© 2017 Arm Limited

.



Outline

* Arm Overview
e HPC Software Stack
* Porting on Arm

 Evaluation

2 © 2017 Arm Limited q r m



+ + + + + + + + + + +

Arm Overview

© 2017 Arm Limited q rm

+ + + + + + + + + + +



An introduction to Arm

Arm is the world's leading semiconductor
intellectual property supplier.

We license to over 350 partners, are present in 95% of smart
phones, 80% of digital cameras, 35% of all electronic devices, and a
total of 60 billion Arm cores have been shipped since 1990.

Our CPU business model:

License technology to partners, who use it to create their own
system-on-chip (SoC) products.

We may license an instruction set architecture (ISA) such as
“ARMV8-A”")

or a specific implementation, such as “Cortex-A72". ...and our IP extends beyond the CPU

Partners who license an ISA can create their own implementation,
as long as it passes the compliance tests.

4 © 2017 Arm Limited q r m



A partnership business model

A business model that shares success
- Everyone in the value chain benefits
- Long term sustainability ARM

Design once and reuse is fundamental SemiCo

. . Partner
Provider Licence fee

Business Development

Arm Licenses
technology to Partner

- Spread the cost amongst many partners
- Technology reused across multiple applications
- Creates market for ecosystem to target
— Re-use is also fundamental to the ecosystem

Upfront license fee

Partners

Idevelop
- I

Z114Y

- Covers the development cost CuC:'chl\:qer
Ongoing royalties OEM <ells
- Typically based on a percentage of chip price Cr?rr(‘)jj”unc‘g
- Vested interest in success of customers
L
Approximately 1350 licenses More than 440 potent‘ial_I 14.8bn+ Arm-powered chips in k
Grows by ~120 every year royalty payers 2015

L L

5 © 2017 Arm Limited

arm



Partnership

- P = olerecn
%xwmct xlll. ol :llom : gCCvm DA ANYKA (B85 0 oples :’1';."9. mwh-""‘" = [S] oM ETNEN Aeoe [ ZEEF fEcerticom umms Joongutions J\AKAE AANAcoM = ﬁ 4
g L AKM 6"“5“ ge A § “arasan AAl u?m . —‘ - AMAN “’% °:9::* magh'(em '"@"‘ TsSl W Dwv-ck- a ACOUSTIC 7 "Bluestreak __- A bt 1
) 2 microsystems \IN\OUV. alva C it Al1zen
Iniversity of Technology  mmmurmmm = cgm EVA am CASTMM . PDTL /> ypwapseser i Ronernd % BSQUARE nu-v o2 @g L»g - C' RY - Thread MOVIAL g é Voo UC
: {‘ EMThink """'" =il OO araryCore MONFBUNC * :
—~ ‘s‘%ﬂ Gc @ ome= Uniguity S Picsson  camsys A Ay M= — e, 00700 ﬁ % enea m; n-“‘””“’“’ .- genes! ” uuONE M a'sls
K‘C SONESSN EPSON’ ETRI‘—- m ‘l-l.q!!g o [ Can Cevsesrs S o "grmn ”""‘@ e Dr‘p'et _ IA @d @\lnur\ o Dessary OM
- GeD @mat-} 4 & A = ome ﬂ": Do NEII - \"N':‘:;:_";" sugazex, )V pepesn sens Mcodered Fcfol QFARADAY & visuaL sicuss. G
:‘fIBMcale- igu | ZEEF -~ TES .@mslucou o ecro oot | PG G, @ M x H'OYA J S P expmsu& soLsy. LTS 9 orensrienoy Neusoft (\..m;;(.r.s.—.a.—. & sem
rees ———_. Mcuerk: Setetons - AvNET coromcrh  Lamany T, o TERR S 3OS - '“‘.._M...,.... atratechasioges Rl () iy Core
NECIVUZPUYY M ARV ELLe EEESER H . keynsic = -w"“m < A m Trunee 4 Prragicwr ﬂ ‘ P ﬁ dﬁms- a.f..“..., [ ‘uPaneI . @ ACGESS
% Mediatek , co mICREL R & S miceTek  eMatech gy @onoo o = ' ' is: T4 Q'PUX et AceThought _ ( b/Tq o B SIES Webf?
s RNeTE i NEoMAGIC® $MICRONAS | N ~MSDIRE omose D SEO0 LAt ﬂ!—,\}e ) m p e M‘ww gAY r prréepmgll "
X FFECT ...........‘- a (z & PIXIM wc - - LPC Tools™ e O A"o)D ‘ ‘couthl‘r ¢ Morphoine. CN?ACJ:E- muueo cmm.
Samisk @ NUFRONT AsTRY m’:;::;. Sikicon Tnsrefaces . asied g G} vesitien ‘@Mt,‘fo KHRCINOS lttiam m X ™C m.7 W -
Pmasodc. micro "2 g asken icon FORIE  £Df e oPERA sclom\ i i
= anzzessannce .ovalronlx n-p@Chp . 1 r D NoOHau montavista: TECS sedvus: \O € em—v l
T Y ”ﬂp'?-f'ﬁ : ’ . @cm’m‘"g ¥ h. e m pdﬁﬂ‘u'.l VALIC »a
-n..m- - [ Waye SANYO (. CS sy e, Apisys 2, et D BE D G @ tirm wiretoss: IR cein Azinge Thinder-Zote sy~ -
m._I Corpenative ZTERR Cr Mo nmum AEDE Emac usws  psW m ﬁg«.. . Swvive KX
- Bicnee BTN 1y e @ marus@r_ o e 2 Fmv —— @ E@i sy VOIS @ EMThink ~2o0) GRK =5 M [\
Q s Camspan hms‘;:c:mw’:mc.. sc & SLPARASOFT V"“"‘“"""" s J‘Wh - zéeaw';;.__, @ eCosContric R34 [ -E [mson | ."f'-:'i o
w s ($SNE g  CEEREE K omm  GEER ST oo L O Minigote @i T TeLeca Microsoft: ¢ EmBiitz
" FUPCHIP, T THOMSON .1 1\ ccqp TOSHIBA i Cgilicon carsceoa m s grophicREmEDy !9 Py Q S-CUBE avosce s b
LEC Ll ‘.' .. bl‘.—_—. —————
Novus s @ inbona 4 wuawe: ,’M T C, .Sm- mmnm “‘D == O KA %’..;&.’u fRT0S rme—Q’ - Gewasd 12 oflow &..9-95
Ziiane £ XILINX rvsmmms """?‘ ()cw Nrmarens o RS et QK- @™ (Aag) T TAHl L;naro o MApusQn & =
1\;; / . wavecom” mr i -n’/ m‘. "Ic criticalblue TRGET, (ade“(e r——_ R YOROGAN ::: "W v---n-m "t hos Soav T
e AY. wirso m o 5o s Siistx Cwlinux Gl &@u ..w.nom.,..on i 3 NS
ﬁ ArayComm R ATHEROS' | aeemnge @ Aurorawisi Anmm — CJG 'I'Aﬂ\ ? & raravaY n g tf nix = % Sontia §< :
Hl:u LSI® n (elboma 25 SaTerna u “J::voTon m m:- u / ---C—I-;E Temento = - E @ w vu:m;ﬁ +BChSUL 11y ‘l.oglx- lm.arlc-n ESPIC(
remece T PP € % INTRINSIX L P YN — : ! - STEM I bt A Guads _—
y. = VIBRANOT Lome ’t’ === tMPRESS

