
High Performance Machine Learning and Deep Learning 
with MVAPICH2

Tutorial at MUG ’23

by

Follow us on

https://twitter.com/mvapich 

Aamir Shafi

The Ohio State University

shafi.16@osu.edu

https://cse.osu.edu/people/shafi.16

Nawras Alnaasan

The Ohio State University

alnaasan.1@osu.edu

https://
engineering.osu.edu/

people/alnaasan.1

https://twitter.com/mvapich
https://twitter.com/mvapich


MUG ‘23 2Network Based Computing Laboratory

• Introduction
• Machine Learning

–Distributed K-Means
–ML Solutions

• Deep Learning
–Deep Neural Networks
–Distributed Deep Learning 
–DL Solutions

• Conclusion 

Outline



MUG ‘23 3Network Based Computing Laboratory

What is Machine Learning and Deep Learning?

Courtesy: 
https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-lear
ning-1pcv3zeg
, https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning, 
https://en.wikipedia.org/wiki/Machine_learning 

• Machine Learning (ML)
– “the study of computer algorithms to improve 

automatically through experience and use of data”

• Deep Learning (DL) – a subset of ML
– Uses Deep Neural Networks (DNNs)
– Perhaps, the most revolutionary subset! 

• Based on learning data representation 
• DNN Examples: Convolutional Neural Networks, Recurrent 

Neural Networks, Hybrid Networks

• Data Scientist or Developer Perspective for using DNNs
1. Identify DL as solution to a problem
2. Determine Data Set
3. Select Deep Learning Algorithm to Use
4. Use a large data set to train an algorithm

https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning
https://en.wikipedia.org/wiki/Machine_learning


MUG ‘23 4Network Based Computing Laboratory

History: Milestones in the Development of ML/DL

1940 1950 1960 1970 1980 1990 2000 2010                 2020

Electronic
Brain

1943

Perceptron

1957

ADALINE

1960

XOR 
Problem

Golden 
Age

1969

Multi-layered 
Perceptron

(Backpropagation)

1986

Dark Age 
(“AI Winter”)

DBN

2006

AlexNet

2012

ResNet

2015

WGAN

2017

Transformers

K-Means

1965

Bayesian 
Network

1985

Decision Trees

1979

SVM

1995

KNN

1967

1800 1900 ….

Linear 
Regression

1805

Turing Machine

1936

Evolutionary 
Algorithms

1954

Random Forest

2000

PCA

1901

XGBoost

2014

CatBoost

Deep 
Forest

2017

S. McCulloch – W. Pitts F. Rosenblatt B. Widrow – M. Hoff M. Minsky – S. Papert D. Rumelhart – G. Hinton – R. WiliamsA. Legendre – J. Gauss A. TuringK. Pearson J. Pearl V. Vapnik– C. Cortes A. Ng Y. LeCunA. Krizhevsky Y. Bengio

2018

GPT

BERT



MUG ‘23 5Network Based Computing Laboratory

• Introduction
• Machine Learning

–Distributed K-Means
–ML Solutions

• Deep Learning
–Deep Neural Networks
–Distributed Deep Learning 
–DL Solutions

• Conclusion 

Outline



MUG ‘23 6Network Based Computing Laboratory

Three Main Types of Machine Learning

Courtesy: https://bigdata-madesimple.com/machine-learning-explained-understanding-supervised-unsupervised-and-reinforcement-learning/ 

https://bigdata-madesimple.com/machine-learning-explained-understanding-supervised-unsupervised-and-reinforcement-learning/


MUG ‘23 7Network Based Computing Laboratory

• Scikit-learn: 
– Supports execution via Joblib (https://joblib.readthedocs.io/en/latest/)
– Joblib supports multi-threaded and multi-process execution (on multiple 

nodes)

• XGBoost: 
– Multiple ways to run on cluster of nodes: 

