	the	data	being	read/written
§ More	network	contexts	to	avoid	serialization	of	network	requests

§ More	network	contexts	may	increase	memory	usage
§ Need	to	reduce	amount	of	MPI	state	per	context

§ Need	more	efficient	ways	of	virtualizing	network	endpoints

16

Integrated	Network	Interfaces

§ Network	interface	is	coherent	with	processor	cores
§ Lowers	latency	by	avoiding	I/O	bus	(PCI,	QPI,	etc.)
§ Network	atomic	operations	coherent	with	core	atomic	operations
§ Lightweight	mechanisms	for	thread	sleep/wakeup	on	memory	events

§ Better	support	for	“active	message”	functionality	

17

Heterogeneity

§ Cores	– accelerators
§ Initiating	communication	from	accelerators
§ Trend	to	on-package	coherence	for	accelerators

§ Memory	– multilevel
§ Coherent	transfers	to/from	accelerator	memory
§ Impacts	locality	of	network	data	structures	and	target	memory	spaces
§ Performance	variability	based	on	target/source	memory	space

18

Fabric

§ Network	topologies
§ Increasing	switch	port	counts
§ Lower	diameter	networks	with	near	constant	relative	global	bandwidth	as	node	count	increases
§ Reduced	average	latency	across	the	network
§ Flexibility	to	trade	off	local	versus	global	bandwidth
§ More	dependence	on	adaptive	routing	techniques
§ Trend	towards	better	congestion	management	protocols	to	reduce	average	latency
§ Ordering	becomes	an	issue

§ Packets/messages	between	identical	source	and	destination	pair	can	take	different	paths
§ Inter-job	interference	will	continue	to	be	an	issue	for	some	topologies
§ Bandwidth	tapering	strategies	that	offer	more	local	bandwidth

§ Offloading	collective	operations	to	switches
§ Should	lower	latencies	for	certain	collectives

§ Quality	of	service
§ More	service	levels	to	give	performance	guarantees	to	different	types	of	traffic

19

Cross-Cutting

§ Non-volatile	memory
§ Trend	towards	network	attached	storage	(burst	buffer,	memory	pools)

§ Power/energy
§ Shutting	down	idle	links

§ Protection
§ Increasing	support	for	inter-application	communication

§ Resilience
§ Multiple	paths	with	adaptive	routing	can	improve	reliability

20

Convergence	of	NOC	with	NIC

§ Some	say	this	means	off-node	will	look	a	lot	like	on-node
§ Latency	hiding	will	support	global	load/store

§ On-node	may	start	to	look	more	like	off-node
§ Easier	to	make	off	node	capabilities	work	on	node	than	vice	versa
§ DMA	engines	for	efficient	on-node	transfers
§ Matching	hardware
§ Special-purpose	cores	for	on-node	data	transformation

§ Load/store	model	doesn’t	work	on	node
§ Locality
§ Performance	portability
§ Resilience
§ Scalability

21

Future	Challenges	and	Potential	Solutions
§ Most	pressing	interconnect	challenges

§ Parallelism	in	the	network	interface
§ Resiliency
§ Flow	control
§ Active	message	semantics
§ New	types	of	communication	– runtime,	workflows,	analytics
§ Event-driven	capability	– for	resilience	and	task-based	programming	models

§ What	hardware	mechanisms	can	help?
§ More	network	contexts
§ Virtual	addressing	of	endpoints
§ Flow	control	protocols	that	understand	endpoint	resources
§ QoS mechanisms	for	isolation

§ What	else	can	help?
§ Instrumentation	to	help	understand	application	resource	usage
§ Benchmarks	that	target	specific	desired	capabilities

22

Systems	Are	Converging	to	Reduce	Data	Movement

§ External	parallel	file	system	is	being	subsumed
§ Near-term	capability	systems	using	NVRAM-based	burst	buffer
§ Future	extreme-scale	systems	will	continue	to	exploit	persistent	memory	technologies

