> 3 I

L£AC!

e
Accelerating the Fast Fourier Transform
on Large Scale Heterogeneous Systems
“The heFFTe Library” TENNESSEE

KNOXVILLE

Ahmad Abdelfattah
Innovative Computing Laboratory
University of Tennessee, Knoxville

MUG’24, Columbus, OH
August 19-21, 2024




Ly & ' ! _d

J5Cred|t to the heFFTe team

= Miroslav Stoyanov (ORNL)

= Alan Ayala (UTK — AMD) - yesterday’s talk
= Stan Tomov (UTK — NVIDIA)

» Azzam Haidar (UTK — NVIDIA)

= Jack Dongarra (UTK)

= Sebastien Cayrols (UTK — NVIDIA)
= Jiali Li (UTK)

= George Bosilca (UTK — NVIDIA)

= Veronica Montanaro (ETH)

= Sonali Mayani (ETH)

* Andreas Adelmann (ETH)

= students and outside collaborators

> | am the newest member to this team ©

£1ICL



L 3 !

JgThe purpose of this talk

1) High-level introduction to heFFTe as an efficient distributed
Implementation of multi-dimensional FFT

2) The status of heFFTe post ECP
neFFTe as a benchmark for MPI implementations

W

RN

mpact on some applications

)
)
)
) Future Directions

Ol

£ 1CL



L 3 !

} Fast Fourier Transform (FFT)

 FFT computes the Discrete Fourier Transform (DFT) of a series:
Let x = x,, ..., x; are complex numbers. The DFT of xis the sequence

X=X, X, ..., X,_;,such that:

n

N-1
Xk=ane_i2”k”/N k=0,...,N—1.

« DFT can be computed as a matrix-vector multiplication (GEMV) in J(N?)
-LOPs (memory-bound)

 FFT reduces the complexity to O(N log, N) (even more memory-bound)

* The Inverse Discrete Fourier Transform (IDFT) is similarly defined except that
the ‘e’ exponents are taken as (i 27 k n/ N), and elements divided by N

e A L Ty Ay "wwy\\'wyy,/mmmmmmmmmmT

£ 1CL



L 3 !

FFT in the DOE’s Exascale Computmg Project (ECP)

Cosmology
ECP ExaSky - HACC

Deep Learning

A
Argonne

PDE solutions, MASSIF
Molecular Dynamics

ECP EXAALT

« Some of these applications require multi-dimensional FFT at large scale
* Must run on DOE’s ECP systems (i.e. use GPUs)

THE UNIVERSITY OF

P &l TENNESSEE

KNOXVILLE

-—wyamNy T\



L 3 !

p

heFFTe: Highly Efficient Exascale FFTs Library for

Heterogeneous Architectures

« 1D, 2D, and 3D distributed FFT library

« GPU-enabled
« Relies on single-node FFT libraries (FFTW, cuFFT, rocFFT, & oneMKL)
- Simple data transposition/reshape kernels

- MPI Communication Steps in preparing “pencils” in the different dimensions

A/ﬁnd computing batches of 1D FFTs locally on each node/GPU
?' 3 3

31 32 3334 3536 1

I_1[<]
1ol

£ 1CL



L 3 !

}Status of heFFTe

- heFFTe-2.4.0 with support for CPUs, Nvidia, AMD, and Intel GPUs

) Capabi"tieS: Strong scaling of heFFTe
« Multidimensional FFTs . on 10243 FFT problem
« C2C, R2C, C2R . o

« DCS, DST, and convolution 1
- Batched FFTs
« Multiple data layouts & communications patterns

« Open-source Software
. Spack installation and integration in xXSDK

. Homepage: http://icl.utk.edu/fft/ 55"
Repository: https://github.com/icl-utk-edu/heffte 2, B 6 32 ek 18 25

' Number of Nod
- So far, no major developments after ECP closeout umber o fodes

5.7 XSPEEDUP

Tflop/s

8
4
2
1
5

ey pe_— 7/ % VAN N2 ¢

£ 1CL


http://icl.utk.edu/fft/
https://github.com/icl-utk-edu/heffte

. Sy & ' 1! 4

heFFTe among Other Developments

3

e Amongst the very few parallel FFT libraries that support GPUSs, @ python
heFFTe provides unique functionalities that cover a large FF'I'
number of features from the state-of-the-art, making it ubiquitous h e e
for a wide range of applications E%::—-——;: / AﬂD ﬁ%‘\\ (intel'

FFTW3
FFIMPL v/ v v v
2DECOMP v v v

SWFFT v v
PFFT 7 v v/

P3DFFT R 7| 7

"""" WecrEnad IRV R B B A 7 (RS2 R R BV I

FFTE 7 7| 7|

heerrel RN A A A Y v % v

KNOXVILLE

L ICL g o] TENNESSEE




L 3 !

heFFTe is heavily communication-bound

« Using heFFTe’s own minimal tracing tool
« MPI calls dominate the execution time, especially on the GPU
« Any improvement in communication leads to huge performance gains

Time Breakdown of heFFTe on Frontier using rocFFT
3D FFT, N = 1024, FP64 (C2C), ROCm-5.6.0, cray-mpich/8.1.27

~— /% ""O\W

—_ MPI (a2av)
79.17% —

64 nodes, 512 ranks

MPI (a2av)

8 nodes, 64 ranks 88.61%

[

**with explicit synchronization after kernel /aunches/,f

THE UNIVERSITY OF

# &l TENNESSEE

KNOXVILLE



‘,A‘

> 1 !