• Dask (http://dask.org)
• Ray (https://ray.io/) 
• AWS YARN 
• Apache Spark (https://spark.apache.org/) using XGBoost4J-Spark

• cuML: 
– Execution is supposed on multiple nodes using Dask (http://dask.org) and 

NVIDIA’s NCCL

Support for Parallel and Distributed Execution

https://joblib.readthedocs.io/en/latest/
http://dask.org/
https://ray.io/
https://spark.apache.org/
http://dask.org/


MUG ‘23 8Network Based Computing Laboratory

Parallelizing the K-means Algorithm
• Step 0: Initialize centroids

– Assign initial cluster means randomly

• Step 1: Data Division
– Distribute elements among GPUs

• Step 2: Assign elements (color)
– Assign each element to the cluster with the 

closest mean

• Step 3: Update local cluster mean
– Calculate local cluster means for all local points

• Step 4: Update global cluster mean*
– Calculate global cluster means by calling 

Allreduce()

• Step 5: Repeat steps 2-4 until convergence

Set of input elements

GPU 0 GPU 1 GPU 2 GPU 3

St
ep

 1
St

ep
 2

∑
𝒍𝒐𝒄𝒂𝒍

❑

𝒌

St
ep

 3 ∑
𝒍𝒐𝒄𝒂𝒍

❑

𝒌 ∑
𝒍𝒐𝒄𝒂𝒍

❑

𝒌 ∑
𝒍𝒐𝒄𝒂𝒍

❑

𝒌

St
ep

 4

Allreduce()

∑
𝒈𝒍𝒐𝒃𝒂𝒍

❑

𝒌 ∑
𝒈𝒍𝒐𝒃𝒂𝒍

❑

𝒌 ∑
𝒈𝒍𝒐𝒃𝒂𝒍

❑

𝒌 ∑
𝒈𝒍𝒐𝒃𝒂𝒍

❑

𝒌

Step 5: Repeat 2-4  until convergence

Assign all local elements to the cluster with closest mean



MUG ‘23 9Network Based Computing Laboratory

• Introduction
• Machine Learning

–Distributed K-Means
–ML Solutions

• Deep Learning
–Deep Neural Networks
–Distributed Deep Learning 
–DL Solutions

• Conclusion 

Outline



MUG ‘23 10Network Based Computing Laboratory

• The NVIDIA RAPIDS project aims to build end-to-end data science 
analytic pipelines on GPUs

• An important component is the cuML library:
– GPU-accelerated ML library
– GPU-counterpart of Scikit-learn
– Supports the execution of ML workloads on Multi-Node Multi-GPUs (MNMG) 

systems

• Most existing ML libraries, including Scikit-learn and Apache Spark’s 
MLlib, only support CPU execution of ML algorithms
– Conventional wisdom has been that only DNNs are a good match for GPUs 

because of high computational requirements

The cuML Library: Accelerating ML on GPUs



MUG ‘23 11Network Based Computing Laboratory

• Main components
– Python layer

• Provides a Scikit-learn like interface
• Hides the complexities of the CUDA/C/C++ layer

– Primitives and cuML algorithms built on top of CUDA
• ML Algorithms
• Primitives

– Reusable building blocks for building machine learning 
algorithms

– Common for different machine learning algorithms
– Used to build different machine learning algorithms

– Communication Support in cuML:
• Point-to-point communication: Dask
• Collective communication: NVIDIA Collective 

Communications Library (NCCL)

Main components of the cuML library



MUG ‘23 12Network Based Computing Laboratory

• Utilize MVAPICH2-GDR (with mpi4py) as communication backend during the 
training phase (the fit() function) in the Multi-node Multi-GPU (MNMG) setting 
over cluster of GPUs

• Communication primitives:
– Allreduce
– Reduce
– Broadcast

• Exploit optimized collectives

Accelerating cuML with MVAPICH2-GDR

Python

Cython

cuML Primitives

CUDA Libraries

CUDA

cuML Algorithms

CUDA/C/C++

UCX-Py

Dask

NCCL MVAPICH2-
GDR

mpi4py

UCX

MPI4cuML 0.5 release

(http://hidl.cse.ohio-state.edu)



