
TAU Performance System®

Tuesday, 11:45am – 12:15pm
MUG’24, OSC, OSU, Columbus, OH

Sameer Shende
Research Professor and Director,
Performance Research Laboratory, OACISS, University of Oregon
President and Director, ParaTools, Inc.

http://tau.uoregon.edu/TAU_MUG24.pdf

http://tau.uoregon.edu/TAU_MUG24.pdf

2

Acknowledgments

• The MVAPICH2 team The Ohio State University

• http://mvapich.cse.ohio-state.edu

• TAU team at the University of Oregon

• http://tau.uoregon.edu

3

Motivation and Challenges

• With growing hardware complexity, it is getting harder to accurately measure and optimize the
performance of our HPC and AI/ML workloads.

• TAU Performance System®:

– Deliver a scalable, portable, performance evaluation toolkit for HPC and AI/ML workloads.

– http://tau.uoregon.edu

• It is getting harder to install our HPC and AI/ML tools.

http://tau.uoregon.edu/

4

Motivation: Improving Productivity

• TAU Performance System®:

– Deliver a scalable, portable, performance evaluation toolkit for HPC and
AI/ML workloads

– http://tau.uoregon.edu

5

TAU Performance System
®

• Tuning and Analysis Utilities (25+ year project)

• Comprehensive performance profiling and tracing

• Integrated, scalable, flexible, portable

• Targets all parallel programming/execution paradigms

• Integrated performance toolkit
• Instrumentation, measurement, analysis, visualization

• Widely-ported performance profiling / tracing system

• Performance data management and data mining

• Open source (BSD-style license)

• Uses performance and control variables to interface with MVAPICH2

• Integrates with application frameworks

• http://tau.uoregon.edu

6

TAU Performance System®

• Versatile profiling and tracing toolkit that supports:

– MPI, CUDA, ROCm, DPC++/SYCL (Level Zero), OpenCL, and
OpenMP (OpenMP Tools Interface for Target Offload)

• Scalable, portable, performance evaluation toolkit for HPC and AI/ML workloads that supports:

– C++/C/DPC++, Fortran, Python

• Supports PAPI, Likwid for hardware performance counter information

• Instrumentation includes support for PETSc (Perfstubs), XGC (CAMTIMERS), Kokkos, MPI,
pthread, event-based sampling, GPU runtimes

• A single tool (tau_exec) is used to launch un-instrumented, un-modified binaries

• Supports Grace-Grace and Grace-Hopper (SVE aarch64) systems

• TAU’s paraprof, pprof, perfexplorer for profile analysis; Vampir, Jumpshot, Perfetto.dev for traces

• http://tau.uoregon.edu

https://tau.uoregon.edu/

7

• How much time is spent in each application routine and outer loops? Within loops, what is the

contribution of each statement? What is the time spent in OpenMP loops? In kernels on

GPUs.

• How many instructions are executed in these code regions?

Floating point, Level 1 and 2 data cache misses, hits, branches taken? What is the extent of

vectorization for loops?

• How much time did my application spend waiting at a barrier in MPI collective operations?

• What is the memory usage of the code? When and where is memory allocated/de-allocated?

Are there any memory leaks? What is the memory footprint of the application? What is the

memory high water mark?

• How much energy does the application use in Joules? What is the peak power usage?

• What are the I/O characteristics of the code? What is the peak read and write bandwidth of

individual calls, total volume?

• How does the application scale? What is the efficiency, runtime breakdown of performance

across different core counts?

Application Performance Engineering

using TAU

8

Profiling:

MPI: % mpirun -np 16 tau_exec -ebs ./a.out

• Pthread: % mpirun -np 16 tau_exec –T mpi,pthread –ebs ./a.out

• CUDA: % mpirun –np 16 tau_exec –T cupti,mpi –cupti -ebs ./a.out

• ROCm: % mpirun -np 16 tau_exec –T rocm,mpi –rocm -ebs ./a.out

• Python: % tau_python ./foo.py

Analysis: % pprof –a –m | more; % paraprof (GUI)

Tracing:

• Vampir: MPI: % export TAU_TRACE=1; export TAU_TRACE_FORMAT=otf2

% mpirun -np 16 tau_exec ./a.out; vampir traces.otf2 &

• Chrome/Jumpshot: % export TAU_TRACE=1; mpirun -np 64 tau_exec ./a.out

% tau_treemerge.pl;

Chrome: % tau_trace2json tau.trc tau.edf –chrome –ignoreatomic –o app.json

Chrome browser: chrome://tracing (Load -> app.json) or Perfetto.dev

• Jumpshot: tau2slog2 tau.trc tau.edf –o app.slog2; jumpshot app.slog2

TAU: Quickstart Guide

9

TAU Performance System®

Parallel performance framework and toolkit
Supports all HPC platforms, compilers, runtime system
Provides portable instrumentation, measurement, analysis