I( & Qverave ) Eorm m WMondrlva
L srecsmass (017 g O Egg FOCUS %) Chartered DSP pls— I /\Ctm DR /ﬂ_ m Clorind¥, @mo nn Y Q MYIR supeAscape’ _._.,_.__.‘, Hopen' B Tocare prﬁdapt _______‘_ wnware
LJ Y

MIND' 74 o Mneemes TE SN . obekron X EPHexRe ,.,, Cwlmuxe

'.A;."“"‘ FARADAY b ——— T W W(fr "mv“ D’@: "! kX évnm [.code red E. I'gg Coahssde » 'Ls ..,?_ é’ﬁ E (;-u‘. mm‘w el m @Acuodih d‘m’so' '@ Wégfx TNJ
"“ FLEXTRONICS »- T ?me TeehM wx oesTren CooC cinemo EIMIC ) rstasce

L¥ KABEN Atmel osswr B0 plan - . ﬁ ooCox @

f B .. Fassen, Spap” 2 ARCHOS “FAB tthenes  Rorve Frowtiom " Octymo TS oz < EER M—‘J’ I8 o8 g anicentarour S o

g;"":“q—vr 7 Mac \\,Q’-,_ Mlanoradi .:—»’\5-.‘«‘. e mesys: Sdeni: Demes SHPC Lapland Covitoc BITRAN NOKIA incube Micripm Nrrﬂ (W nterniche Gy = s

. e ST Digital Block RF= smnrmen W CAOSSWARE E)oamns SlconXpress  symcuv = e i c. S& DDC-I lies e : nnnmm

yoesys @) tausrmee Rambus. PEiICl omose BNLES RONM B onmsmanrecs . Jipice TEMASYCE /\u-»u , ,m,m\'\ VisionaryDSP fnc. e

™ \‘t 7 RENESAS A MOXCHP 4 7 ‘jm i uperas SN e LS G e/ —...,...... RadiSys  PMMicroConsuLr

Rackchip ==+ » I deleitedS . s ' 't <> Fraunhofer , . you: i @ VECTOR

- . () - . -
pen > - > MAGMA

BOSTWN @ TOTAl orado

6 © 2017 Arm Limited q r m



Range of SoCs addressing infrastructure

» Highly Accelerated

& XILINX next:

" Centriq 2400
NG NK N
QorlQ® @ appiie
Layerscape = miIiCcro
A 2 DJ)/A 2080A . X'Gene 3TM @ CAVIUM
. BlueField = i
stratix10 THUNDER){ 2

FPGA = SoC

One size does not fit all
7 © 2017 Arm Limited q r m



Serious Arm HPC deployments starting in 2017

Two big announcements about Arm in HPC in Europe:

-insideHPC B QWA

Bull Atos to Build HPC Prototype for Mont-Blanc Project

using Cavium ThunderX2 Processor Announcing the GW4 Tier 2 HPC service, ‘Isambard":
“ January 16,2017 by staff named after Isambard Kingdom Brunel
Today the Mont-Blanc European project announced it System SpeCS:
has selected Cavium's ThunderX2 ARM server processor
to power its new HPC prototype. Cray CS-4OO SyStem
Th Mont-BI toty, ill be built by Atos, th Bl I I I 10’000+ ARMv8 cores
e new Mont-Blanc prototype will be built by Atos, the .
coordinator of phase 3 of Mont-Blanc, using its Bull T R HPC Optlmlsed SOft\_Nare StaCk
expertise and products. The platform will leverage the SRR e TeChnOlOgy comparison:
infrastructure of the Bull sequana pre-exascale + x86, KNL, Pascal
supercomputer range for network, management, cooling, To be installed March-Dec 2017
and power. Atos and Cavium signed an agreement to £4 7m tOtal prOjeCt cost over 3 yearS
collaborate to develop this new platform, thus making Mont-Blanc an Alpha-site for ’