MUG ‘23 13Network Based Computing Laboratory

• cuML is a distributed machine learning training framework with a focus on GPU acceleration and distributed 
computing. MVAPICH2-GDR provides many features to augment distributed training with cuML on GPUs

• (NEW) Based on cuML 22.02.00
• Include ready-to-use examples for KMeans, Linear Regression, Nearest Neighbors, and tSVD

• (NEW) MVAPICH2 support for RAFT 22.02.00
• (NEW) Enabled cuML’s communication engine, RAFT, to use MVAPICH2-GDR backend for Python and C++ cuML applications
• KMeans, PCA, tSVD, RF, LinearModels
• Added switch between available communication backends (MVAPICH2 and NCCL)

• Built on top of mpi4py over the MVAPICH2-GDR library
• Tested with

• Mellanox InfiniBand adapters (FDR and HDR)
• (NEW) NVIDIA GPU A100, V100 and, P100
• Various x86-based multi-core platforms (AMD and Intel)

• http://hidl.cse.ohio-state.edu/ 

MPI4cuML 0.5 Release - MPI-Driven ML Training

http://hidl.cse.ohio-state.edu/


MUG ‘23 14Network Based Computing Laboratory

K-Means

Nearest Neighbors Truncated SVD

M. Ghazimirsaeed , Q. Anthony , A. Shafi , H. Subramoni , and D. K. Panda, Accelerating GPU-based Machine Learning in Python 
using MPI Library: A Case Study with MVAPICH2-GDR, MLHPC Workshop, Nov 2020

1.6x

1.35x 1.38x

1.23x

MPI4cuML 0.5

Expanse GPU System

CPU Model Intel Xeon 
Gold 6248

CPU Core Info 2x20 @ 
2.5Ghz

Memory 384 GB

Interconnect Infiniband 
HDR (200 
Gbps)

OS Rocky Linux 
8.5

GPU NVIDIA V100 
(4/Node)

CUDA CUDA 11.2

Linear Regression



MUG ‘23 15Network Based Computing Laboratory

• Introduction
• Machine Learning

–Distributed K-Means
–ML Solutions

• Deep Learning
–Deep Neural Networks
–Distributed Deep Learning 
–DL Solutions

• Conclusion 

Outline



MUG ‘23 16Network Based Computing Laboratory

• Example of a 3-layer Deep Neural Network (DNN) – (input layer is not counted) 

Understanding the Deep Neural Network Concepts

Courtesy: http://cs231n.github.io/neural-networks-1/ 

http://cs231n.github.io/neural-networks-1/


MUG ‘23 17Network Based Computing Laboratory

Essential Concepts: Learning Rate (α)

Courtesy: https://www.jeremyjordan.me/nn-learning-rate/ 

https://www.jeremyjordan.me/nn-learning-rate/


MUG ‘23 18Network Based Computing Laboratory

• Batched Gradient Descent
– Batch Size = N

• Stochastic Gradient Descent
– Batch Size = 1

• Mini-batch Gradient Descent
– Somewhere in the middle 
– Common:

• Batch Size = 64, 128, 256, etc.

• Finding the optimal batch 
size will yield the fastest 
learning.

Essential Concepts: Batch Size

Courtesy: https://www.jeremyjordan.me/gradient-descent/ 

N

Batch Size One full pass over N is called an epoch of training

https://www.jeremyjordan.me/gradient-descent/


MUG ‘23 19Network Based Computing Laboratory

• Introduction
• Machine Learning

–Distributed K-Means
–ML Solutions

• Deep Learning
–Deep Neural Networks
–Distributed Deep Learning 
–DL Solutions

• Conclusion 

Outline



MUG ‘23 20Network Based Computing Laboratory

• Why do we need Parallel Training?
• Larger and Deeper models are being proposed

– AlexNet -> ResNet -> NASNet – AmoebaNet
– DNNs require a lot of memory and a lot of computation
– Larger models cannot fit a GPU’s memory

• Single GPU training cannot keep up with ever-larger models
• Community has moved to multi-GPU training
• Multi-GPU in one node is good but there is a limit to Scale-up (8-16 GPUs)
• Multi-node (Distributed or Parallel) Training is necessary!!

