

https://twitter.com/mvapich

High Performance Machine Learning and Deep Learning with MVAPICH2

Tutorial at MUG '23

by

Aamir Shafi

The Ohio State University

shafi.16@osu.edu

https://cse.osu.edu/people/shafi.16

Nawras Alnaasan

The Ohio State University

alnaasan.1@osu.edu

<u>https://</u> engineering.osu.edu/ people/alnaasan.1

Outline

Introduction

- Machine Learning
 - -Distributed K-Means
 - -ML Solutions
- Deep Learning
 - -Deep Neural Networks
 - -Distributed Deep Learning
 - -DL Solutions
- Conclusion

What is Machine Learning and Deep Learning?

- Machine Learning (ML)
 - "the study of computer algorithms to improve automatically through experience and use of data"
- Deep Learning (DL) a subset of ML
 - Uses Deep Neural Networks (DNNs)
 - Perhaps, the most revolutionary subset!
- Based on learning data representation
- DNN Examples: Convolutional Neural Networks, Recurrent Neural Networks, Hybrid Networks
- Data Scientist or Developer Perspective for using DNNs
 - 1. Identify DL as solution to a problem
 - 2. Determine Data Set
 - 3. Select Deep Learning Algorithm to Use
 - 4. Use a large data set to train an algorithm

Courtesy:

https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-lear ning-1pcv3zeg

https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning, MUG 23

History: Milestones in the Development of ML/DL

Network Based Computing Laboratory

MUG '23

Outline

- Introduction
- Machine Learning

 Distributed K-Means
 - -ML Solutions
- Deep Learning
 - -Deep Neural Networks
 - -Distributed Deep Learning
 - -DL Solutions
- Conclusion

Three Main Types of Machine Learning

Courtesy: https://bigdata-madesimple.com/machine-learning-explained-understanding-supervised-unsupervised-and-reinforcement-learning/

Network Based Computing Laboratory

Support for Parallel and Distributed Execution

- Scikit-learn:
 - Supports execution via Joblib (<u>https://joblib.readthedocs.io/en/latest/</u>)
 - Joblib supports multi-threaded and multi-process execution (on multiple nodes)
- XGBoost:
 - Multiple ways to run on cluster of nodes:
 - Dask (<u>http://dask.org</u>)
 - Ray (<u>https://ray.io/</u>)
 - AWS YARN
 - Apache Spark (<u>https://spark.apache.org/</u>) using XGBoost4J-Spark
- cuML:
 - Execution is supposed on multiple nodes using Dask (<u>http://dask.org</u>) and NVIDIA's NCCL

MUG '23

Parallelizing the K-means Algorithm

- Step 0: Initialize centroids
 - Assign initial cluster means randomly
- Step 1: Data Division
 - Distribute elements among GPUs
- Step 2: Assign elements (color)
 - Assign each element to the cluster with the closest mean
- Step 3: Update local cluster mean
 - Calculate local cluster means for all local points
- Step 4: Update global cluster mean*
 - Calculate global cluster means by calling Allreduce()
- Step 5: Repeat steps 2-4 until convergence

Step 5: Repeat 2-4 until convergence

Outline

- Introduction
- Machine Learning

 Distributed K-Means
 - -ML Solutions
- Deep Learning
 - -Deep Neural Networks
 - -Distributed Deep Learning
 - -DL Solutions
- Conclusion

The cuML Library: Accelerating ML on GPUs

- The NVIDIA RAPIDS project aims to build end-to-end data science analytic pipelines on GPUs
- An important component is the cuML library:
 - GPU-accelerated ML library
 - GPU-counterpart of Scikit-learn
 - Supports the execution of ML workloads on Multi-Node Multi-GPUs (MNMG) systems
- Most existing ML libraries, including Scikit-learn and Apache Spark's MLlib, only support CPU execution of ML algorithms
 - Conventional wisdom has been that only DNNs are a good match for GPUs because of high computational requirements