10

TAU Performance System®

Instrumentation

• Fortran, C++, C, UPC, Java, Python, Chapel, Spark

• Automatic instrumentation

Measurement and analysis support

• MPI (MVAPICH), OpenSHMEM, ARMCI, PGAS, DMAPP

• Supports Intel oneAPI compilers

• pthreads, OpenMP, OMPT interface, hybrid, other thread models

• GPU: OpenCL, oneAPI DPC++/SYCL (Level Zero), OpenACC, Kokkos, RAJA

• Parallel profiling and tracing

Analysis

• Parallel profile analysis (ParaProf), data mining (PerfExplorer)

• Performance database technology (TAUdb)

• 3D profile browser

11

TAU and XGC on Sunspot (OMPT+MPI+Level Zero+Kokkos+EBS)

Comparing MPI rank 1 (thread 0) with MPI rank 0 (thread 0) with TAU’s comparison window

12

TAU’s Callpath Thread Relations Window in ParaProf

MPI Collective Sync is the time wasted in an implicit barrier in a collective operation. In the TAU callpath

Thread relations window – where we see immediate parents and children for a timer – we see that out of
14.176 seconds wasted in this sync operation, 8.142 seconds came from MPI_Reduce and 4.538 seconds came
from MPI_Allreduce operations where implicit barriers were called on MPI rank 0 thread 0.

We also see that the pthread_condition_wait (13.59 seconds) was called from diag_3d_f0_f in diagnosis.F90 line 2368
which accounted for 9.99 s (out of 13.59 seconds).

13

TAU and XGC on Sunspot (OMPT+MPI+Level Zero+Kokkos+EBS)

The time wasted in __pthread_cond_wait across different threads in XGC EM.

The contribution from MPI rank 0 thread 0 is small compared to other threads.

14

Instrumentation

• Source instrumentation using a preprocessor

– Add timer start/stop calls in a copy of the source code.

– Use Program Database Toolkit (PDT) for parsing source code.

– Requires recompiling the code using TAU shell scripts (tau_cc.sh, tau_f90.sh)

– Selective instrumentation (filter file) can reduce runtime overhead and narrow instrumentation
focus.

• Compiler-based instrumentation

– Use system compiler to add a special flag to insert hooks at routine entry/exit.

– Requires recompiling using TAU compiler scripts (tau_cc.sh, tau_f90.sh…)

• Runtime preloading of TAU’s Dynamic Shared Object (DSO)

– No need to recompile code! Use mpirun tau_exec ./app with options.

Add hooks in the code to perform measurements

15

TAU’s Support for Runtime Systems

• MPI

• PMPI profiling interface

• MPI_T tools interface using performance and control variables

• MPI Collective Sync time: time in an implicit barrier in MPI collective operations

• Pthread

• Captures time spent in routines per thread of execution

• OpenMP

• OMPT tools interface to track salient OpenMP runtime events

• Opari source rewriter

• Preloading wrapper OpenMP runtime library when OMPT is not supported

• Intel Level Zero

• Captures time spent in kernels on GPUs using oneAPI Level Zero

• Captures time spent in Intel Level Zero runtime calls

• OpenACC

• OpenACC instrumentation API

• Track data transfers between host and device (per-variable)

• Track time spent in kernels

16

TAU’s Support for Runtime Systems (contd.)

• OpenCL

• OpenCL profiling interface

• Track timings of kernels

• CUDA

• Cuda Profiling Tools Interface (CUPTI)

• Track data transfers between host and GPU

• Track access to uniform shared memory between host and GPU

• ROCm

• Rocprofiler and Roctracer instrumentation interfaces

• Track data transfers and kernel execution between host and GPU

• Kokkos

• Kokkos profiling API

• Push/pop interface for region, kernel execution interface

• Python

• Python interpreter instrumentation API

• Tracks Python routine transitions as well as Python to C transitions

17

Examples of Multi-Level Instrumentation

MPI + OpenMP

MPI_T + PMPI + OMPT may be used to track MPI and OpenMP

MPI + CUDA

PMPI + CUPTI interfaces

OpenCL + ROCm

Rocprofiler + OpenCL instrumentation interfaces

Kokkos + OpenMP

Kokkos profiling API + OMPT to transparently track events

Kokkos + pthread + MPI

Kokkos + pthread wrapper interposition library + PMPI layer

Python + CUDA

Python + CUPTI + pthread profiling interfaces (e.g., Tensorflow,

PyTorch)

MPI + OpenCL

PMPI + OpenCL profiling interfaces

18

Binary instrumentation of libraries: Work in progress

% tau_run a.out –o a.inst

instruments a binary. Other flags –T <tags>, -f <selective instrumentation file>
% tau_run -l /path/to/libhdf5.so.310 –o libhdf5.so.310

instruments a DSO
% tau_exec ./a.out

executes the uninstrumented application with the instrumented shared object.

