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What is Machine Learning and Deep Learning?

Courtesy: 
https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-lear
ning-1pcv3zeg
, https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning, 
https://en.wikipedia.org/wiki/Machine_learning 

• Machine Learning (ML)
– “the study of computer algorithms to improve 

automatically through experience and use of data”

• Deep Learning (DL) – a subset of ML
– Uses Deep Neural Networks (DNNs)
– Perhaps, the most revolutionary subset! 

• Based on learning data representation 
• DNN Examples: Convolutional Neural Networks, Recurrent 

Neural Networks, Hybrid Networks

• Data Scientist or Developer Perspective for using DNNs
1. Identify DL as solution to a problem
2. Determine Data Set
3. Select Deep Learning Algorithm to Use
4. Use a large data set to train an algorithm

https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning
https://en.wikipedia.org/wiki/Machine_learning


MUG ‘23 4Network Based Computing Laboratory

History: Milestones in the Development of ML/DL
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Three Main Types of Machine Learning

Courtesy: https://bigdata-madesimple.com/machine-learning-explained-understanding-supervised-unsupervised-and-reinforcement-learning/ 

https://bigdata-madesimple.com/machine-learning-explained-understanding-supervised-unsupervised-and-reinforcement-learning/
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• Scikit-learn: 
– Supports execution via Joblib (https://joblib.readthedocs.io/en/latest/)
– Joblib supports multi-threaded and multi-process execution (on multiple 

nodes)

• XGBoost: 
– Multiple ways to run on cluster of nodes: 

• Dask (http://dask.org)
• Ray (https://ray.io/) 
• AWS YARN 
• Apache Spark (https://spark.apache.org/) using XGBoost4J-Spark

• cuML: 
– Execution is supposed on multiple nodes using Dask (http://dask.org) and 

NVIDIA’s NCCL

Support for Parallel and Distributed Execution

https://joblib.readthedocs.io/en/latest/
http://dask.org/
https://ray.io/
https://spark.apache.org/
http://dask.org/
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Parallelizing the K-means Algorithm
• Step 0: Initialize centroids

– Assign initial cluster means randomly

• Step 1: Data Division
– Distribute elements among GPUs

• Step 2: Assign elements (color)
– Assign each element to the cluster with the 

closest mean

• Step 3: Update local cluster mean
– Calculate local cluster means for all local points

• Step 4: Update global cluster mean*
– Calculate global cluster means by calling 

Allreduce()

• Step 5: Repeat steps 2-4 until convergence
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Step 5: Repeat 2-4  until convergence

Assign all local elements to the cluster with closest mean
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• The NVIDIA RAPIDS project aims to build end-to-end data science 
analytic pipelines on GPUs

• An important component is the cuML library:
– GPU-accelerated ML library
– GPU-counterpart of Scikit-learn
– Supports the execution of ML workloads on Multi-Node Multi-GPUs (MNMG) 

systems

• Most existing ML libraries, including Scikit-learn and Apache Spark’s 
MLlib, only support CPU execution of ML algorithms
– Conventional wisdom has been that only DNNs are a good match for GPUs 

because of high computational requirements

The cuML Library: Accelerating ML on GPUs
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• Main components
– Python layer

• Provides a Scikit-learn like interface
• Hides the complexities of the CUDA/C/C++ layer

– Primitives and cuML algorithms built on top of CUDA
• ML Algorithms
• Primitives

– Reusable building blocks for building machine learning 
algorithms

– Common for different machine learning algorithms
– Used to build different machine learning algorithms

– Communication Support in cuML:
• Point-to-point communication: Dask
• Collective communication: NVIDIA Collective 

Communications Library (NCCL)

Main components of the cuML library
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• Utilize MVAPICH2-GDR (with mpi4py) as communication backend during the 
training phase (the fit() function) in the Multi-node Multi-GPU (MNMG) setting 
over cluster of GPUs

• Communication primitives:
– Allreduce
– Reduce
– Broadcast

• Exploit optimized collectives

Accelerating cuML with MVAPICH2-GDR

Python

Cython

cuML Primitives

CUDA Libraries

CUDA

cuML Algorithms

CUDA/C/C++

UCX-Py

Dask

NCCL MVAPICH2-
GDR

mpi4py

UCX

MPI4cuML 0.5 release

(http://hidl.cse.ohio-state.edu)
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• cuML is a distributed machine learning training framework with a focus on GPU acceleration and distributed 
computing. MVAPICH2-GDR provides many features to augment distributed training with cuML on GPUs