Main components of the cuML library

Main components

- Python layer
 - Provides a Scikit-learn like interface
 - Hides the complexities of the CUDA/C/C++ layer
- Primitives and cuML algorithms built on top of CUDA
 - ML Algorithms
 - Primitives
 - Reusable building blocks for building machine learning algorithms
 - Common for different machine learning algorithms
 - Used to build different machine learning algorithms
- Communication Support in cuML:
 - Point-to-point communication: Dask
 - Collective communication: NVIDIA Collective Communications Library (NCCL)

Accelerating cuML with MVAPICH2-GDR

- Utilize MVAPICH2-GDR (with mpi4py) as communication backend during the training phase (the fit() function) in the Multi-node Multi-GPU (MNMG) setting over cluster of GPUs
- Communication primitives:
 - Allreduce
 - Reduce
 - Broadcast
- Exploit optimized collectives

MPI4cuML 0.5 release (http://hidl.cse.ohio-state.edu)

MPI4cuML 0.5 Release - MPI-Driven ML Training

- cuML is a distributed machine learning training framework with a focus on GPU acceleration and distributed computing. MVAPICH2-GDR provides many features to augment distributed training with cuML on GPUs
- (NEW) Based on cuML 22.02.00
 - Include ready-to-use examples for KMeans, Linear Regression, Nearest Neighbors, and tSVD
- (NEW) MVAPICH2 support for RAFT 22.02.00
 - (NEW) Enabled cuML's communication engine, RAFT, to use MVAPICH2-GDR backend for Python and C++ cuML applications
 - KMeans, PCA, tSVD, RF, LinearModels
 - Added switch between available communication backends (MVAPICH2 and NCCL)
- Built on top of mpi4py over the MVAPICH2-GDR library
- Tested with
 - Mellanox InfiniBand adapters (FDR and HDR)
 - (NEW) NVIDIA GPU A100, V100 and, P100
 - Various x86-based multi-core platforms (AMD and Intel)
- <u>http://hidl.cse.ohio-state.edu/</u>

M. Ghazimirsaeed , Q. Anthony , A. Shafi , H. Subramoni , and D. K. Panda, Accelerating GPU-based Machine Learning in Python using MPI Library: A Case Study with MVAPICH2-GDR, MLHPC Workshop, Nov 2020

Network Based Computing Laboratory

MUG '23

Outline

- Introduction
- Machine Learning

 Distributed K-Means
 ML Solutions
- Deep Learning
 - -Deep Neural Networks
 - -Distributed Deep Learning
 - -DL Solutions
- Conclusion

Understanding the Deep Neural Network Concepts

• Example of a 3-layer Deep Neural Network (DNN) – (input layer is not counted)

Courtesy: <u>http://cs231n.github.io/neural-networks-1/</u>

Essential Concepts: Learning Rate (a)

Courtesy: <u>https://www.jeremyjordan.me/nn-learning-rate/</u>

Essential Concepts: Batch Size

- Batched Gradient Descent
 - Batch Size = N
- Stochastic Gradient Descent
 - Batch Size = 1
- Mini-batch Gradient Descent
 - Somewhere in the middle
 - Common:
 - <u>Batch Size</u> = 64, 128, 256, etc.
- Finding the optimal batch size will yield the fastest learning.

Courtesy: <u>https://www.jeremyjordan.me/gradient-descent/</u>

Outline

- Introduction
- Machine Learning

 Distributed K-Means
 ML Solutions
- Deep Learning
 - **-Deep Neural Networks**
 - **Distributed Deep Learning**
 - -DL Solutions
- Conclusion

The Need for Parallel and Distributed Training

- Why do we need Parallel Training?
- Larger and Deeper models are being proposed
 - AlexNet -> ResNet -> NASNet AmoebaNet
 - DNNs require a lot of memory and a lot of computation
 - Larger models cannot fit a GPU's memory
- Single GPU training cannot keep up with ever-larger models
- Community has moved to multi-GPU training
- Multi-GPU in one node is good but there is a limit to Scale-up (8-16 GPUs)
- Multi-node (Distributed or Parallel) Training is necessary!!