ThunderX2.

bristol.ac.uk

8 © 2017 Arm Limited



Japan

Post-K: Fujitsu HPC CPU to Support ARMv8  ARM' rujitsu

Post-K fully utilizes Fujitsu proven supercomputer microarchitecture

Fujitsu, as a lead partner of ARM HPC extension development, is
working to realize ARM Powered® supercomputer w/ high application
performance

ARM v8 brings out the real strength of Fujitsu’s microarchitecture

| HPC apps acceleration feature Post-K FX10 | K computer
FMA: Floating Multiply and Add | v v
Math. acceleration primitives* | ¢ Enhanced

| Inter core barrier v
Sector cache v Enhanced
Hardware prefetch assist v Enhanced v

. Tofu interconnect vintegrated = ¢Integiated

* Mathematical acceleration primitives include trigonometric functions, sine & cosines, and exponential...

S
-3
-
-
2
-
-

slides from Fujitsu at ISC'16

9 © 2017 Arm Limited q r m



© 2017 Arm Limited q rm

+ + + + + + + + + + +



Parallelism to enable optimal HPC performance

= OpenMP
= We are adding enhancements to the LLVM OpenMP implementation to get better
AArch64 performance
= Arm is active member of the OpenMP Standards Committee

= Auto-vectorization
= Arm actively works on vectorization in GCC and LLVM, and encourages work with
vectorization support in the compiler community.
= PathScale’s compiler has vectorization support built in

11 © 2017 Arm Limited q r m



Open source in the Arm HPC ecosystem

Over the past 12 months many more packages and applications have been
successfully ported to Arm HPC

OpenVFOAM
GROMACS: e

NAMD

Scalable Molecular Dynamics

Qv Geant4

12 © 2017 Arm Limited q r m



Linux / FreeBSD w/ AARCH64 support

Odebian===> ubuntu®

_ _ 12.04LTS & 14.04LTS < Also 14.10 & 15.04 releases
Debian 8 adds AARCH64 — April 2015

9 released
fedorq” m) redhat e—) _ %

Fedora 22 released — May 2015
Fedora 23 released — Nov 2015 Red Hat I;n;erBr;!Ze_Llsr;up): S;(;\llgr for Arm CentOS Linux 7 for AArch64
- ’ GA — August 2015
s
openSUSE SUSE
OpenSUSE 13.2 — Nov 2014 SUSE Launches Partner Program to Bring

SUSE Linux Enterprise 12 to 64-bit Arm
July 2015 @ ISC

Free BSD & Engaged with FreeBSD foundation / Semi-half & Cavium to get FreeBSD on ARMv8
FreeBSD Beta version demo’d by Semihalf — Nov. 2015

13 © 2017 Arm Limited q r m




HPC filesystems

Software |Status
= J-y-s-t-

- 7~
LUSTRE Ported ~C-4d i

HDFS Ported O B ;_";GFSo
CEPH Ported Q 7
"1/

BeeGFS Ported

14 © 2017 Arm Limited q rm



Workload and cluster managers

IBM LSF
HP CMU

SLURM
Adaptive Computing (Moab)

Altair PBS Works

Openlava (LSF port)

15 © 2017 Arm Limited

Ported
Ported

Ported
Ported

Ported

Ported

O PBS Works

openiava

Open Source Workload Management

arm



+ + + + + + + - + + +

ompilers

+ + + + + v . v
+ + 4 + + + + + + + +
+ + + + + + + + + + +

© 2017 Arm Limited

arm

+



Open source and commercial compilers

~_ " GCC o = NAG
iy = C,C++, Fortran nag = Fortran

= OpenMP 4.0 = OpenMP 3.1

2 = LLVM
= C, C++, Fortran

= OpenMP 3.1, (4.0 coming soon)

‘® ~ B - Arm C/C++/Fortran
~ g Compiler

= LLVM based

= Includes SVE

= Fortran coming QI 2017

17 © 2017 Arm Limited q r m



Arm C/C++ Compiler
Commercially supported C/C++/Fortran compiler for Linux user-space HPC
applications | ,

LLVM-based

= Arm-on-Arm compiler
= For application development (not bare-metal/embedded)

Regularly pulls from upstream LLVM, adding:
= SVE support in the assembler, disassembler, intrinsics and autovectorizer
= Compiler Insights to support Arm Code Advisor

OpenMP

= Uses latest open source (now Arm-optimized) LLVM OpenMP runtime

= Changes pushed back to the community

18 © 2017 Arm Limited q rm



Arm C/C++/Fortran Compiler

Linux user-space compiler tailored for HPC on Arm

- Maintained and supported by Arm for a wide range of Arm-based SoCs running
leading Linux distributions

Commercially supported . .
by Arm - Based on LLVM, the leading compiler framework

Latest features go into the commercial releases first

- Ahead of upstream LLVM by up to an year with latest performance improvement
patches

Latest features and

erformance optimizations . . . .. .
P g - SVE support in the assembler, disassembler, intrinsics and autovectorizer

OpenMP

. - Uses latest open source (hnow Arm-optimized) LLVM OpenMP runtime
Optimized OpenMP

- Changes pushed back to the community

19 © 2017 Arm Limited q r m



Arm C/C++ Compiler — usage

To compile C code:

% armclang -03 file.c -o file

To compile C++ code:

> armclang++ -03 file.cpp -o file

20 © 2017 Arm Limited a rm



Common armclang options

R

Describes the most common options supported by
Arm C/C++ Compiler

——help

——vsn
——version

-0O<level>

-0 <file>
—fopenmp
=S

21 © 2017 Arm Limited

Displays version information and license details

Specifies the level of optimization to use when compiling source files.
The default is —00

Performs the compilation step, but does not perform the link step.
Produces an ELF object .o file. Run armclang again, passing in the
object files to link

Specifies the name of the output file
Use OpenMP

Outputs assembly code, rather than object code. Produces a text . s file
containing annotated assembly code

arm



Experimental tools to support SVE
With Arm HPC Compiler, Instruction Emulator and Code Advisor

Compile » Emulate Analyse
Arm HPC Compiler Instruction Emulator Code Advisor
C/C++/Fortran Runs userspace binaries Console or web-based output shows prioritized
for future Arm advice in-line with original source code.
SVE via auto-vectorization, architectures on today’s

A conditional prevented an instance of this loop
intrinsics and assembly. systems. from being vectorized

The conditional at location 2115:15 cannot be converted to a
predicate, which prevented an instance of this loop from
being vectorized.

Compiler Insight: Compiler Supported instructions 205 R
places results of Complle_ run unmodlﬁed_ 2106 Real_t vhalf = Real_t(l.) / (Real_t(l.) + compHalfStep[i]) ;
2107
time decisions and analysis 2108 if ( delvc[i] > Real £(0.) ) {
. . . . . 2109 g new[i] /* = gg_old[i] = gl_old[i] */ = Real_t(0.) ;
in the resulting binary. Unsupported instructions e ree ¢
else
are trapped and 2112 Real t ssc = ( pbvc[i] * e_new[i]
2113 + vhalf * vhalf * bvc[i] * pHalfStep[i] ) / rhoO ;
emulated. 2114
2115 if ( ssc <= Real t(.111111le-36) ) {
2116 ssc = Real t(.3333333e-18) ;
2117 } else {

ssc = SQRT(ssc) ;

22 © 2017 Arm Limited



Arm Instruction Emulator
Run SVE binaries at near native speed on existing Armv8-A hardware

Trap-and-emulate of illegal userspace instructions Armv8-A Binary §ll Armv8-A SVE Binary

For application development =
(not bare-metal/embedded like Arm Fast Models)

Natively supported instructions run at full speed

Unsupported instructions are faithfully emulated in software Arm Instruction Emulator

"I"‘“'I

: : : : - Converts SVE
Full integration with Arm Code Advisor ’5. L 1o
. . . = o _
Plugin allows Arm Instruction Emulator to provide hotspot =t PelveArmveA
information and other metrics :_E

23

-
[ ]
-
|
-
.y
-
L
L]
—
y
"
[ ]
—
]
-
.y
-
_—
{—

Command-line integration allows Arm Code Advisor

workflows to seamlessly integrate with Arm Instruction — —
=

© 2017 Arm Limited q r m




Arm Code Advisor

Combines static and dynamic information to produce actionable insights

Performance Advice —,

€ (O | sueld=insight62;lineNumber=206 ¢ Q search wBe 93 A 4 H

= Compiler vectorization hints ARMCODE ADVISOR™™ _  us.c : : 2 ©

Filter: Order by: lulesh2.0.3.tgz Index t i = 0; i < length ; ++i) {
Rea.

Impact cls = Real _t(2.0)/Real t(3.0) ;

. . . E README e i' = cls * (compression[i] + Real_t(1.));
- Compilation flags ad - A
O m p I a O n a S a VI Ce toop 589- ° B lulesh-comm.cc
E lulesh-init.cc
lulesh.cc R Iulesh-util.cc

= Fortran subarray warnings

E lulesh.h

ﬁ lulesh_tuple.h
lulesh.cc & omp.csv

OpenMP instrumentation R [y

armcadvisor.advice

Vectorized an in:
loop

B mainc
(FABS(p_new[i]) < cu

= |Insights from compilation and runtime & e r.mi = L 00"

Line 311 omp.log [ ) £ O )
Vectorized an in: e is test!

loop p_new[i] = Real t(0.0) ;

=  Compiler Insights are embedded into the application B e oy o

p_new[i] = pmin ;

. . Line 2053 B lulesh.cc y }
binary by the Arm HPC Compilers e
H M o lulesh.cc E lulesh-comm.o void Cui:éxi:::qy?orzlm(l(anl_t' p_new, Real t* e_new, Real t*
=  OMPT interface used to instrument OpenMP runtime o e o e

q old,

loop N -
B lulesh-inito Real_t* compression, Real t*

Extensible Architecture

= Users can write plugins to add their own analysis information
= Data accessible via command-line, web browser and REST API to support new user interfaces

24  © 2017 Arm Limited q r m



+ + + + + + + - + + +

Libraries

+ + + + 4 + . . .
+ 4 + + 4 + 4 + + 4 +
+ + + + + + + + + + +

© 2017 Arm Limited

arm

+



@ODGNHPC — Now on Arm

OpenHPC is a community effort to provide a common,
verified set of open source packages for HPC

Base OS RHEL/CentOS 7.1, SLES 12
deployments

Administrative Conman, Ganglia, Lmod, LosF, ORCM, Nagios, pdsh,
Tools prun
’ [ ] L[] . R
Arm’s participation: Provisioning Warewulf
. Resource Mgmt. SLURM, Munge. Altair PBS Pro*
«  Silver member of OpenHPC
p I/0 Services Lustre client (community version)