• (NEW) Based on cuML 22.02.00
• Include ready-to-use examples for KMeans, Linear Regression, Nearest Neighbors, and tSVD

• (NEW) MVAPICH2 support for RAFT 22.02.00
• (NEW) Enabled cuML’s communication engine, RAFT, to use MVAPICH2-GDR backend for Python and C++ cuML applications
• KMeans, PCA, tSVD, RF, LinearModels
• Added switch between available communication backends (MVAPICH2 and NCCL)

• Built on top of mpi4py over the MVAPICH2-GDR library
• Tested with

• Mellanox InfiniBand adapters (FDR and HDR)
• (NEW) NVIDIA GPU A100, V100 and, P100
• Various x86-based multi-core platforms (AMD and Intel)

• http://hidl.cse.ohio-state.edu/ 

MPI4cuML 0.5 Release - MPI-Driven ML Training

http://hidl.cse.ohio-state.edu/
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K-Means

Nearest Neighbors Truncated SVD

M. Ghazimirsaeed , Q. Anthony , A. Shafi , H. Subramoni , and D. K. Panda, Accelerating GPU-based Machine Learning in Python 
using MPI Library: A Case Study with MVAPICH2-GDR, MLHPC Workshop, Nov 2020

1.6x

1.35x 1.38x

1.23x

MPI4cuML 0.5

Expanse GPU System

CPU Model Intel Xeon 
Gold 6248

CPU Core Info 2x20 @ 
2.5Ghz

Memory 384 GB

Interconnect Infiniband 
HDR (200 
Gbps)

OS Rocky Linux 
8.5

GPU NVIDIA V100 
(4/Node)

CUDA CUDA 11.2

Linear Regression
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• Example of a 3-layer Deep Neural Network (DNN) – (input layer is not counted) 

Understanding the Deep Neural Network Concepts

Courtesy: http://cs231n.github.io/neural-networks-1/ 

http://cs231n.github.io/neural-networks-1/


MUG ‘23 17Network Based Computing Laboratory

Essential Concepts: Learning Rate (α)

Courtesy: https://www.jeremyjordan.me/nn-learning-rate/ 

https://www.jeremyjordan.me/nn-learning-rate/
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• Batched Gradient Descent
– Batch Size = N

• Stochastic Gradient Descent
– Batch Size = 1

• Mini-batch Gradient Descent
– Somewhere in the middle 
– Common:

• Batch Size = 64, 128, 256, etc.

• Finding the optimal batch 
size will yield the fastest 
learning.

Essential Concepts: Batch Size

Courtesy: https://www.jeremyjordan.me/gradient-descent/ 

N

Batch Size One full pass over N is called an epoch of training

https://www.jeremyjordan.me/gradient-descent/
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• Why do we need Parallel Training?
• Larger and Deeper models are being proposed

– AlexNet -> ResNet -> NASNet – AmoebaNet
– DNNs require a lot of memory and a lot of computation
– Larger models cannot fit a GPU’s memory

• Single GPU training cannot keep up with ever-larger models
• Community has moved to multi-GPU training
• Multi-GPU in one node is good but there is a limit to Scale-up (8-16 GPUs)
• Multi-node (Distributed or Parallel) Training is necessary!!

The Need for Parallel and Distributed Training
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• Some parallelization strategies..
– Data Parallelism or Model Parallelism
– Hybrid Parallelism

Parallelization Strategies

Model Parallelism

Data Parallelism
Hybrid (Model and Data) Parallelism

Courtesy: http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks 

http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
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Data Parallelism and MPI Collectives
• Step1: Data Propagation

– Distribute the Data among GPUs

• Step2: Forward Backward Pass
– Perform forward pass and 

calculate the prediction
– Calculate Error by comparing 

prediction with actual output 
– Perform backward pass and 

calculate gradients 

• Step3: Gradient Aggregation
– Call MPI_Allreduce to reduce the 

local gradients 
– Update parameters locally using 

global gradients

Batch
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MVAPICH2 (MPI)-driven Infrastructure for ML/DL Training

MVAPICH2 or MVAPICH2-X 
for CPU Training

MVAPICH2-GDR for 
GPU Training

Horovod

TensorFlow PyTorch MXNet

ML/DL Applications

MVAPICH2 or MVAPICH2-X 
for CPU Training

MVAPICH2-GDR for 
GPU Training

Torch.distributed

PyTorch

ML/DL Applications

DeepSpeed

More details available from: http://hidl.cse.ohio-state.edu 

http://hidl.cse.ohio-state.edu/
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Install Horovod with MVAPICH2-X and MVAPICH2-GDR