Parallelization Strategies

- Some parallelization strategies..
 - Data Parallelism or Model Parallelism
 - Hybrid Parallelism

Hybrid (Model and Data) Parallelism

Data Parallelism

Courtesy: <u>http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks</u>

MUG '23

Data Parallelism and MPI Collectives

- Step1: Data Propagation
 - Distribute the Data among GPUs
- Step2: Forward Backward Pass
 - Perform forward pass and calculate the prediction
 - Calculate Error by comparing prediction with actual output
 - Perform backward pass and calculate gradients
- Step3: Gradient Aggregation
 - Call MPI_Allreduce to reduce the local gradients
 - Update parameters locally using global gradients

Outline

- Introduction
- Machine Learning

 Distributed K-Means
 ML Solutions
- Deep Learning
 - **-Deep Neural Networks**
 - **Distributed Deep Learning**

-DL Solutions

Conclusion

MVAPICH2 (MPI)-driven Infrastructure for ML/DL Training

More details available from: <u>http://hidl.cse.ohio-state.edu</u>

Install Horovod with MVAPICH2-X and MVAPICH2-GDR

Command to install Horovod for CPU

\$ HOROVOD_WITH_MPI=1 pip install --no-cache-dir horovod

Command to install Horovod for GPU

\$ HOROVOD_GPU_ALLREDUCE=MPI HOROVOD_CUDA_HOME=/opt/cuda/11.3 HOROVOD_WITH_MPI=1 pip install --no-cache-dir horovod

Run PyTorch on a single GPU

+ python pytorch_synthetic_benchmark.py --batch-size 64 --num-iters=5

	V100
Model: resnet50	
Batch size: 64	
Number of GPUs: 1	
Running warmup	
Running benchmark	
Iter #0: 333.9 img/sec per GPU	
Iter #1: 334.2 img/sec per GPU	
Iter #2: 333.9 img/sec per GPU	
Iter #3: 333.8 img/sec per GPU	
Iter #4: 333.9 img/sec per GPU	
Img/sec per GPU: 334.0 +-0.2	
Total img/sec on 1 GPU(s): 334.0 +-0.2	

Run PyTorch on two nodes with 1 GPU/node (using MVAPICH2-GDR)

+ mpirun_rsh -np 2 gpu11 gpu12 MV2_USE_CUDA=1 MV2_CPU_BINDING_POLICY=hybrid MV2_HYBRID_BINDING_POLICY=spread MV2_USE_RDMA_CM=0 MV2_GPUDIRECT_GDRCOPY_LIB=/opt/gdrcopy2.0/lib64/libgdrapi.so LD_PRELOAD=mv2-gdr/lib/libmpi.so

python pytorch_synthetic_benchmark.py --batch-size 64 --num-iters=5

V100 Model: resnet50 Batch size: 64 Number of GPUs: 2 Running warmup... Running benchmark... Iter #0: 317.0 img/sec per GPU Iter #1: 314.9 img/sec per GPU Iter #2: 315.4 img/sec per GPU Iter #3: 318.0 img/sec per GPU Iter #4: 316.7 img/sec per GPU Img/sec per GPU: 316.4 +-2.2 ~1.89X on Total img/sec on 2 GPU(s): 632.8 +-4 2 GPUs

HiDL Software Stack Release v1.0

- Based on Horovod
- Optimized support for MPI controller in deep learning workloads
- Efficient large-message collectives (e.g. Allreduce) on various CPUs and GPUs
- GPU-Direct algorithms for collective operations (including those commonly used for data- and model-parallelism, e.g. Allgather and Alltoall)
- Support for fork safety
- Exploits efficient large message collectives
- Compatible with
 - Mellanox InfiniBand adapters (EDR, FDR, HDR)
 - Various x86-based multi-core CPUs (AMD and Intel)
 - NVIDIA A100, V100, P100, Quadro RTX 5000 GPUs
 - CUDA [9.x, 10.x, 11.x] and cuDNN [7.5.x, 7.6.x, 8.0.x, 8.2.x, 8.4.x]
 - AMD MI100 GPUs
 - ROCm [5.1.x]

For more details: <u>http://hidl.cse.ohio-state.edu/userguide/horovod/</u>

Solutions and Case Studies: Exploiting HPC for DL

- Data Parallelism
- Model-Parallelism

Distributed TensorFlow on ORNL Summit (1,536 GPUs)

- ResNet-50 Training using TensorFlow benchmark on SUMMIT -- 1536 Volta GPUs!
- 1,281,167 (1.2 mil.) images
- Time/epoch = 3 seconds
- Total Time (90 epochs)
 = 3 x 90 = 270 seconds =

4.5 minutes!