° Arm iS on the OpenHPC TeChnlcaI Steeﬂng Commﬂ_'tee T.Eme‘rical/Scientiﬁc SBoost,LUGSI\I;I, FFTW, Metis, PETSc, Trilinos, Hypre,
. . . ibraries uperLU, Mumps
in order to drive Arm build support

I/0O Libraries HDF5 (pHDF5), NetCDF (including C++ and Fortran
interfaces), Adios

Statu S 1 . 3 . 1 release o ut Nnow Compiler Families GNU (gcc, g++, gfortran)

MPI Families OpenMPI, MVAPICH2

® A” paCkageS bU'lt On ArmVS‘A for Centos and SUSE Development Tools  Autotools (autoconf, automake, libtool), Valgrind,R,

SciPy/NumPy
- Arm-based machines are being used for building and  [serfermanceToois | papi,intelinie, mpiP, petoolkit TAU
also in the OpenHPC build infrastructure

26 © 2017 Arm Limited q r m



27

Open source library AArch64 inbuilt tuning work

OpenBLAS
- ARMVvVS8 kernels included
BLIS

- BLIS developers have close relationship with Arm
- BLIS supports various Arm processors by default (e.g. Arm Cortex-A53, Cortex-A57 CPUs)
- Also currently conducting Arm big.LITTLE development

ATLAS

- Work ongoing with Arm Research team
- Cortex-A57/A53 patches went into ATLAS

FFTW
 Just works. NEON options built into v3.3.5

© 2017 Arm Limited

arm



Arm Performance Libraries
Optimized BLAS, LAPACK and FFT

Commercial 64-bit Armv8-A math libraries
* Commonly used low-level math routines - BLAS, LAPACK and FFT

* Validated with NAG’s test suite, a de-facto standard

Best-in-class performance with commercial support
* Tuned by Arm for Cortex-A72, Cortex-A57 and Cortex-A53

* Maintained and supported by Arm for a wide range of Arm-based SoCs

+ Including Cavium ThunderX and ThunderX2 CN99 cores
Silicon partners can provide tuned micro-kernels for their SoCs
* Partners can contribute directly through open source route

* Parallel tuning within our library increases overall application performance

28 © 2017 Arm Limited

Performance on par
with best-in-class math libraries

Commercially Supported
by Arm

Validated with
NAG test suite

arm



+ 4 + 4 4 + 4 - + + +
+ 4 + 4 4 4 4 - + + +
+ 4 + + + + 4 + . . .
+ 4 + + 4 + 4 + + 4 +
+ + + + + + + + + + +
+ ¢

© 2017 Arm Limited

arm

+



RDMA Support

Mellanox OFED 2.4 and above supports Arm é)

Linux Kernel 4.5.0 and above (maybe even earlier) EABRICS
ALLIANTCE

[
4
g
ﬁ
7
v

OFED — No support

Linux Distribution — on going process

ubuntu® ‘ rednat SUSE

arm

30 © 2017 Arm Limited




UCX Framework

* Collaboration between industry, laboratories, and academia
e Create open-source production grade communication framework for HPC applications
* Enable the highest performance through co-design of software-hardware interfaces

* Unify industry - national laboratories - academia efforts

API Performance oriented Production quality

Exposes broad semantics that target
data centric and HPC programming
models and applications

Optimization for low-software Developed, maintained, tested, and
overheads in communication path used by industry and researcher
allows near native-level performance community

Community driven Research Cross platform

Collaboration between industry, The framework concepts and ideas are Support for Infiniband, Cray, various
laboratories, and academia driven by research in academia, shared memory (x86-64, Power, Arm),
laboratories, and industry GPUs

Co-design of Exascale Network APls

31 © 2017 Arm Limited q r m




UCX — a high-level overview

Applications

MPICH, Open-MPI, etc. Spslalilmal LIRE, s oAl Parsec, OCR, Legions, etc. Burst buffer, ADIOS, etc.
Chapel, etc.

N AN 2 2

4 N\

UC-P (Protocols) - High Level API

Transport selection, cross-transrport multi-rail, fragmentation, operations not supported by hardware
Message Passing API Domain: PGAS API Domain: Task Based APl Domain: I/0 APl Domain:
tag matching, randevouze RMAs, Atomics Active Messages Stream

UC-T (Hardware Transports) - Low Level API UC-S
RMA, Atomic, Tag-matching, Send/Recyv, Active Message (Services)
Common utilities

Transport for InfiniBand VERBs Transport for Transport for intra-node host memory communication Transport for
driver Gemini/Aries Accelerator Memory Utilities Data
drivers communucation stractures
Management

OFA Verbs Driver Cray Driver OS Kernel ? ‘ l

32 © 2017 Arm Limited q rm




OpenUCX v1.2

* The first official release from OpenUCX community
https://github.com/openucx/ucx/releases/tag/v1.2.0 )

* Features

APl

«  Support for InfiniBand and RoCE

- Transports RC, UD, DC
Support for Accelerated Verbs — 40% speedup on Arm compared to vanilla Verbs
Support for Cray Aries and Gemini
«  Support for Shared Memory: KNEM, CMA, XPMEM, Posix, SySV
- Support for x86, ARMv8 (with NEON), Power
Efficient memory polling — 36% increase in efficiency on Arm
UCX interface is integrated with MPICH, OpenMPI, OSHMEM, ORNL-SHMEM, etc.

Pavel Shamis, M. Graham Lopez, and Gilad Shainer. “Enabling One-sided Communication Semantics on Arm*“

33 © 2017 Arm Limited q r m



© 2017 Arm Limited
+ +

+ + +
+ 4 +
4 + .