§ In-situ	and	in-transit	approaches	for	visualization	and	analysis
§ Can’t	afford	to	move	data	to	separate	systems	for	processing
§ GPUs	and	many-core	processors	are	ideal	for	visualization	and	some	analysis	functions

§ Less	differentiation	between	advanced	technology	and	commodity	technology	
systems
§ On-chip	integration	of	processing,	memory,	and	network
§ Summit/Sierra	using	InfiniBand

23

Exascale
System

Capability
System

Analytics
Cluster

Parallel File
System Visualization

Cluster

Capacity
Cluster

Applications	Workflows	are	Evolving

§ More	compositional	approach,	where	overall	application	is	a	composition	of	
coupled	simulation,	analysis,	and	tool	components

§ Each	component	may	have	different	OS	and	Runtime	(OS/R)	requirements,	in	
general	there	is	no	“one-size-fits-all”	solution

§ Co-locating	application	components	can	be	used	to	reduce	data	movement,	but	
may	introduce	cross	component	performance	interference
§ Need	system	software	infrastructure	for	application	composition
§ Need	to	maintain	performance	isolation
§ Need	to	provide	cross-component	data	sharing	capabilities
§ Need	to	fit	into	vendor’s	production	system	software	stack

§ Remote	message	queue	abstraction	interfaces
§ Interfaces	for	accessing	remote	persistent	memory

24

Kathy	Yelick – ASCAC	Talk	– What’s	Missing?

25

Active	Messages
§ See	Paul	Hargrove’s	list	of	issues

§ https://sites.google.com/a/lbl.gov/gasnet-ex-collaboration/active-messages

§ Handlers
§ Who	allocates	the	resources?
§ What	can	be	called?
§ Where	do	they	run	(context)?
§ When	do	they	run	relative	to	message	delivery?
§ How	long	do	they	run?
§ Why?

§ One-sided	messages	decouple	processor	from	network
§ Active	messages	tightly	couple	processor	and	network

– Active	messages	aren’t	one-sided
– Memory	is	the	endpoint,	not	the	cores

§ Lightweight	mechanism	for	sleeping/waking	thread	on	memory	update
– Why	go	through	the	network	API	for	this?

§ Scheduling	lots	of	unexpected	thread	invocations	leads	to	flow	control	issues
26

Portable	Programming	for	Network	Offload

27

Motivation

§ Slower,	more	energy-efficient	processors
§ Remove	the	processor	from	the	packet	processing	path	(offload)
§ RDMA	only	supports	data	transfer	between	virtual	memory	spaces
§ Varying	levels	of	steering	the	data	at	the	endpoint
§ Terabit	per	second	networks	are	coming
§ Modern	processors	require	15-20	ns	to	access	L3	cache

§ Haswell	– 34	cycles
§ Skylake - 44	cycles

§ 400	Gib/s	can	deliver	a	64-byte	message	every	1.2	ns
§ Data	is	placed	blindly	into	memory

28

Stream	Processing	in	the	Network	(sPIN)

§ Augment	RDMA	and	matching	tasks	with	simple	processing	tasks
§ Programming	interface	for	specifying	packet	processing	kernels

§ Similar	to	the	way	CUDA	and	OpenCL	work	for	compute	accelerators

§ Tasks	that	can	be	performed	on	incoming	packets
§ Limited	state
§ Small	fast	memory	on	NIC
§ Execute	short	user-defined	functions

§ Handlers	are	compiled	for	the	NIC	and	passed	down	at	initialization	time
§ Vendor-independent	interface	would	enable	strong	collaborative	open-source	

environment	similar	to	MPI

29

sPIN Architecture	Overview

sPIN Network Interface (NIC)…

Pa
ck

et
 S

ch
ed

ul
er

 HPU 0

HPU 1

HPU 2

HPU 3…

HPU N

empty

Fast shared
memory

(handlers
and data)

DMA Unit

CPU

MEM
R/W

upload

handlers
manage

memory

arriving
packets

30

sPIN is	not	Active	Messages	(AM)