The Need for Parallel and Distributed Training



MUG ‘23 21Network Based Computing Laboratory

• Some parallelization strategies..
– Data Parallelism or Model Parallelism
– Hybrid Parallelism

Parallelization Strategies

Model Parallelism

Data Parallelism
Hybrid (Model and Data) Parallelism

Courtesy: http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks 

http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks


MUG ‘23 22Network Based Computing Laboratory

Data Parallelism and MPI Collectives
• Step1: Data Propagation

– Distribute the Data among GPUs

• Step2: Forward Backward Pass
– Perform forward pass and 

calculate the prediction
– Calculate Error by comparing 

prediction with actual output 
– Perform backward pass and 

calculate gradients 

• Step3: Gradient Aggregation
– Call MPI_Allreduce to reduce the 

local gradients 
– Update parameters locally using 

global gradients

Batch



MUG ‘23 23Network Based Computing Laboratory

• Introduction
• Machine Learning

–Distributed K-Means
–ML Solutions

• Deep Learning
–Deep Neural Networks
–Distributed Deep Learning 
–DL Solutions

• Conclusion 

Outline



MUG ‘23 24Network Based Computing Laboratory

MVAPICH2 (MPI)-driven Infrastructure for ML/DL Training

MVAPICH2 or MVAPICH2-X 
for CPU Training

MVAPICH2-GDR for 
GPU Training

Horovod

TensorFlow PyTorch MXNet

ML/DL Applications

MVAPICH2 or MVAPICH2-X 
for CPU Training

MVAPICH2-GDR for 
GPU Training

Torch.distributed

PyTorch

ML/DL Applications

DeepSpeed

More details available from: http://hidl.cse.ohio-state.edu 

http://hidl.cse.ohio-state.edu/


MUG ‘23 25Network Based Computing Laboratory

Install Horovod with MVAPICH2-X and MVAPICH2-GDR

Command to install Horovod for CPU

$ HOROVOD_WITH_MPI=1 pip install --no-cache-dir horovod

Command to install Horovod for GPU

$ HOROVOD_GPU_ALLREDUCE=MPI HOROVOD_CUDA_HOME=/opt/cuda/11.3 HOROVOD_WITH_MPI=1 pip 
install --no-cache-dir horovod



MUG ‘23 26Network Based Computing Laboratory

+ python pytorch_synthetic_benchmark.py --batch-size 64 --num-iters=5
.
.
Model: resnet50
Batch size: 64
Number of GPUs: 1
Running warmup...
Running benchmark...
Iter #0: 333.9 img/sec per GPU
Iter #1: 334.2 img/sec per GPU
Iter #2: 333.9 img/sec per GPU
Iter #3: 333.8 img/sec per GPU
Iter #4: 333.9 img/sec per GPU
Img/sec per GPU: 334.0 +-0.2
-----------------------------------------
Total img/sec on 1 GPU(s): 334.0 +-0.2
-----------------------------------------