To use with DyninstAPI 13 on x86_64:
1. Load spack: source spack/share/spack/setup-env.sh
2. Install dyninst: spack install dyninst@13 %gcc@11
3. Configure tau with dyninst:

3.1 spack find -p dyninst boost tbb elfutils
3.2 Copy the paths for each package into the configure line

3.3 ./configure -bfd=download -dyninst=<dir> -tbb=<dir> -boost=<dir> -elf=<dir>; <set paths>; make install
With AMD GPUs:
./configure -bfd=download -mpi -rocm=/opt/rocm-6.0.0 -rocprofiler=/opt/rocm-6.0.0 -dyninst=download; make install

19

Binary instrumentation of libraries: HDF5

20

AWP-ODC [UCSD]: TAU +ROCm +DyninstAPI

21

AWP-ODC [UCSD]: TAU +ROCm +DyninstAPI

22

Using TAU’s Runtime Preloading Tool: tau_exec

Preload a wrapper that intercepts the runtime system call and substitutes with another

MPI

OpenMP

POSIX I/O

Memory allocation/deallocation routines

Wrapper library for an external package

No modification to the binary executable!

Enable other TAU options (communication matrix, OTF2, event-based sampling)

23

TAU Execution Command (tau_exec)
Uninstrumented execution

% mpirun -np 256 ./a.out

Track GPU operations

% mpirun -np 256 tau_exec –cupti ./a.out
% mpirun -np 256 tau_exec –cupti -um ./a.out (for Unified Memory)
% mpirun -np 256 tau_exec –rocm ./a.out
% mpirun –np 256 tau_exec –l0 ./a.out

% mpirun –np 256 tau_exec –opencl ./a.out

% mpirun –np 256 tau_exec –openacc ./a.out

Track MPI performance

% mpirun -np 256 tau_exec ./a.out

Track I/O, and MPI performance (MPI enabled by default)

% mpirun -np 256 tau_exec -io ./a.out

Track OpenMP and MPI execution (using OMPT for Intel v19+ or Clang 8+)

% export TAU_OMPT_SUPPORT_LEVEL=full;

% mpirun –np 256 tau_exec –T ompt,mpi -ompt ./a.out

Track memory operations

% export TAU_TRACK_MEMORY_LEAKS=1

% mpirun –np 256 tau_exec –memory_debug ./a.out (bounds check)

Use event-based sampling (compile with –g)

% mpirun –np 256 tau_exec –ebs ./a.out

Also export TAU_METRICS=TIME,PAPI_L1_DCM… -ebs_resolution=<file | function | line>

24

Profiling and Tracing

• Tracing shows you when the events take

place on a timeline

Profiling Tracing

• Profiling shows you how much

(total) time was spent in each routine

• Profiling and tracing

Profiling shows you how much (total) time was spent in each routine

Tracing shows you when the events take place on a timeline

25

Inclusive vs. Exclusive values
■ Inclusive

■ Information of all sub-elements aggregated into single value

■ Exclusive
■ Information cannot be subdivided further

Inclusive Exclusive

int foo()
{
int a;
a = 1 + 1;

bar();

a = a + 1;
return a;

}

26

How much data do you want?

Limited

Profile

Flat

Profile

Loop

Profile

Callsite

Profile

Callpath

Profile

Trace

O(KB) O(TB)

27

Types of Performance Profiles

• Flat profiles
• Metric (e.g., time) spent in an event

• Exclusive/inclusive, # of calls, child calls, …

• Callpath profiles
• Time spent along a calling path (edges in callgraph)

• “main=> f1 => f2 => MPI_Send”

• Set the TAU_CALLPATH and TAU_CALLPATH_DEPTH environment variables

• Callsite profiles
• Time spent along in an event at a given source location

• Set the TAU_CALLSITE environment variable

• Phase profiles
• Flat profiles under a phase (nested phases allowed)

• Default “main” phase

• Supports static or dynamic (e.g. per-iteration) phases

28

Performance Data Measurement

Direct via Probes Indirect via Sampling

• Exact

measurement

• Fine-grain control

• Calls inserted

into code

• No code modification

• Minimal effort

• Relies on debug

symbols (-g)

Call START(‘potential’)

// code

Call STOP(‘potential’)

29

Sampling

Running program is periodically interrupted to take

measurement

Timer interrupt, OS signal, or HWC overflow

Service routine examines return-address stack

Addresses are mapped to routines using symbol

table information

Statistical inference of program behavior

Not very detailed information on highly volatile

metrics

Requires long-running applications

Works with unmodified executables

Time

main foo(0) foo(1) foo(2) int main()
{
int i;

for (i=0; i < 3; i++)
foo(i);

return 0;
}

void foo(int i)
{

if (i > 0)
foo(i – 1);

}

Measurement

t9t7t6t5t4t1 t2 t3 t8

30

Instrumentation

Measurement code is inserted such that every event of

interest is captured directly

Can be done in various ways

Advantage:

Much more detailed information

Disadvantage:

Processing of source-code / executable

necessary

Large relative overheads for small functions

Time

Measurement int main()
{
int i;

for (i=0; i < 3; i++)
foo(i);

return 0;
}

void foo(int i)
{

if (i > 0)
foo(i – 1);

}

Time

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11t12t13 t14

main foo(0) foo(1) foo(2)