§ Tightly	integrated	NIC	packet	processing
§ AMs	are	invoked	on	full	messages

§ sPIN works	on	packets
§ Allows	for	pipelining	packet	processing

§ AM	uses	host	memory	for	buffering	messages
§ sPIN stores	packets	in	fast	buffer	memory	on	the	NIC
§ Accesses	to	host	memory	are	allowed	but	should	be	minimized

§ AM	messages	are	atomic
§ sPIN packets	can	be	processed	atomically

31

sPIN Approach

§ Handlers	are	executed	on	NIC	Handler	Processing	Units	(HPUs)
§ Simple	runtime	manages	HPUs
§ Each	handler	owns	shared	memory	that	is	persistent	for	the	lifetime	of	a	message

§ Handlers	can	use	this	memory	to	keep	state	and	communicate

§ NIC	identifies	all	packets	belonging	to	the	same	message
§ Three	handler	types

§ Header	handler	– first	packet	in	a	message
§ Payload	handler	– all	subsequent	packets
§ Completion	handler	– after	all	payload	handlers	complete

§ HPU	memory	is	managed	by	the	host	OS
§ Host	compiles	and	offloads	handler	code	to	the	HPU
§ Handler	code	is	only	a	few	hundred	instructions

32

sPIN Approach	(cont’d)

§ Handlers	are	written	in	standard	C/C++	code
§ No	system	calls	or	complex	libraries
§ Handlers	are	compiled	to	the	specific	Network	ISA
§ Handler	resources	are	accounted	for	on	a	per-application	basis

§ Handlers	that	run	too	long	may	stall	NIC	or	drop	packets

§ Programmers	need	to	ensure	handlers	run	at	line	rate
§ Handlers	can	start	executing	within	a	cycle	after	packet	arrival

§ Assuming	an	HPU	is	available

§ Handlers	execute	in	a	sandbox	relative	to	host	memory
§ They	can	only	access	application’s	virtual	address	space
§ Access	to	host	memory	is	via	DMA

33

HPU	Messages

§ Messages	originating	from	HPU	memory
§ Single	packet,	MTU	sized
§ May	block	the	HPU	thread

§ Messages	originating	from	HPU	memory
§ Enter	the	normal	send	queue	as	if	from	the	host
§ Non-blocking

34

Portals	Interconnect	Programming	Interface
§ Developed	by	Sandia,	U.	New	Mexico,	Intel
§ Previous	generations	of	Portals	deployed	on	several	production	massively	parallel	systems

§ 1993:	1800-node	Intel	Paragon	(SUNMOS)
§ 1997:	10,000-node	Intel	ASCI	Red	(Puma/Cougar)
§ 1999:	1800-node	Cplant cluster	(Linux)
§ 2005:	10,000-node	Cray	Sandia	Red	Storm	(Catamount)
§ 2009:	18,688-node	Cray	XT5	– ORNL	Jaguar	(Linux)

§ Focused	on	providing
§ Lightweight	“connectionless”	model	for	massively	parallel	systems
§ Low	latency,	high	bandwidth
§ Independent	progress
§ Overlap	of	computation	and	communication
§ Scalable	buffering	semantics
§ Protocol	building	blocks	to	support	higher-level	application	protocols	and	libraries	and	system	services

§ At	least	three	hardware	implementations	currently	under	development
§ Portals	influence	can	be	seen	in	IB	Verbs	(Mellanox)	and	libfabric (Intel	&	others)

35

Portals	Hardware	and	Co-Design	Activities

36

sPIN Interface	for	Portals4	(P4sPIN)

§ All	packet	handlers	are	associated	with	a	Match	Entry	(ME)
§ Extend	PtlMEAppend()	to	enable	handler	registration
§ HPU	memory	is	allocated	using	PtlHPUAllocMem()

§ Allows	user	the	use	same	HPU	memory	for	multiple	MEs

§ If	no	HPU	execution	contexts	are	available	NIC	may	trigger	flow	control
§ Similar	to	running	out	of	host	resources
§ Completion	handler	is	invoked	and	notified	via	flow	control	flag