>heFFTe is heavily communication-bound

« Using heFFTe’s own minimal tracing tool

« MPI calls dominate the execution time, especially on the GPU
« Any improvement in communication leads to huge performance gains

Execution trace: 3D FFT, N = 1024, Backend=rocFFT, 8 nodes, 64 MPI ranks

64
61
58
55
52
49
46
43
40
37
34
31
28
25

3D FFT, N = 1024, fg

FP64, 16
ROCm-5.6.0, 13
cray-mpich/8.1.27 3
8 nodes 4

64 ranks 1

B VP (a2av)
8 Frr-1D
B rFack
- Unpack
:] Scale

MPI Ranks

0 0.05 0.1 0.15 0.2 0.25 03 . o
Time (s) **with explicit synchronization after kernel launches

SICL B

-




L 3 !

heFFTe benchmark sweep on Frontier

3D FFT, N =1024 oororiSIaba/awars Po-reordrSlaba/amare.

==
== -
reorder/pencils/no-aware =»- no-reorder/pencils/no-aware g i
=4 . ‘
1 1

rOCFFT backend (ROCm_530) 18.0 reorder/pencils/aware —— no-reorder/pencils/aware
Cray-mpich-8.1.23 BOF A

: 14,0 i m g st s S
32 different runs ok

= 4 communication patterns (a2a, a2av, p2p, T o] EEEEEENINE () EREREE IR

= 2 decompositions (pencils vs. slabs) 6.0k iiiiiid bt

Tflop/s

= 2 FFT-1D modes (contiguous vs. strided) a0k A
= 2 modes for MPI (std vs. GPU-aware) pob L

R

» Could test/expose §everal | 0 s e h v %0@%’ s ey
aspects of an MPI implementation ~ X \

Nodes (8 GPUs/node, 1 MPI rank/GPU)

|
* p2p: uses MPI_Send and MPI_lIrecyv, receive is pipelined with packing and sending
* p2p_pl: uses MPI_Isend and MPI_Irecv, all sending receiving packing and unpacking are pipelined /

/
;

CICL i



Integration to ECP EXAALT
LAMMPS Rhodopsin Benchmark using heFFTe

® Molecular dynamics apps heavily rely on FFT's, and often have
their own parallel FFT implementation (e.g., fft MPI, SWFET).

® Using heFFTe real-to-complex accelerates LAMMPS Kspace
kernel around 1.76X.

Rhodospin experiment on a 32K atom system
100 - - :

Pair
80} Bond-Force
Kspace
Neighbor

Other

60

40¢f

Runtime [% ]

201

0

fftMPI heFFTe
FFT Library

Figure: Breakdown for the LAMMPS Rhodopsin experiment. Using 32 Summit
nodes, 6 V-100 GPUs per node, and 1 MPI per GPU.

Ref.: Performance Analysis of Parallel FFT on Large Multi-GPU Systems.
Ayala et al., IEEE IPDPS 2022.



- s vy - ' I _d

Opportunity: Approximate FFT

Some applications tolerate accuracy in FFT
- approximate FFT computations (with casting to FP32 / FP16)

Novel Poisson solver: Problem

-~ What do we gain? ~ Impact on Performance Impact on Accuracy
Convergence for smooth Gaussian 14000! —e— FPG4 o FP64->FP32 mi
source: 12000L — P32 T FP64-FPI6 | ! L #GPU  FP64 FP32  FP64 — FP32
| 12 6.00e-15 4.96e-06 1.94e-07
- 10000 24 6.17e-15 4.91e-06 2.20e-07
} ) 48  5.92e-15  4.49e-06 3.01e-07
= % 8000 - 96  6.00e-15  3.47e-06 3.90e-07
| 10 a 192 5.1le-15  3.54e-06 3.99e-07
| E 10 L 6000 384 5.25e-15  4.44e-06 5.09¢-07
| e O 768 5.29-15  3.13e-06 5.44e-07
81 4000 1536 5.38¢-15  3.06e-06 5.57e-07
-4 lo-lo
—+— Vico
1022 —e— Hockney 2000
-4 Vico (GPU)
1074 ~e- Hockney (GPU)
102 10 0 |
Mesh Spacing 12 24 48 9% 192 384 768 1536
) HGPUs

These solvers are in Independent Parallel Particle
‘ Layer (IPPL) and require Discrete Cosine Transform
‘ of type 1
Montanaro et al. (ETH)

THE UNIVERSITY OF

® @l TENNESSEE

KNOXVILLE




S vy ' 1 _d

J3heFFTe Tunability and Configurability

* Multiple decompositions (pencils, slabs)
» Multiple layouts (contiguous, strided)
« Run-time parameters ©

e Auto-tuning heFFTe using GPTune
(https://gptune.lbl.gov/), we were able
to increase performance by tuning
FFT input parameters and
communication settings

e Shown is performance improvements
and speedup on Summit (~15-20%)