TAU_START(“main”);

TAU_STOP(“main”);

TAU_START(“foo”);

TAU_STOP(“foo”);

31

Inclusive Measurements

32

Exclusive Time

33

Tracing: Jumpshot (ships with TAU)

34

Tracing: Chrome Browser

% export TAU_TRACE=1

% mpirun –np 256 tau_exec ./a.out
% tau_treemerge.pl; tau_trace2json tau.trc tau.edf –chrome –ignoreatomic –o app.json

Chrome browser: chrome://tracing (Load -> app.json)

35

Perfetto.dev

36

Vampir [TU Dresden] Timeline: Kokkos

% export TAU_TRACE=1; export TAU_TRACE_FORMAT=otf2

% tau_exec -T ompt –ompt ./a.out
% vampir traces.otf2 &

37

ParaProf Profile Browser

% paraprof

38

ParaProf 3D Profile Browser

39

TAU – ParaProf 3D Visualization

% paraprof app.ppk

Windows -> 3D Visualization -> Bar Plot (right pane)

40

TAU – 3D Communication Window

% export TAU_COMM_MATRIX=1; mpirun … tau_exec ./a.out

% paraprof ; Windows -> 3D Communication Matrix

41

Event Based Sampling (EBS)

% mpirun -n 16 tau_exec –ebs a.out

Uninstrumented!

File: point_solver.F90

Line: 2705

42

Integrating TAU with MVAPICH2 through MPI_T Interface

● Enhance existing support for MPI_T in

MVAPICH2 to expose a richer set of

performance and control variables

● Get and display MPI Performance

Variables (PVARs) made available by

the runtime in TAU

● Control the runtime’s behavior via MPI

Control Variables (CVARs)

● Add support to MVAPICH2 and TAU

for interactive performance

engineering sessions

43

Three Scenarios for Integration

Scenario 1: Non-interactive mode

Scenario 3: Policy driven mode

Scenario 2: User-interactive mode

44

TAU Performance Measurement Model

enter/exit events

are “interval” events (in shared memory)

application-wide

performance data

45

TAU Plugin Architecture

Extend TAU event interface for plugins
Events: interval, atomic

Specialized on event ID

Synchronous operation

Create TAU interface for trigger plugins
Named trigger

Pass application data
Synchronous

Asynchronous using agent plugin

46

Plugin-based Infrastructure for Non-Interactive Tuning

• TAU supports a fully-customizable plugin

infrastructure based on callback event

handler registration for salient states inside

TAU:

Function Registration / Entry / Exit

Phase Entry / Exit

Atomic Event Registration / Trigger

Init / Finalize Profiling

Interrupt Handler

MPI_T

• Application can define its own “trigger” states

and associated plugins

Pass arbitrary data to trigger state plugins

47

TAU Customization

• TAU states can be named or generic

• TAU distinguishes named states in a way that allows for separation of occurrence of a

state from the action associated with it

Function entry for “foo” and “bar” represent distinguishable states in TAU

• TAU maintains an internal map of a list of plugins associated with each state

48

TAU Runtime Control of Plugin

• TAU defines a plugin API to deliver access control to the

internal plugin map

• User can specify a regular expression to control plugins

executed for a class of named states at runtime

Access to map on a process is serialized: application is

expected to access map through main thread

49

TAU Phase Based Recommendations

• MiniAMR: Benefits from hardware offloading using SHArP

hardware offload protocol supported by MVAPICH2 for

MPI_Allreduce operation

• Recommendation Plugin:

Registers callback for “Phase Exit” event

Monitors message size through PMPI interface

If message size is low and execution time inside MPI_Allreduce

is significant, a recommendation is generated on ParaProf

(TAU’s GUI) for the user to set the CVAR enabling SHArP

50

TAU Per-Phase Recommendations in ParaProf

51

Enhancing MPI_T Support

● Introduced support for new MPI_T based CVARs to MVAPICH2

○ MPIR_CVAR_MAX_INLINE_MSG_SZ

■ Controls the message size up to which “inline” transmission of data is supported by

MVAPICH2

○ MPIR_CVAR_VBUF_POOL_SIZE

■ Controls the number of internal communication buffers (VBUFs) MVAPICH2 allocates

initially. Also, MPIR_CVAR_VBUF_POOL_REDUCED_VALUE[1] ([2…n])

○ MPIR_CVAR_VBUF_SECONDARY_POOL_SIZE

■ Controls the number of VBUFs MVAPICH2 allocates when there are no more free VBUFs

available

○ MPIR_CVAR_IBA_EAGER_THRESHOLD

■ Controls the message size where MVAPICH2 switches from eager to rendezvous protocol

for large messages

● TAU enhanced with support for setting MPI_T CVARs in a non-interactive mode for uninstrumented

applications

52

MVAPICH2

● Several new MPI_T based PVARs added to MVAPICH2

○ mv2_vbuf_max_use, mv2_total_vbuf_memory etc

● Enhanced TAU with support for tracking of MPI_T PVARs and CVARs for

uninstrumented applications

○ ParaProf, TAU’s visualization front end, enhanced with support for displaying

PVARs and CVARs

○ TAU provides tau_exec, a tool to transparently instrument MPI routines

○ Uninstrumented:

% mpirun –np 1024 ./a.out

○ Instrumented:
% export TAU_TRACK_MPI_T_PVARS=1

% export TAU_MPI_T_CVAR_METRICS=MPIR_CVAR_VBUF_POOL_SIZE

% export TAU_MPI_T_CVAR_VALUES=16

% mpirun -np 1024 tau_exec -T mvapich2,mpit ./a.out

53

PVARs Exposed by MVAPICH2

54

CVARs Exposed by MVAPICH2

55

Using MVAPICH2 and TAU with Multiple

CVARs

• To set CVARs or read PVARs using TAU for an uninstrumented binary:

% export TAU_TRACK_MPI_T_PVARS=1

% export TAU_MPI_T_CVAR_METRICS=

MPIR_CVAR_VBUF_POOL_REDUCED_VALUE[1],

MPIR_CVAR_IBA_EAGER_THRESHOLD

% export TAU_MPI_T_CVAR_VALUES=32,64000

% export PATH=/path/to/tau/x86_64/bin:$PATH

% mpirun -np 1024 tau_exec -T mvapich2,mpit ./a.out

% paraprof

56

VBUF usage without CVARs

57

VBUF usage with CVARs

Total memory used by VBUFs is reduced from 3,313,056 to 1,815,056

58

VBUF Memory Usage Without CVAR

59

VBUF Memory Usage With CVAR

% export TAU_TRACK_MPI_T_PVARS=1

% export TAU_MPI_T_CVAR_METRICS=MPIR_CVAR_VBUF_POOL_SIZE

% export TAU_MPI_T_CVAR_VALUES=16

% mpirun -np 1024 tau_exec -T mvapich2 ./a.out

60

TAU: Extending Control Variables on a Per-Communicator Basis
• Based on named communicators (MPI_Comm_set_name) in an application,

TAU allows a user to specify triples to set MPI_T cvars for each

communicator:

Communicator name

MPI_T CVAR name

MPI_T CVAR value

% ./configure –mpit –mpi –c++=mpicxx –cc=mpicc –fortran=mpif90 …

% make install

% export TAU_MPI_T_COMM_METRIC_VALUES=<comm, cvar,

value>,…

% mpirun –np 64 tau_exec –T mvapich2,mpit ./a.out

% paraprof

61

COMB LLNL App MPI_T Tuning for

COMB_MPI_CART_COMM
bash-4.2$

TAU_MPI_T_COMM_METRIC_VALUES=COMB_MPI_CART_COMM,MPIR_CVAR_GPUDIRECT_LIMIT,2097152,COMB_MPI_CART_COMM,MPIR_CVAR_USE_GPUDIRECT_R

ECEIVE_LIMIT,2097152,COMB_MPI_CART_COMM,MPIR_CVAR_CUDA_IPC_THRESHOLD,16384 MV2_USE_CUDA=1 mpirun -np 8 tau_exec -ebs -T

mvapich2,mpit,cuda9,cupti,communicators,gnu -cupti ./comb -comm post_recv wait_all -comm post_send wait_all -comm wait_recv wait_all -comm wait_send wait_all 200_200_200

-divide 2_2_2 -periodic 1_1_1 -ghost 1_1_1 -vars 3 -cycles 100 -comm cutoff 250 -omp_threads 1

Started rank 0 of 8

Node lassen710

Compiler COMB_COMPILER

Cuda compiler COMB_CUDA_COMPILER

GPU 0 visible undefined

Not built with openmp, ignoring -omp_threads 1.

Cart coords 0 0 0

Message policy cutoff 250

Post Recv using wait_all method

Post Send using wait_all method

Wait Recv using wait_all method

Wait Send using wait_all method

Num cycles 100

Num vars 3

ghost_widths 1 1 1

sizes 200 200 200

divisions 2 2 2

periodic 1 1 1

division map

map 0 0 0

map 100 100 100

map 200 200 200

Starting test memcpy seq dst Host src Host

Starting test Comm mock Mesh seq Host Buffers seq Host seq Host

Starting test Comm mpi Mesh seq Host Buffers seq Host seq Host

Default With MPI_T CVARs

62

COMB Profile

63

CVARs Exposed by MVAPICH2

64

Path Aware Profiling in TAU and MVAPICH2

• To identify the path taken by an MPI message:

• GPU memory to GPU memory

• Unique send and receive path ids captured

• Configure TAU with -PROFILEPATHS:

• Partition the time in MPI pt-to-pt operations:

MPI_Send and MPI_Recv

Parameter based profiling identifies paths

• Path captured as metadata in TAU profiles

PVARs based on CUPTI counters

MVAPICH2 exports PVARs to TAU with MPI_T

65

Path Aware Profiling in TAU and

MVAPICH2• Available for download in TAU v2.29.1

66

Identifying Collective Wait States

MPI Collective Sync is the time spent in a barrier operation inside a collective

67

Comparing Rank 118 with 22.