37

Multi-packet Message
HeaderPacket 1 Packet 2 Packet 3 Packet 4 Packet 5

…
Packet N

Header
Handler

C/C+
+

Payload
Handler

C/C+
+

Payload
Handler

C/C+
+

Payload
Handler

C/C+
+

Payload
Handler

C/C+
+

Payload
Handler

C/C+
+ …Payload

Handler

C/C+
+

Completio
n Handler

C/C+
+

sPIN Message	Handler	Overview

38

Header	Handler

§ Called	once	per	message
§ No	other	handler	is	started	until	it	is	completed
§ Access	only	to	header	fields,	potentially	user-defined	header	info
§ Pre-defined	headers	could	be	in	special	registers
§ User-defined	headers	in	HPU	memory

39

Payload	Handler

§ Called	after	the	header	handler	completes
§ Payload	does	not	include	user-header
§ Multiple	instances	execute	concurrently
§ Share	all	HPC	memory	coherently
§ PTL_NUM_HPUS	is	the	maximum	number	that	can	be	active
§ Handlers	do	not	migrate
§ PTL_MY_HPU	to	emulate	HPU-private	data

40

Completion	Handler

§ Called	once	per	message	after	all	payload	handers	have	completed
§ Before	completion	event	is	delivered	to	host	memory
§ Passed	in	the	number	of	dropped	bytes
§ Flag	indicating	whether	flow	control	was	initiated

41

HPU	Design

§ HPU	should	have	single-cycle	access	to	local	memory	and	packet	buffers
§ HPU	memory	is	not	cached
§ HPU	instructions	should	be	executed	in	a	single	cycle

§ Documentation	needs	to	include	instruction	costs

§ Handlers	should	be	invoked	immediately	after	packet	arrival or	after	previous	
handler	completes

§ Handlers	require	no	initialization,	loading,	or	other	boot	activities
§ Context	is	pre-loaded	and	pre-initialized

§ HPUs	can	be	implemented	using	massive	multithreading
§ Pre-emptible	to	deal	with	high	latency	DMAs

§ Need	enough	HPU	cores	to	process	at	full	bandwidth

42

HPU	Memory	Size

§ Use	Little’s	Law
§ Handler	executes	between	10	and	500	instructions	at	2.5	GHz	and	IPC=1
§ Minimum	delay	of	200	ns	per	packet
§ For	1	Tb/s

§ 1	Tb/s	x	200	ns	=	25	kB

§ More	space	can	be	added	to	hide	more	latency,	likely	up	to	several	microseconds

43

Simulation	Environment

§ LogGOPSim
§ Network	simulator
§ Drives	the	simulation	by	running	trace-based	discrete-event	loop
§ Traced	all	Portals4	and	MPI	functions	and	invocations	of	handlers
§ Invokes	gem5	for	each	handler	execution	and	measures	execution	time
§ Communicates	with	gem5	through	special	memory	mapped	region	through	which	an	executing	

handler	can	issues	simcalls from	gem5	to	LogGOPSim

§ gem5
§ System-level	and	processor	microarchitecture	simulator
§ Simulates	various	CPU	and	HPU	configurations

44

Simulation	Settings
§ Network	uses	LogGP model

§ o	=	65	ns	(injection	overhead)
§ 150	million	msgs/sec
§ g	=	6.7	ns	(inter-message	gap)
§ 400	Gib/s
§ G	=	2.5ps	(inter-byte	gap)
§ 50	ns	switch	hop	latency
§ 33.4	ns	delay,	wire	length	of	10m

§ NIC	configuration
§ 4	2.5	GHz	ARM	Cortex	A15	out-of-order	HPU	cores	using	ARMv8-A	32-bit	ISA
§ Cores	are	configured	without	cache	using	gem5’s	SimpleMemory module	configured	as	a	scratchpad	that	can	be	accessed	in	k	cycles	(k	=	

1)
§ Matching	header	packet	takes	30	ns
§ Each	packet	takes	2	ns	for	CAM	lookup
§ Network	gap	(g)	can	proceed	in	parallel