MVAPICH2-GDR 2.3.4

Platform: The Summit Supercomputer (#2 on Top500.org) – 6 NVIDIA Volta GPUs per node connected with NVLink, CUDA 10.1

MUG '23

Distributed TensorFlow on TACC Frontera (2048 CPU nodes)

- Scaled TensorFlow to 2048 nodes on Frontera using MVAPICH2 and IntelMPI
- MVAPICH2 delivers close to the ideal performance for DNN training
- Report a peak of 260,000 images/sec on 2048 nodes
- On 2048 nodes, ResNet-50 can be trained in 7 minutes!

AccDP: Exploiting Data Parallelism

Multi node with ResNet18

 ResNet18 training throughput comparison between regular training and AccDP (proposed design) for different DNN models on up to 8 nodes 2 GPUs per node (16 GPUs) with 4 MPS clients per GPU

Multi node with ShuffleNet

ShuffleNet training throughput comparison between regular training and AccDP (proposed design) for different DNN models on up to 8 nodes 2 GPUs per node (16 GPUs) with 4 MPS clients per GPU.

N. Alnaasan, A. Jain, A. Shafi, H. Subramoni, and DK Panda, "AccDP: Accelerated Data-Parallel Distributed DNN Training for Modern GPU-Based HPC Clusters", HiPC'22.

Solutions and Case Studies: Exploiting HPC for DL

- Data Parallelism
- Model-Parallelism

Exploiting Model Parallelism in AI-Driven Digital Pathology

- Pathology whole slide image (WSI)
 - Each WSI = 100,000 x 100,000 pixels
 - Can not fit in a single GPU memory
 - Tiles are extracted to make training possible
- Two main problems with tiles
 - Restricted tile size because of GPU memory limitation
 - Smaller tiles loose structural information
- Reduced training time significantly
 - GEMS-Basic: 7.25 hours (1 node, 4 GPUs)
 - GEMS-MAST: 6.28 hours (1 node, 4 GPUs)
 - GEMS-MASTER: 4.21 hours (1 node, 4 GPUs)
 - GEMS-Hybrid: 27 mins (32 nodes, 128 GPUs)
 - Overall 15x reduction in training time!!!!

Courtesy:

https://blog.kitware.com/digital-slide-archive-large-i mage-and-histomicstk-open-source-informatics-tools-f or-management-visualization-and-analysis-of-digital-h stopathology-data/

Number of GPUs Scaling ResNet110 v2 on 1024×1024 image tiles using histopathology data

Upcoming Release: MPI4DL v0.5

MPI4DL v0.5 is a distributed and accelerated training framework for very high-resolution images that integrates Spatial Parallelism, Layer Parallelism, and Pipeline Parallelism.

Features:

- Based on PyTorch
- Support for training very high-resolution images
- Distributed training support for:
 - Layer Parallelism (LP)
 - Pipeline Parallelism (PP)
 - Spatial Parallelism (SP)
 - Spatial and Layer Parallelism (SP+LP)
 - Spatial and Pipeline Parallelism (SP+PP)
- Support for different image sizes and custom datasets.
- Exploits collective features of MVAPICH2-GDR

Outline

- Introduction
- Machine Learning
 Distributed K-Means
 - -ML Solutions
- Deep Learning
 - **-Deep Neural Networks**
 - -Distributed Deep Learning
 - **-DL Solutions**
- Conclusion