Run PyTorch on a single GPU

V100



MUG ‘23 27Network Based Computing Laboratory

+ mpirun_rsh -np 2 gpu11 gpu12 MV2_USE_CUDA=1 MV2_CPU_BINDING_POLICY=hybrid 
MV2_HYBRID_BINDING_POLICY=spread MV2_USE_RDMA_CM=0 
MV2_GPUDIRECT_GDRCOPY_LIB=/opt/gdrcopy2.0/lib64/libgdrapi.so LD_PRELOAD=mv2-gdr/lib/libmpi.so 

python pytorch_synthetic_benchmark.py --batch-size 64 --num-iters=5
.
.
Model: resnet50
Batch size: 64
Number of GPUs: 2
Running warmup...
Running benchmark...
Iter #0: 317.0 img/sec per GPU
Iter #1: 314.9 img/sec per GPU
Iter #2: 315.4 img/sec per GPU
Iter #3: 318.0 img/sec per GPU
Iter #4: 316.7 img/sec per GPU
Img/sec per GPU: 316.4 +-2.2
-----------------------------------------
Total img/sec on 2 GPU(s): 632.8 +-4.3
-----------------------------------------

Run PyTorch on two nodes with 1 GPU/node (using MVAPICH2-
GDR)

V100

~1.89X on 
2 GPUs



MUG ‘23 28Network Based Computing Laboratory

HiDL Software Stack Release v1.0

For more details: http://hidl.cse.ohio-state.edu/userguide/horovod/ 

• Based on Horovod
• Optimized support for MPI controller in deep learning 

workloads
• Efficient large-message collectives (e.g. Allreduce) on various 

CPUs and GPUs
• GPU-Direct algorithms for collective operations (including those 

commonly used for data- and model-parallelism, e.g. Allgather 
and Alltoall)

• Support for fork safety
• Exploits efficient large message collectives
• Compatible with

– Mellanox InfiniBand adapters (EDR, FDR, HDR)
– Various x86-based multi-core CPUs (AMD and Intel)
– NVIDIA A100, V100, P100, Quadro RTX 5000 GPUs
– CUDA [9.x, 10.x, 11.x] and cuDNN [7.5.x, 7.6.x, 8.0.x, 8.2.x, 8.4.x]
– AMD MI100 GPUs
– ROCm [5.1.x]

http://hidl.cse.ohio-state.edu/userguide/horovod/


MUG ‘23 29Network Based Computing Laboratory

• Data Parallelism
• Model-Parallelism

Solutions and Case Studies: Exploiting HPC for DL

CUDA-Awareness

InfiniBand GPUCPU

Large-message 
Collectives

CNTK

Point-to-
Point

Operations

Gradient 
AggregationModel Propagation Forward

Backward

Deep Learning and Machine Learning Frameworks

LBANN FlexFlow TensorFlow PyTorch

Communication Runtimes (MPI/NCCL/Gloo/MLSL)

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

Co-Design 
Opportunities



MUG ‘23 30Network Based Computing Laboratory

Distributed TensorFlow on ORNL Summit (1,536 GPUs)
• ResNet-50 Training using 

TensorFlow benchmark on 
SUMMIT -- 1536 Volta 
GPUs!

• 1,281,167 (1.2 mil.) images

• Time/epoch = 3 seconds

• Total Time (90 epochs)        
= 3 x 90 = 270 seconds = 
4.5 minutes!

1 2 4 6 12 24 48 96 192 384 768 1536
0

50000
100000
150000
200000
250000
300000
350000
400000
450000

MVAPICH2-GDR 2.3.4

MVAPICH2-GDR 2.3.4

Number of GPUs

Im
ag

e 
pe

r s
ec

on
d

Platform: The Summit Supercomputer (#2 on Top500.org) – 6 NVIDIA Volta GPUs per node connected with NVLink, CUDA 10.1

MVAPICH2-GDR reaching ~0.42 million 
images per second for ImageNet-1k!

ImageNet-1k has 1.2 million images



MUG ‘23 31Network Based Computing Laboratory

Distributed TensorFlow on TACC Frontera (2048 CPU nodes)
• Scaled TensorFlow to 2048 nodes on 

Frontera using MVAPICH2 and IntelMPI

• MVAPICH2 delivers close to the ideal 
performance for DNN training

• Report a peak of 260,000 images/sec on 
2048 nodes

• On 2048 nodes, ResNet-50 can be trained 
in 7 minutes! 