* Which set of options is best for a given workload?
« Multiple MPI implementations (a2a, a2av, p2p, pipelined p2p)

Performance comparison for a complex FFT of size 5123

3500
3000

Performance (Gflops/s)
5 o 8 B
8 8 8 8

W
=
(=}

mesm With GPUTune wsn Default we Speedup
1.22
1.21
1.20
1.19
=y
\ 1.18 2
1.17 8.
118 *°
. 1.15
- 1.14
- - 1

1
Number of Summlt nodes (6 V100 GPUs per node)

©ICL  EaTise




a r e 1 ! . —aial SESESSRERINE S ) R

heFFTe using MVAPICH

Bandwidth benchmark for several MPI implementations on Summit (16 nodes)

30
mmMVAPICH2-GDR = Spectrum-MPI ~ mmOpenMPI-UCX  ——Theoretical Peak ~ ~—Practical Peak

25 -

20 A

15 -

10

L

Bandwidth (GB/s)

64KB 128KB 256KB S512KB IMB 2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB
Message Size

CICL B



n r e ! I -

heFFTe using MVAPICH
Bandwidth benchmark for several MPI implementations on Summit (16 nodes)
30
mmMVAPICH2-GDR = Spectrum-MPI ~ mmOpenMPI-UCX  ——Theoretical Peak ~ ~—Practical Peak
25
@ 20 -
o)
&)
= 15 -
=
_§ 10 -
<
@
0 4

64KB 128KB 256KB 512KB IMB 2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB

Message Size
* > 50% improvement in latency and bandwidth against Cray-mpich on Frontier (AlltoAll) --
(Dr. Panda’s keynote yesterday)

» More expected with on-the-fly data compression

/ //

CICL B



Ly & ' ! _d

J5Conc|usion
I

* heFFTe is an ECP-funded library for multi-dimensional FFT
computations

= Mainly targeting DOE’s Exascale system
= GPU-enabled for NVIDIA, AMD, and Intel GPUs
= Highly configurable

* heFFTe can serve as a good benchmark for MPI implementations

= ~90% of execution time is spent in MPI calls ;

= Uses different communication patterns (a2a, a2av, p2p, and pipelined p2p)

£1ICL



Ly ' ! _d

JgFuture Directions

* heFFTe using MVAPICH-Plus 4.0b

= Joint project with Dr. Panda’s group to use MVAPICH as UMS on Frontier
« MVP-4.0b brings promising improvement over Cray-mpich (> 50% for latency & BW in AlltoAll)

» On-the-fly compression could yield even more significant performance gains
= Plan to target a large NVIDIA system based on H100 (MN5 @ BSC)

* Robust profiling and tracing with TAU

= Expose potential bottlenecks in heFFTe or the underlying MPI implementation

 Auto-tuning framework for heFFTe?

;
( Ic TTTTTTTTTTTTTTT 3
LLLLLLLLL




5 & ' ! 4

We are hiring!

 Position for a postdoctoral research associate
e hitps://icl.utk.edu/jobs/

Post Doctoral Research Associate

The Innovative Computing Laboratory (ICL) at the University of Tennessee, Knoxville has an opening position for a full-time postdoctoral research associate in the linear algebra group. We invite
applicants with fresh PhD degrees, or those who are graduating within 3 months, to apply for this opportunity.

The position is available immediately. The candidate’s primary responsibility is to work on the distributed implementation of the Fast Fourier Transform (FFT) on large scale HPC systems with
GPUs. This includes performance benchmarking on several systems with different MPI implementations, performance optimizations, profiling, analysis, and developing new features for
distributed FFT computation as necessary.

This project involves several research groups from different institutions across the country. The candidate is expected to conduct collaborative research, (co)-author publications documenting
the research outcomes, and present them at top tier journals or conferences.

The candidate must have an excellent background in modern C++ programming and distributed computing using MPI. Familiarity with performance analysis tools such as TAU is highly desirable.
Experience with GPU programming such as CUDA C++, HIP, or SYCL is a plus. The candidate will be responsible for the development and maintenance of high quality open-source numerical
software, so familiarity with version control platforms such as GitHub is required.

REQUIRED EDUCATION:
o PhD in computer science or related field. PhD students who are graduating within 3 months are encouraged to apply.
REQUIRED JOB SKILLS:

o Proficiency in C++and Python
o Familiarity with distributed programming using MPI
o Version control platforms, especially GitHub

PREFERRED JOB SKILLS:

o

GPU programming environments such as CUDA, HIP, or SYCL
Experience with performance analysis tools such as TAU
Excellent oral and written communication

Numerical linear algebra

HOW TO APPLY

o

°

o

Please refer to the UTK Job Listing at: https://ut.taleo.net/careersection/ut_system/jobdetail.ftI?job=24000001I1.



https://icl.utk.edu/jobs/

Thank You
Ic\

- INNOVATIVE TENNESSEE

& VCOI\/IPUTING LABORATORY KNOXVILLE