Right click on “node 118” -> Add node to comparison window

ParaProf comparison window

68

Driving Example (3D Stencil)

3D Stencil benchmark
Each process talks to at most six

neighbors

Two in each Cartesian dimension

X-right, X-left

Y-right, Y-left

Z-right, Z-left
Repeat same communication

pattern for multiple iterations

0 1 2 3

4 5 6 7

9 10 11

12 13 14 15

8

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

3D Stencil communication pattern for a 32

process job scheduled on 4 nodes

Process on Node 1 Process on Node 2

Process on Node 3 Process on Node 4

69

• Platform:

– Broadcom RoCEv2 Thor Adapter

– 64 Nodes x 2 x AMD EPYC 7713 64-Core Processor

• Application:

– 3D Stencil HPC Benchmark

– Dataset: 3000k-atoms dataset

• Raw run lines:

– MVAPICH2-2.3.7-Broadcom

mpirun_rsh -np $NP -ppn $PPN ./3Dstencil_overlap 8 8 8

1000

Case Study: 3D Stencil

70

• Execution time tests on 2 Nodes x 128 PPN (512

ranks)

• We are measuring the latency

– Lower is better

• Degradation observed at 256K message

• This is the unoptimized MVAPICH2-2.3.7 version

• Need to use TAU to see

– what MPI calls are causing the

degradation

– What is the dominant communication

pattern

62 125 253 494 632.12

1587

3154.3

11770.9

17889.4

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

2K 4K 8K 16K 32K 64K 128K 256K 512K

L
a

te
n

c
y
 (

u
s
)

Message Size (Bytes)

3.5x jump

!!Lower is

better

3D Stencil: Unoptimized Version

71

Understanding Basic Performance Trends with TAU-based Profiling
Default

Less Overlap, Less Useful

work done by Application!

Visualized in Vampir [TUD Germany]

72

• Diagnosis: more time is spent in inter-node pt-to-pt

Rendezvous communication

• Solution: Use pt-to-pt eager communication

• Gains:

– 2x reduction in latency

• Update the following parameter for the 3D Stencil

runs

MV2_IBA_EAGER_THRESHOLD = 524288

this will enable inter-node eager communication until

the specified message size*

*For more details check user-guide:
https://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-

userguide.html#:~:text=for%20the%20job.-,12.5,-MV2_IBA_EAGER_THRESHOLD

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

2K 4K 8K 16K 32K 64K 128K 256K 512K

L
a

te
n
c
y
 (

u
s
)

Message Size (Bytes)

MVAPICH2 (Unoptimized) MVAPICH2 (Optimized)

3D Stencil: Performance Engineered with TAU

https://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-userguide.html
https://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-userguide.html

73

Introspecting Impact of Eager Threshold on 3D Stencil Benchmark
Optimized

More Overlap, More Useful

work done by Application!

Visualized in Vampir [TUD Germany]

74

3Dstencil on AWS

cd ~/SRC/demo/3Dstencil
./run.sh
ls *.ppk
% paraprof *.ppk &
Right click “Add Thread to Comparison

Window”
while clicking on Node 0 in each of the
three trials

Options -> Select Metric -> Inclusive

75

Usage Scenarios with MVAPICH2

• TAU measures the high water mark of total memory usage (TAU_TRACK_MEMORY_FOOTPRINT=1),

finds that it is at 98% of available memory, and queries MVAPICH2 to find out how much memory it is

using. Based on the number of pools allocated and used, it requests it to reduce the number of VBUF

pools and controls the size of the these pools using the MPI-T interface. The total memory memory

footprint of the application reduces.

• TAU tracks the message sizes of messages (TAU_COMM_MATRIX=1), detects excessive time spent in

MPI_Wait and other synchronization operations. It compares the average message size with the eager

threshold and sets the new eager threshold value to match the message size. This could be done offline

by re-executing the application with the new CVAR setting for eager threshold or online.

76

Environment Variable Default Description

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_CALLPATH 0 Setting to 1 turns on callpath profiling

TAU_TRACK_MEMORY_FOO
TPRINT

0 Setting to 1 turns on tracking memory usage by sampling periodically the resident set size
and high water mark of memory usage

TAU_TRACK_POWER 0 Tracks power usage by sampling periodically.

TAU_CALLPATH_DEPTH 2 Specifies depth of callpath. Setting to 0 generates no callpath or routine information,
setting to 1 generates flat profile and context events have just parent information (e.g.,
Heap Entry: foo)

TAU_SAMPLING 1 Setting to 1 enables event-based sampling.

TAU_TRACK_SIGNALS 0 Setting to 1 generate debugging callstack info when a program crashes

TAU_COMM_MATRIX 0 Setting to 1 generates communication matrix display using context events

TAU_THROTTLE 1 Setting to 0 turns off throttling. Throttles instrumentation in lightweight routines that are
called frequently

TAU_THROTTLE_NUMCALLS 100000 Specifies the number of calls before testing for throttling

TAU_THROTTLE_PERCALL 10 Specifies value in microseconds. Throttle a routine if it is called over 100000 times and
takes less than 10 usec of inclusive time per call

TAU_CALLSITE 0 Setting to 1 enables callsite profiling that shows where an instrumented function was
called. Also compatible with tracing.