A. Jain, A. A. Awan, H. Subramoni, DK Panda, “Scaling TensorFlow, PyTorch, and MXNet using MVAPICH2 for High-Performance Deep 
Learning on Frontera”, DLS ’19 (SC ’19 Workshop). 

1 2 4 8 16 32 64 128 256 512 10242048
100

1000

10000

100000

1000000

MVAPICH2-X Ideal

Nodes

Im
ag

es
 p

er
 se

c



MUG ‘23 32Network Based Computing Laboratory

AccDP: Exploiting Data Parallelism

• ResNet18 training throughput comparison between 
regular training and AccDP (proposed design) for 
different DNN models on up to 8 nodes 2 GPUs per 
node (16 GPUs) with 4 MPS clients per GPU

• ShuffleNet training throughput comparison between 
regular training and AccDP (proposed design) for 
different DNN models on up to 8 nodes 2 GPUs per 
node (16 GPUs) with 4 MPS clients per GPU.

Multi node with ResNet18 Multi node with ShuffleNet

N. Alnaasan, A. Jain, A. Shafi, H. Subramoni, and DK Panda, “AccDP: Accelerated Data-Parallel Distributed DNN Training for Modern 
GPU-Based HPC Clusters”, HiPC’22. 



MUG ‘23 33Network Based Computing Laboratory

• Data Parallelism
• Model-Parallelism

Solutions and Case Studies: Exploiting HPC for DL

CUDA-Awareness

InfiniBand GPUCPU

Large-message 
Collectives

CNTK

Point-to-
Point

Operations

Gradient 
AggregationModel Propagation Forward

Backward

Deep Learning and Machine Learning Frameworks

LBANN FlexFlow TensorFlow PyTorch

Communication Runtimes (MPI/NCCL/Gloo/MLSL)

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

Co-Design 
Opportunities



MUG ‘23 34Network Based Computing Laboratory

• Pathology whole slide image (WSI) 
– Each WSI = 100,000 x 100,000 pixels
– Can not fit in a single GPU memory
– Tiles are extracted to make training possible

• Two main problems with tiles
– Restricted tile size because of GPU memory limitation
– Smaller tiles loose structural information

• Reduced training time significantly
– GEMS-Basic: 7.25 hours (1 node, 4 GPUs)
– GEMS-MAST: 6.28 hours (1 node, 4 GPUs)
– GEMS-MASTER: 4.21 hours (1 node, 4 GPUs)
– GEMS-Hybrid: 27 mins (32 nodes, 128 GPUs)
– Overall 15x reduction in training time!!!!

Exploiting Model Parallelism in AI-Driven Digital Pathology

Courtesy: 
https://blog.kitware.com/digital-slide-archive-large-i
mage-and-histomicstk-open-source-informatics-tools-f
or-management-visualization-and-analysis-of-digital-hi
stopathology-data/
 

Scaling ResNet 110 v2 on 1024×1024 image tiles 
us ing histopathology data

A. Jain, A. Awan, A. Aljuhani, J. Hashmi, Q. Anthony, H. Subramoni, D. K. Panda, R. Machiraju, and A. Parwani,  “GEMS: 
GPU Enabled Memory Aware Model Parallelism System for Distributed DNN Training”, Supercomputing (SC ‘20).

4 8 16 32 64 128
0

5

10

15

20

25

Number of GPUs

Th
ro

ug
hp

ut
 S

pe
ed

up
 (i

m
ag

es
 

pe
r s

ec
)

1x 1.9x
3.6x

7x

12x

22x

https://blog.kitware.com/digital-slide-archive-large-image-and-histomicstk-open-source-informatics-tools-for-management-visualization-and-analysis-of-digital-histopathology-data/
https://blog.kitware.com/digital-slide-archive-large-image-and-histomicstk-open-source-informatics-tools-for-management-visualization-and-analysis-of-digital-histopathology-data/
https://blog.kitware.com/digital-slide-archive-large-image-and-histomicstk-open-source-informatics-tools-for-management-visualization-and-analysis-of-digital-histopathology-data/
https://blog.kitware.com/digital-slide-archive-large-image-and-histomicstk-open-source-informatics-tools-for-management-visualization-and-analysis-of-digital-histopathology-data/