§ Host	CPU	configuration
§ 8	2.5	GHz	Intel	Haswell	cores
§ 8	MIB	cache
§ 51	ns	latency
§ 150	GiB/s	bw

45

DMA	and	Memory	Contention

§ HPU	access	to	host	memory	via	DMA
§ Extended	simulation	by	adding	support	to	model	contention	for	host	memory
§ DMA	at	each	host	also	uses	LogGP model

§ o =	0,	g	=	0	since	these	are	already	captured	by	gem5
§ Discrete	NIC

§ L	=	250	ns
§ G	=	15.6	ps (64	Gib/s)

§ Integrated	NIC
§ L	=	50	ns
§ G	=	6.7	ps (150	Gib/s)

§ DMA	time	is	added	to	message	transmission	when	NIC	delivers	data	to	memory

46

Micro-Benchmarks

§ Ping-pong	latency
§ For	RDMA,	pong	is	sent	by	host	CPU	core
§ For	sPIN,	pong	is	pre-setup	by	destination	and	reply	is	triggered
§ Multiple	options	for	generating	the	pong

§ Ping	message	is	a	single	packet	and	pong	can	be	issued	with	put	from	HPU	memory
§ Ping	message	is	larger	than	a	packet	and	can	be	issued	with	put	from	host	memory
§ Payload	handler	could	generate	pong	message	from	HPU	memory	for	each	packet

§ Accumulate
§ Array	of	double	complex	numbers	to	be	multiplied	with	destination	buffer
§ For	RDMA,	data	is	delivered	to	temporary	buffer	and	accumulated	into	destination
§ For	sPIN,	packet	handlers	fetch	data	from	host	memory,	apply	operation,	and	write	it	back
§ Results	are	for	coherent	memory,	which	is	worse	than	non-coherent	memory

47

CPU

Memory

NIC/HPU

Memory

Network

Memory

NIC/HPU

Memory

CPU

RDMA

o

L

L

om

Portals 4

o

DMA

m

L

DMA

L

sPIN (store)
(≤1 packet)

o

m

L L

sPIN (store)
(>1 packet)

o

m

L

DMA

L

sPIN (stream)
(>1 packet)
o

m

L L

DMA DMA DMA DMA DMA

Breakdown	of	Ping-Pong

48

Ping-Pong	(Integrated	NIC)

49

Ping-Pong	(Discrete	NIC)

50

Accumulate	(Both	NIC	Types)

51

How	Many	HPUs	Are	Needed?

§ Little’s	Law	again
§ Average	execution	time	per	packet	of	T
§ Expected	arrival	rate	of	A
§ Need	T	x	A	HPUs
§ Fixed	bandwidth	(1/G)
§ Packet	size	s
§ Gap	g
§ A	=	min(1/g,	1/(G	x	s)
§ For	8	HPUs	supports	any	packet	size	if	handler	takes	less	than	53	ns
§ For	4	KiB	packets,	handlers	must	execute	in	650	ns

52

Number	of	HPUs	Needed

53

Broadcast	on	a	Binomial	Tree	(Discrete	NIC)

54

Matching	Protocols

55

I Short/Exp
II Long/Exp
III Short/Un
IV Long/UN

Application	Performance

56

1… …

HPU 1 - Packet 2

Main memory

NIC

1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8

…
HPU 2 - Packet 1 HPU 3 - Packet 3

1 2 33 4 5 6 6 7 8

DMA

Processing	Vector	Datatypes	in	Payload	Handlers

§ Stride	=	2.5	KiB
§ Blocksize =	1.5	KiB
§ Count	=	8

57

Strided Receive	with	Varying	Blocksize

58

Distributed	RAID	Using	RDMA	and	sPIN

59

Update	Time	in	a	Distributed	RAID-5	System

60

Acknowledgments
§ Sandia

§ Ryan	Grant
§ Scott	Hemmert
§ Kevin	Pedretti
§ Mike	Levenhagen

§ ETH
§ Torsten Hoefler
§ Salvatore	Di	Girolamo
§ Konstantin	Taranov

§ LBL
§ Paul	Hargrove

61