TAU_PROFILE_FORMAT Profile Setting to “merged” generates a single file. “snapshot” generates xml format

TAU_METRICS TIME Setting to a comma separated list generates other metrics. (e.g.,
ENERGY,TIME,P_VIRTUAL_TIME,PAPI_FP_INS,PAPI_NATIVE_<event>:<subevent>)

TAU’s Runtime Environment Variables

77

Environment Variable Default Description

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_TRACE_FORMAT Default Setting to “otf2” turns on TAU’s native OTF2 trace generation (configure with –
otf=download)

TAU_EBS_UNWIND 0 Setting to 1 turns on unwinding the callstack during sampling (use with tau_exec –ebs
or TAU_SAMPLING=1)

TAU_EBS_RESOLUTION line Setting to “function” or “file” changes the sampling resolution to function or file level
respectively.

TAU_TRACK_LOAD 0 Setting to 1 tracks system load on the node

TAU_SELECT_FILE Default Setting to a file name, enables selective instrumentation based on exclude/include
lists specified in the file.

TAU_OMPT_SUPPORT_LEVEL basic Setting to “full” improves resolution of OMPT TR6 regions on threads 1.. N-1. Also,
“lowoverhead” option is available.

TAU_OMPT_RESOLVE_ADDRESS_
EAGERLY

1 Setting to 1 is necessary for event based sampling to resolve addresses with OMPT.
Setting to 0 allows the user to do offline address translation.

Runtime Environment Variables

78

Environment Variable Default Description

TAU_TRACK_MEMORY_LEAKS 0 Tracks allocates that were not de-allocated (needs –optMemDbg or tau_exec
–memory)

TAU_EBS_SOURCE TIME Allows using PAPI hardware counters for periodic interrupts for EBS (e.g.,
TAU_EBS_SOURCE=PAPI_TOT_INS when TAU_SAMPLING=1)

TAU_EBS_PERIOD 100000 Specifies the overflow count for interrupts

TAU_MEMDBG_ALLOC_MIN/MAX 0 Byte size minimum and maximum subject to bounds checking (used with
TAU_MEMDBG_PROTECT_*)

TAU_MEMDBG_OVERHEAD 0 Specifies the number of bytes for TAU’s memory overhead for memory
debugging.

TAU_MEMDBG_PROTECT_BELOW/AB
OVE

0 Setting to 1 enables tracking runtime bounds checking below or above the
array bounds (requires –optMemDbg while building or tau_exec –memory)

TAU_MEMDBG_ZERO_MALLOC 0 Setting to 1 enables tracking zero byte allocations as invalid memory
allocations.

TAU_MEMDBG_PROTECT_FREE 0 Setting to 1 detects invalid accesses to deallocated memory that should not
be referenced until it is reallocated (requires –optMemDbg or tau_exec –
memory)

TAU_MEMDBG_ATTEMPT_CONTINUE 0 Setting to 1 allows TAU to record and continue execution when a memory
error occurs at runtime.

TAU_MEMDBG_FILL_GAP Undefined Initial value for gap bytes

TAU_MEMDBG_ALINGMENT Sizeof(int) Byte alignment for memory allocations

TAU_EVENT_THRESHOLD 0.5 Define a threshold value (e.g., .25 is 25%) to trigger marker events for
min/max

Runtime Environment Variables

79

Download TAU from U. Oregon

http://tau.uoregon.edu

https://e4s.io [TAU in Docker/Singularity containers]

for more information

Free download, open source, BSD license

http://tau.uoregon.edu/
https://e4s.io/

80

Performance Research Laboratory, University of Oregon, Eugene

www.uoregon.edu

http://www.uoregon.edu

81

• US Department of Energy (DOE)

– ANL

– Office of Science contracts, ECP

– SciDAC, LBL contracts

– LLNL-LANL-SNL ASC/NNSA contract

– Battelle, PNNL and ORNL contract

• Department of Defense (DoD)

– PETTT, HPCMP

• National Science Foundation (NSF)

– SI2-SSI, Glassbox, E4S Workshop

• NASA

• Intel, NVIDIA, AMD, IBM

• CEA, France

• Partners:

–University of Oregon

–The Ohio State University

–ParaTools, Inc.

–University of Tennessee, Knoxville

–T.U. Dresden, GWT

–Jülich Supercomputing Center

Support Acknowledgements

82

Thank you

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of
the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and
hardware technology, to support the nation’s exascale computing imperative.