Experience

arm



What is AArch64?

ARM'’s 64-bit instruction set, part of ARMvS8

CRYPTO @& CRYPTO
31 general purpose registers W

Fixed length (32-bit) instructions

Load/Store architecture

64-bit pointers and registers

A32+T32 ISAS A64 |SA
Little endian (big endian is an option) ' '

Hardware floating point RS — \dv SIM
Advanced SIMD AArch3?
Weakly ordered memory ARMVEB-A

35 © 2017 Arm Limited a rm



My First Development Platform

36 © 2017 Arm Limited q r m



Autoconf for AArch64

.Jconfigure is broken for older builds of autoconf:

« “Invalid configuration "aarch64-linux': machine ‘aarch64' not recognized”

Running autoconf/autoreconf with Autoconf releases after 2012/02/10 should fix ./
configure

Alternatively you can upgrade the config.guess and config.sub files to the latest versions
from:

 http://git.savannah.gnu.org/r/config.git

arm

37 © 2017 Arm Limited



64k Page Sizes

The linux kernel config for AArch64 supports 4k and 64k page sizes

« Most AArch64 linux distributions now default to 64k pages in their kernel config

Shared libraries built to align to 4k pages will not load if their initialization code does not
happen to align to a 64k boundary

If you are building your own compiler toolchains be aware that binutils prior to 2.26
default to producing binaries aligned 4k pages

- The binutils source rpom/deb packages for the distributions using 64k pages have the AArch64 page size patched to
always use 64k

38 © 2017 Arm Limited q r m



Weakly Ordered Memory Model

39

Weakly ordered memory access means that changes to memory can be applied in any
order as long as single-core execution sees the data needed for program correctness

Benefits:

- The processor can make many optimizations to reduce memory access
— This has power (pushing bits is expensive) and memory bandwidth benefits

- The optimizations are transparent to single-core execution

Challenges:

- Synchronization of data between cores must be explicit
 Popular legacy architectures (EG: x86_64, x86) provide “almost” strongly ordered memory access

— This means that existing multi-core codes may be dependent on strongly ordered accesses

© 2017 Arm Limited q r m



Relaxed memory ordering

40

Busy-wait Read Notify

Read Barrier

RDMA Write Payload
Write Barrier
RDMA Write Notify

Maranget, Luc, Susmit Sarkar, and Peter Sewell. "A tutorial introduction to the Arm and POWER relaxed memory models." Draft
available from http://www. cl. cam. ac. uk/~ pes20/ppc-supplemental/test7. pdf (2012).

© 2017 Arm Limited

Read Payload

arm



Weakly Ordered Memory In Porting Applications

Most parallel HPC applications we encountered used GCC’s libgomp (-fopenmp)

- These behaved correctly on AArch64 using GCC 5.2

Some HPC codes we came across had their own parallelization implementations

- Usually based directly on top of pthreads
- Written to have more control over the threads of execution and how they synchronize
- Some had no problems working with AArch64’s weakly ordered memory system

- Others exhibited issues in multi-threaded modes that were particularly hard to diagnose without a detailed
investigation into how the multi-threaded mode was implemented

— Problems are almost always down to a lock-free thread interaction implementation

- The key symptom is correct operation on a strongly ordered architecture, failure on weakly ordered

41 © 2017 Arm Limited q r m



Weakly Ordered Memory In Porting MPI and PGAS

A7 P

Typical MPIl implementation pitfalls:

 MPI shared memory code

e Collective operations within shared memory

« RDMA polling code ! (YES, not just interaction between devices)

Typical PGAS/OpenSHMEM pitfalls:
 All the above...and more

« Memory (local and remote) synchronization routines

42  © 2017 Arm Limited q r m



Weakly Ordered Memory In Porting Drivers

User and kernel level drivers for “OS bypass” devices

 Memory barriers in doorbell flow

43  © 2017 Arm Limited q rm



Being explicit with your memory access

|deally; use a modern synchronization implementation to do it for you

- OpenMP, C++11 atomics, C mutexes, various other libraries

Otherwise: barrier assembler instructions allow you to be explicit in what happens to
memory before execution continues:

Load-Acquire, Store-Release instructions allow for atomic operation without the use of
explicit barriers

44  © 2017 Arm Limited q r m



Memory Barriers

DSB
e Completion semantics

e Data Synchronization Barriers halt execution until:

All explicit memory accesses before the instruction complete

All cache, branch prediction and TLB operations before the instruction complete

* Interaction with external devices (PCle doorbells)

- Device drivers
#define ucs_memory bus_fence() asm volatile ("dsb sy" ::: "memory");

#define ucs_memory bus store fence() asm volatile ("dsb st" ::: "memory");

#define ucs_memory bus_ load fence() asm volatile ("dsb 1ld" ::: "memory");

Examples https://github.com/openucx/ucx/blob/master/src/ucs/arch/aarch64/cpu.h#L25

45 © 2017 Arm Limited

arm



Memory Barriers - continued

DMVIB
e |SH* domain on Linux

* Poll-flag, barrier, data

#define ucs_memory cpu fence() asm volatile ("dmb ish" ::: "memory");
#define ucs_memory cpu_store_fence() asm volatile ("dmb ishst" ::: "memory");

#define ucs_memory cpu_load fence() asm volatile ("dmb ishld" ::: "memory");

Examples https://github.com/openucx/ucx/blob/master/src/ucs/arch/aarch64/cpu.h#L25

46  © 2017 Arm Limited a rm




Low-level timers

Low-level timers

- Typically found in benchmarks and MPI
- Code examples https://github.com/openucx/ucx/blob/master/src/ucs/arch/aarch64/cpu.h#L35

static inline uint64_t ucs_arch_read_hres_clock(voi;;\\\\\
{

uint64_t ticks;
asm volatile("isb" : : : '
asm volatile("mrs %0, cntvct_el®" : "=r" (ticks));

return ticks;

static inline double ucs_arch_get_clocks_per_sec()

{
uint32_t freq;

asm volatile("mrs %0, cntfrqg_el®" : "=r" (freq));

\\ return (double) freq; /
}

47  © 2017 Arm Limited q rm




Cache line on Arm

Not all cache-lines are 64Byte !