MUG ‘23 35Network Based Computing Laboratory

Upcoming Release: MPI4DL v0.5
MPI4DL v0.5 is a distributed and accelerated training framework 
for very high-resolution images that integrates Spatial Parallelism, 
Layer Parallelism, and Pipeline Parallelism.
Features:

• Based on PyTorch
• Support for training very high-resolution images
• Distributed training support for:

– Layer Parallelism (LP)
– Pipeline Parallelism (PP)
– Spatial Parallelism (SP)
– Spatial and Layer Parallelism (SP+LP)
– Spatial and Pipeline Parallelism (SP+PP)

• Support for different image sizes and custom datasets.
• Exploits collective features of MVAPICH2-GDR



MUG ‘23 36Network Based Computing Laboratory

• Introduction
• Machine Learning

–Distributed K-Means
–ML Solutions

• Deep Learning
–Deep Neural Networks
–Distributed Deep Learning 
–DL Solutions

• Conclusion 

Outline



MUG ‘23 37Network Based Computing Laboratory

• Exponential growth in Machine Learning and Deep Learning frameworks
• Provided an overview of issues, challenges, and opportunities for 

designing efficient communication runtimes 
– Efficient, scalable, and hierarchical designs are crucial for ML and DL frameworks
– Co-design of communication runtimes and ML and DL frameworks will be essential

• Presented use-cases to demonstrate the complex interaction between DL and ML 
middleware with the underling HPC technologies and middleware 

• Need collaborative efforts to achieve the full potential

Conclusion



MUG ‘23 38Network Based Computing Laboratory

Funding Acknowledgments
Funding Support by

Equipment Support by



MUG ‘23 39Network Based Computing Laboratory

Acknowledgments to all the Heroes (Past/Current Students and Staffs)
Current Students (Graduate)

– N. Alnaasan (Ph.D.)
– Q. Anthony (Ph.D.)
– C.-C. Chun (Ph.D.)
– N. Contini (Ph.D.)

Past Students 
– A. Awan (Ph.D.)
– A. Augustine (M.S.)
– P. Balaji (Ph.D.)
– M. Bayatpour (Ph.D.)
– R. Biswas (M.S.) 
– S. Bhagvat (M.S.)
– A. Bhat (M.S.) 
– D. Buntinas (Ph.D.)
– L. Chai (Ph.D.)
– B. Chandrasekharan (M.S.)
– S. Chakraborthy  (Ph.D.)
– N. Dandapanthula (M.S.)
– V. Dhanraj (M.S.)
– C.-H. Chu (Ph.D.)

– D. Shankar (Ph.D.)
– G. Santhanaraman (Ph.D.)
– N. Sarkauskas (B.S. and M.S)
– N. Senthil Kumar (M.S.)
– A. Singh (Ph.D.)
– J. Sridhar (M.S.)
– S. Srivastava (M.S.)
– S. Sur (Ph.D.)
– H. Subramoni (Ph.D.)
– K. Vaidyanathan (Ph.D.)
– A. Vishnu (Ph.D.)
– J. Wu (Ph.D.)
– W. Yu (Ph.D.)
– J. Zhang (Ph.D.)

Past Research Scientists
– K. Hamidouche
– S. Sur
– X. Lu

Past Post-Docs
– D. Banerjee
– X. Besseron
– M. S. Ghazimeersaeed

– T. Gangadharappa (M.S.)
– K. Gopalakrishnan (M.S.)
– J. Hashmi (Ph.D.)
– W. Huang (Ph.D.)
– A. Jain (Ph.D.)
– W. Jiang (M.S.)
– J. Jose (Ph.D.)
– M. Kedia (M.S.)
– S. Kini (M.S.)
– M. Koop (Ph.D.)
– K. Kulkarni (M.S.)
– R. Kumar (M.S.)
– S. Krishnamoorthy (M.S.)
– K. Kandalla (Ph.D.)
– M. Li (Ph.D.)