Thank you to all collaborators in the ECP and broader computational science communities. The
work discussed in this presentation represents creative contributions of many people who are
passionately working toward next-generation computational science.

https://www.exascaleproject.org

https://www.exascaleproject.org/

83

Acknowledgment

This material is based upon work supported by the U.S. Department of Energy, Office of Science,

Office of Advanced Scientific Computing Research (ASCR).

https://science.osti.gov/ascr

https://pesoproject.org

https://ascr-step.org

https://science.osti.gov/ascr
https://www.pesoproject.org/
https://ascr-step.org/

84

	Slide 1: TAU Performance System®
	Slide 2: Acknowledgments
	Slide 3: Motivation and Challenges
	Slide 4: Motivation: Improving Productivity
	Slide 5: TAU Performance System®
	Slide 6: TAU Performance System®
	Slide 7: Application Performance Engineering using TAU
	Slide 8: TAU: Quickstart Guide
	Slide 9: TAU Performance System®
	Slide 10: TAU Performance System®
	Slide 11: TAU and XGC on Sunspot (OMPT+MPI+Level Zero+Kokkos+EBS)
	Slide 12: TAU’s Callpath Thread Relations Window in ParaProf
	Slide 13: TAU and XGC on Sunspot (OMPT+MPI+Level Zero+Kokkos+EBS)
	Slide 14: Instrumentation
	Slide 15: TAU’s Support for Runtime Systems
	Slide 16: TAU’s Support for Runtime Systems (contd.)
	Slide 17: Examples of Multi-Level Instrumentation
	Slide 18: Binary instrumentation of libraries: Work in progress
	Slide 19: Binary instrumentation of libraries: HDF5
	Slide 20: AWP-ODC [UCSD]: TAU +ROCm +DyninstAPI
	Slide 21: AWP-ODC [UCSD]: TAU +ROCm +DyninstAPI
	Slide 22: Using TAU’s Runtime Preloading Tool: tau_exec
	Slide 23: TAU Execution Command (tau_exec)
	Slide 24: Profiling and Tracing
	Slide 25: Inclusive vs. Exclusive values
	Slide 26: How much data do you want?
	Slide 27: Types of Performance Profiles
	Slide 28: Performance Data Measurement
	Slide 29: Sampling
	Slide 30: Instrumentation
	Slide 31: Inclusive Measurements
	Slide 32: Exclusive Time
	Slide 33: Tracing: Jumpshot (ships with TAU)
	Slide 34: Tracing: Chrome Browser
	Slide 35: Perfetto.dev
	Slide 36: Vampir [TU Dresden] Timeline: Kokkos
	Slide 37: ParaProf Profile Browser
	Slide 38: ParaProf 3D Profile Browser
	Slide 39: TAU – ParaProf 3D Visualization
	Slide 40: TAU – 3D Communication Window
	Slide 41: Event Based Sampling (EBS)
	Slide 42: Integrating TAU with MVAPICH2 through MPI_T Interface
	Slide 43: Three Scenarios for Integration
	Slide 44: TAU Performance Measurement Model
	Slide 45: TAU Plugin Architecture
	Slide 46: Plugin-based Infrastructure for Non-Interactive Tuning
	Slide 47: TAU Customization
	Slide 48: TAU Runtime Control of Plugin
	Slide 49: TAU Phase Based Recommendations
	Slide 50: TAU Per-Phase Recommendations in ParaProf
	Slide 51: Enhancing MPI_T Support
	Slide 52: MVAPICH2
	Slide 53: PVARs Exposed by MVAPICH2
	Slide 54: CVARs Exposed by MVAPICH2
	Slide 55: Using MVAPICH2 and TAU with Multiple CVARs
	Slide 56: VBUF usage without CVARs
	Slide 57: VBUF usage with CVARs
	Slide 58: VBUF Memory Usage Without CVAR
	Slide 59: VBUF Memory Usage With CVAR
	Slide 60: TAU: Extending Control Variables on a Per-Communicator Basis
	Slide 61: COMB LLNL App MPI_T Tuning for COMB_MPI_CART_COMM
	Slide 62: COMB Profile
	Slide 63: CVARs Exposed by MVAPICH2
	Slide 64: Path Aware Profiling in TAU and MVAPICH2
	Slide 65: Path Aware Profiling in TAU and MVAPICH2
	Slide 66: Identifying Collective Wait States
	Slide 67: ParaProf comparison window
	Slide 68: Driving Example (3D Stencil)
	Slide 69: Case Study: 3D Stencil
	Slide 70: 3D Stencil: Unoptimized Version
	Slide 71: Understanding Basic Performance Trends with TAU-based Profiling
	Slide 72: 3D Stencil: Performance Engineered with TAU
	Slide 73: Introspecting Impact of Eager Threshold on 3D Stencil Benchmark
	Slide 74: 3Dstencil on AWS
	Slide 75: Usage Scenarios with MVAPICH2
	Slide 76: TAU’s Runtime Environment Variables
	Slide 77: Runtime Environment Variables
	Slide 78: Runtime Environment Variables
	Slide 79
	Slide 80: Performance Research Laboratory, University of Oregon, Eugene
	Slide 81: Support Acknowledgements
	Slide 82: Thank you
	Slide 83: Acknowledgment
	Slide 84