- Implementation dependent

- Don’t make assumptions about 64B cache line size

http://xeroxnostalgia.com/duplicators/xerox-9200/

48 © 2017 Arm Limited q r m



+ + + + + + “ + + 4 +

or Optimization

LEER

© 2017 Arm Limited q rm

+ 4 4 + 4 4 4 4 + + 4



Network driver optimizations

MLX5 — specially optimized transport implemented on top of ConnectX Hardware

Abstraction Layer

The layer initialize translates UCP request to InifniBand request and rings the doorbell

- The code responsible for initialization of the request was updated to leverage Arm

50

vector instructions (NEON):

https://github.com/openucx/ucx/blob/891e20ef90257d1e2721da52461b0261220¢c82d8/src/uct/ib/mix5/

ib mIx5.inl#L160

© 2017 Arm Limited

N

#if defined(__SSE4_2_ )
*(_m128i*)raddr = _mm_shuffle_epi8(

_mm_set_epi64x(rdma_rkey, rdma_raddr),
_mm_set_epig8(@, ©, 0, 0, /* reserve d */
8, 9, 10, 11, /* rkey */
e, 1, 2, 3, 4, 5, 6, 7 /* rdma_raddr */
));
#elif defined(__ARM_NEON)
uint8x16_t table = {7, 6, 5, 4, 3, 2, 1, @, /* rdma_raddr */
11, 19, 9, 8, /* rkey */
16,16,16,16}; /* reserve d (set @) */
uint64x2_t data = {rdma_raddr, rdma_rkey};
*(uint8x16_t *)raddr = vqtbllqg_u8((uint8x16_t)data, table);
#else
raddr->raddr = htobe64(rdma_raddr);
raddr->rkey = htonl(rdma_rkey);
#endif

arm



OpenSHMEM Optimizations

SHMEM_WAIT/SHMEM_WAIT_UNTIL block until memory is updated by
remote process

void shmem int_wait (volatile int xivar, int cmp_value);

void shmem int_wait_until (volatile int xivar, int cmp, int cmp_value);
void shmem_long_wait (volatile long xivar, long cmp_value);

void shmem long_wait_until (volatile long xivar, int cmp, long cmp_value);
void shmem longlong wait (volatile long long xivar, long long cmp_value);

51 © 2017 Arm Limited q r m



WFE

Typically implemented as a busy-wait loop

- Arm Wait-For-Event (WFE) — provides an opportunity to pause the core until the memory is
updates (or an interrupt occurs)

- Itis used in linux spinlock and it is perfect fit for SHMEM

52 © 2017 Arm Limited q r m



WFE

53

static inline void ucs_arch_wait_mem(void *address)

{
unsigned long tmp;
__asm__ _ volatile  ("ldxr %0, [%1] \n"
"wfe \n"
: "=&r"(tmp)
: "r"(address));
}

© 2017 Arm Limited

arm



+ + + + + + + + + + +

esults

Preliminary

© 2017 Arm Limited q rm

+ 4 + + 4 + 4 4 + + +



Testbed

e 2 x Softiron Overdrive 3000 servers with AMD Opteron A1100 / 2GHz
* ConnectX-4 IB/VPI EDR (PCle gen2 x8)
* Ubuntu 16.04

* MOFED 3.3-1.5.0.0

* UCX [0558b41]

e XPMEM [bdfcc52]
 OSHMEM/OPEN-MPI [fed4849]

Pavel Shamis, M. Graham Lopez, and Gilad Shainer. “Enabling One-sided Communication Semantics on Arm*“

55 © 2017 Arm Limited q r m



Hardware Software Stack Overview

Applications

OSHMEMIOpenSHMEM @

Open UCX Network API

XPMEM Verbs API
ARMvS Mellanox InfiniBand EDR InfiniBand

56 © 2017 Arm Limited a rm



: MLX5 vs Verbs

OpenUCX IB

UCP Put Message Rate

UCP Latency

25

T T T T
B - v20t
r ++ 1 ¢cls
B - 992
55
aa
B 23 1 82t
-
=2
I 1 v9
3
L - ze MWMW
r y 191
L o i
Xt 8
o
- < 1v
I 1¢
C 1 1 1 1 7 F
N 0 Q < Q
[aV) — — [Te} o
pu028g / (suoliN) sebessay
T T T T T T T T T ] N@—.N@ON
1 9458¥01
- 88c¢v2S
7 vvie9e
- 2¢L0l€ElL
- 9€G59
- 89.¢€
- v8e9t
- 2618
- 9601
[%2]
.. 1 8v0e 3
+ * 'R ] -1 ¥2ot s8]
11 1 ¢cks
%%Du.nu. N H 9%¢
LR IR 8¢l
XX ‘ ]
Jod o ¥9
=35> m- 26
B - RIEL
- ¥
L ]y
- |-z
1 1 1 1 1 _-
O ¥ N © o F N
mM o ™M