– P. Lai (M.S.)
– J. Liu (Ph.D.)
– M. Luo (Ph.D.)
– A. Mamidala (Ph.D.)
– G. Marsh (M.S.)
– V. Meshram (M.S.)
– A. Moody (M.S.)
– S. Naravula (Ph.D.)
– R. Noronha (Ph.D.)
– X. Ouyang (Ph.D.)
– S. Pai (M.S.)
– S. Potluri (Ph.D.)
– K. Raj (M.S.) 
– R. Rajachandrasekar (Ph.D.) 

– K. S. Khorassani (Ph.D.)
– P. Kousha (Ph.D.)
– B. Michalowicz (Ph.D.)
– B. Ramesh (Ph.D.)
– K. K. Suresh (Ph.D.)

– H.-W. Jin
– J. Lin
– M. Luo 

Past Senior Research Associate
– J. Hashmi

Past Programmers
– A. Reifsteck
– D. Bureddy
– J. Perkins

– E. Mancini
– K. Manian
– S. Marcarelli

Current Software Engineers
– B. Seeds
– N. Pavuk
– N. Shineman
– M. Lieber

Past Research Specialist
– M. Arnold
– J. Smith

Current Research Scientists
– M. Abduljabbar
– A. Shafi

– A. H. Tu (Ph.D.)
– S. Xu (Ph.D.) 
– Q. Zhou (Ph.D.)
– K. Al Attar (M.S.)
– L. Xu (Ph.D.)

– A. Ruhela
– J. Vienne
– H. Wang

Current Students (Undergrads)
– T. Chen

Current Research Specialist
– R. Motlagh

Current Faculty
– H. Subramoni– G. Kuncham (Ph.D.) 

– R. Vaidya (Ph.D.)
– J. Yao (Ph.D.)
– M. Han (M.S.)
– A. Guptha (M.S.)


	Slide 1
	Outline
	What is Machine Learning and Deep Learning?
	History: Milestones in the Development of ML/DL
	Outline (2)
	Three Main Types of Machine Learning
	Support for Parallel and Distributed Execution
	Parallelizing the K-means Algorithm
	Outline (3)
	The cuML Library: Accelerating ML on GPUs
	Main components of the cuML library
	Accelerating cuML with MVAPICH2-GDR
	MPI4cuML 0.5 Release - MPI-Driven ML Training
	K-Means
	Outline (4)
	Understanding the Deep Neural Network Concepts
	Essential Concepts: Learning Rate (α)
	Essential Concepts: Batch Size
	Outline (5)
	The Need for Parallel and Distributed Training
	Parallelization Strategies
	Data Parallelism and MPI Collectives
	Outline (6)
	MVAPICH2 (MPI)-driven Infrastructure for ML/DL Training
	Install Horovod with MVAPICH2-X and MVAPICH2-GDR
	Run PyTorch on a single GPU
	Run PyTorch on two nodes with 1 GPU/node (using MVAPICH2-GDR)
	HiDL Software Stack Release v1.0
	Solutions and Case Studies: Exploiting HPC for DL
	Distributed TensorFlow on ORNL Summit (1,536 GPUs)
	Distributed TensorFlow on TACC Frontera (2048 CPU nodes)
	AccDP: Exploiting Data Parallelism
	Solutions and Case Studies: Exploiting HPC for DL (2)
	Exploiting Model Parallelism in AI-Driven Digital Pathology
	Upcoming Release: MPI4DL v0.5
	Outline (7)
	Conclusion
	Funding Acknowledgments
	Acknowledgments to all the Heroes (Past/Current Students and St