Conclusion

- Exponential growth in Machine Learning and Deep Learning frameworks
- Provided an overview of issues, challenges, and opportunities for designing efficient communication runtimes
 - Efficient, scalable, and hierarchical designs are crucial for ML and DL frameworks
 - Co-design of communication runtimes and ML and DL frameworks will be essential
- Presented use-cases to demonstrate the complex interaction between DL and ML middleware with the underling HPC technologies and middleware
- Need collaborative efforts to achieve the full potential

Funding Acknowledgments

Funding Support by

MUG '23

Acknowledgments to all the Heroes (Past/Current Students and Staffs)

Current Students (Graduate)			Current Research Scientists	Current Faculty
– N. Alnaasan (Ph.D.) – K. S	S. Khorassani (Ph.D.) – A. H	I. Tu (Ph.D.) – G. Kuncham (Ph.D.)) – M. Abduljabbar	 H. Subramoni
– Q. Anthony (Ph.D.) – P. H	Kousha (Ph.D.) – S. X	u (Ph.D.) – R. Vaidya (Ph.D.)	– A. Shafi	Current Software Engineers
 CC. Chun (Ph.D.) B. N. Contini (Ph.D.) B. K. 	Michalowicz (Ph.D.) – Q. Z Ramesh (Ph.D.) – K. A K. Suresh (Ph.D.) – L. X	Zhou (Ph.D.) — J. Yao (Ph.D.) I Attar (M.S.) — M. Han (M.S.) u (Ph.D.) — A. Guptha (M.S.)	Current Students (Undergrads) — T. Chen	 B. Seeds N. Pavuk N. Shineman
Past Students				– M. Lieber
 A. Awan (Ph.D.) A. Augustine (M.S.) P. Balaji (Ph.D.) M. Bayatpour (Ph.D.) R. Biswas (M.S.) S. Bhagvat (M.S.) A. Bhat (M.S.) 	 T. Gangadharappa (M.S.) K. Gopalakrishnan (M.S.) J. Hashmi (Ph.D.) W. Huang (Ph.D.) A. Jain (Ph.D.) W. Jiang (M.S.) J. Jose (Ph.D.) 	 P. Lai (M.S.) J. Liu (Ph.D.) M. Luo (Ph.D.) A. Mamidala (Ph.D.) G. Marsh (M.S.) V. Meshram (M.S.) A. Moody (M.S.) 	 D. Shankar (Ph.D.) G. Santhanaraman (Ph.D.) N. Sarkauskas (B.S. and M.S) N. Senthil Kumar (M.S.) A. Singh (Ph.D.) J. Sridhar (M.S.) S. Srivastava (M.S.) 	Current Research Specialist - R. Motlagh Past Research Scientists - K. Hamidouche - S. Sur - X Lu
 D. Buntinas (Ph.D.) L. Chai (Ph.D.) B. Chandrasekharan (M.S. 	 M. Kedia (M.S.) S. Kini (M.S.) M. Koop (Ph.D.) 	 S. Naravula (Ph.D.) R. Noronha (Ph.D.) X. Ouyang (Ph.D.) 	 S. Sur (Ph.D.) H. Subramoni (Ph.D.) K. Vaidyanathan (Ph.D.) 	Past Senior Research Associate – J. Hashmi
 S. Chakraborthy (Ph.D.) N. Dandapanthula (M.S.) V. Dhanraj (M.S.) CH. Chu (Ph.D.) 	 K. Kulkarni (M.S.) R. Kumar (M.S.) S. Krishnamoorthy (M.S.) K. Kandalla (Ph.D.) M. Li (Ph.D.) 	 S. Pai (M.S.) S. Potluri (Ph.D.) K. Raj (M.S.) R. Rajachandrasekar (Ph.D.) 	 A. Vishnu (Ph.D.) J. Wu (Ph.D.) W. Yu (Ph.D.) J. Zhang (Ph.D.) 	Past Programmers-A. Reifsteck-D. Bureddy-J. Perkins
Past Post-Docs-D. Banerjee-X. Besseron-M. S. Ghazimeersaeed	 HW. Jin HW. Jin J. Lin K. Manian M. Luo S. Marcare 	 A. Ruhela J. Vienne H. Wang 		Past Research Specialist — M. Arnold — J. Smith