1024
512 [

256 |-

(607) spuodasoudIN

UCP Atomic Memory Operations (AMO)

UCP Put Bandwidth

ORI
B

SRS

K S E 5855855 ERREBEARAKRAKKRKKL

B R RN X KT
B R
Lotef0teteta ot e tetetate e tate e ot e ot e ot e ot e ot e tote et

SPU0D8SOIOIN

MLX5 Put e
Verbs Put ——e—

3500

ar

demso-g

dems-g

ppe}-8

ppe-g

operation
(d)

demso-§

dems-f

PpPe}-1

ppe-y

¢S1.60c
9/58¥01
88ccS
yv1c9e
cl0lEl
9€G59
89/¢€
y8€91
618
9601
810c
¥e0l
cls
9G¢

8¢l

()

Bytes

© 2017 Arm Limited

57



OpenUCX: XPMEM

58

© 2017 Arm Limited

Microseconds (Log)

MB/s

UCP Latency
1024 ,

512 |
256 |-
128 |
64 |-

32 L
16 XPMEM Put e
8 XPMEM Gét ——e—

4

2

1

0.5

0.25
0.125

0.0625 l_

1024 |
2048 L
4096 |
8192 |
16384 |
32768 |
65536 |
131072 L
262144 |
524288 |
1048576 |

Bytes
(@)

UCP Bandwidth
16000 —

2097152 |

14000 |-
12000 |-

10000 - XPMEM Put e

8000 L XPMEM Géet ——e—

6000
4000
2000

64 L
128 L
256
512

| S I (NS (NN (NN SN S S —
AN 0O < 00 O AN S 0 O© AN I ©
- ™ AT OO O MNIT O
OO O~ MNKNWO—A
~ AN < 0O AN — AT
- M O m oA
~ AN O
Bytes
(©)]

1048576 |

2097152 |

Messages / Second

Microseconds

UCP Message Rate

2e+07 |

1e+07

1e+07

XPMEM Put e

1e+07 - XPMEM Get —e—

8e+06 |-
6e+06 |
4e+06 |

2e+06 |-

64 |

1 1
— [aV) < [oo] O Al
~ [s2]

128 |
256 -

Bytes
(b)

UCP Atomic Memory Operations (AMO)
0.1 :

512 t

1024 L

0.09 |
0.08
0.07 |
0.06 -
0.05 |
0.04 -
0.03 |
0.02 L
0.01 |

° Q.
he] ©
g2

o &

kel
S

P
<

4-fadd

4-swap

4-cswap
8-add

operation
(d)

8-cswap

arm



SHMEM WAIT/()

59

Latency of 'put' ping-pong
with shmem_wait()

2.5 ,

Latency (microseconds)

ARM Optimized Regular
shmem_wait() shmem_wait()

(@)

© 2017 Arm Limited

Instruction count

2e+09

1.5e+09

1e+09

5e+08

Total Benchmark
Instruction count

ARM Optimized Regular
shmem_wait() shmem_wait()

(b)

Cycle count

1.6e+09

1.4e+09

1.2e+09

1e+09

8e+08

6e+08

4e+08

2e+08

0

Total Benchmark
Cycle count

35%

ARM Optimized Regular
shmem_wait() shmem_wait()

(c)

arm



OpenSHMEM SSCA

SSCA Benchmark

500
a00L
%> S0k
i)
[
(@)
(&)
()
2
2 :
= 200
100 L
0

UCP VERBS —e—
UCP MLX5 —gm—
UCP XPMEM - & -

60 © 2017 Arm Limited

PEs

arm



OpenSHMEM GUPs

OpenSHMEM GUPs Benchmark

7.0e-04 : : : !
6.0e-04 | 21%
£ 5.0e-04 [ |
(&)
[}
0
@
o
S 4.0e04f .
IS
©
o
=)
& .7
= 30e04f g~ e
0 : . ,
- ; UCP MLX5 (block) - g -
; UCP VERBS (block) - g -
; UCP MLX5 (round-robin) —gg—
2 0e-04 L ~ UCP VERBS (round-robin) —e— _
1.0e-04 L i 1 1

PEs

61 © 2017 Arm Limited q r m



OpenSHMEM [Sx

62

© 2017 Arm Limited

Time (seconds)

22

20

18

16

14

12

10

ISx Benchmark

" UCPVERBS —e—

UCP MLX5 —m—

PEs

16

arm



+ + + + + + + + + + +

Summary

© 2017 Arm Limited q rm

+ + + + + + + + + + +



Resources for Porting to AArch64

ARMVS8 instruction set overview:

http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/index.html

Arm C Language Extensions
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c¢/IHI0053C acle 2 O.pdf

Arm ABI:

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.swdev.abi/index.html

Cortex-A57 Software Optimization Guide

http://infocenter.arm.com/help/topic/com.arm.doc.uan0015b/index.html

Introduction to Arm memory access ordering:

https://community.arm.com/groups/processors/blog/2011/03/22/memory-access-ordering--an-introduction

64 © 2017 Arm Limited q rm




Developer website : www.arm.com/hpc

A HPC-specific microsite

This is home to our HPC ecosystem offering:

* technical reference material

*  how-to guides

* |atest news and updates from partners

* downloads of HPC libraries

* third-party software recommendations

* web forum for community discussion and help

Participate and help drive the community
65 © 2017 Arm Limited q r m



The Arm trademarks featured in this
presentation are registered trademarks or
trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All
rights reserved. All other marks featured may
be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

66 © 2017 Arm Limited