Command to install Horovod for CPU

$ HOROVOD_WITH_MPI=1 pip install --no-cache-dir horovod

Command to install Horovod for GPU

$ HOROVOD_GPU_ALLREDUCE=MPI HOROVOD_CUDA_HOME=/opt/cuda/11.3 HOROVOD_WITH_MPI=1 pip 
install --no-cache-dir horovod
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+ python pytorch_synthetic_benchmark.py --batch-size 64 --num-iters=5
.
.
Model: resnet50
Batch size: 64
Number of GPUs: 1
Running warmup...
Running benchmark...
Iter #0: 333.9 img/sec per GPU
Iter #1: 334.2 img/sec per GPU
Iter #2: 333.9 img/sec per GPU
Iter #3: 333.8 img/sec per GPU
Iter #4: 333.9 img/sec per GPU
Img/sec per GPU: 334.0 +-0.2
-----------------------------------------
Total img/sec on 1 GPU(s): 334.0 +-0.2
-----------------------------------------

Run PyTorch on a single GPU

V100
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+ mpirun_rsh -np 2 gpu11 gpu12 MV2_USE_CUDA=1 MV2_CPU_BINDING_POLICY=hybrid 
MV2_HYBRID_BINDING_POLICY=spread MV2_USE_RDMA_CM=0 
MV2_GPUDIRECT_GDRCOPY_LIB=/opt/gdrcopy2.0/lib64/libgdrapi.so LD_PRELOAD=mv2-gdr/lib/libmpi.so 

python pytorch_synthetic_benchmark.py --batch-size 64 --num-iters=5
.
.
Model: resnet50
Batch size: 64
Number of GPUs: 2
Running warmup...
Running benchmark...
Iter #0: 317.0 img/sec per GPU
Iter #1: 314.9 img/sec per GPU
Iter #2: 315.4 img/sec per GPU
Iter #3: 318.0 img/sec per GPU
Iter #4: 316.7 img/sec per GPU
Img/sec per GPU: 316.4 +-2.2
-----------------------------------------
Total img/sec on 2 GPU(s): 632.8 +-4.3
-----------------------------------------

Run PyTorch on two nodes with 1 GPU/node (using MVAPICH2-
GDR)

V100

~1.89X on 
2 GPUs
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HiDL Software Stack Release v1.0

For more details: http://hidl.cse.ohio-state.edu/userguide/horovod/ 

• Based on Horovod
• Optimized support for MPI controller in deep learning 

workloads
• Efficient large-message collectives (e.g. Allreduce) on various 

CPUs and GPUs
• GPU-Direct algorithms for collective operations (including those 

commonly used for data- and model-parallelism, e.g. Allgather 
and Alltoall)

• Support for fork safety
• Exploits efficient large message collectives
• Compatible with

– Mellanox InfiniBand adapters (EDR, FDR, HDR)
– Various x86-based multi-core CPUs (AMD and Intel)
– NVIDIA A100, V100, P100, Quadro RTX 5000 GPUs
– CUDA [9.x, 10.x, 11.x] and cuDNN [7.5.x, 7.6.x, 8.0.x, 8.2.x, 8.4.x]
– AMD MI100 GPUs
– ROCm [5.1.x]

http://hidl.cse.ohio-state.edu/userguide/horovod/
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• Data Parallelism
• Model-Parallelism

Solutions and Case Studies: Exploiting HPC for DL

CUDA-Awareness

InfiniBand GPUCPU

Large-message 
Collectives

CNTK

Point-to-
Point

Operations

Gradient 
AggregationModel Propagation Forward

Backward

Deep Learning and Machine Learning Frameworks

LBANN FlexFlow TensorFlow PyTorch

Communication Runtimes (MPI/NCCL/Gloo/MLSL)

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

Co-Design 
Opportunities
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Distributed TensorFlow on ORNL Summit (1,536 GPUs)
• ResNet-50 Training using 

TensorFlow benchmark on 
SUMMIT -- 1536 Volta 
GPUs!

• 1,281,167 (1.2 mil.) images

• Time/epoch = 3 seconds

• Total Time (90 epochs)        
= 3 x 90 = 270 seconds = 
4.5 minutes!

1 2 4 6 12 24 48 96 192 384 768 1536
0

50000
100000
150000
200000
250000
300000
350000
400000
450000

MVAPICH2-GDR 2.3.4

MVAPICH2-GDR 2.3.4

Number of GPUs

Im
ag

e 
pe

r s
ec

on
d

Platform: The Summit Supercomputer (#2 on Top500.org) – 6 NVIDIA Volta GPUs per node connected with NVLink, CUDA 10.1

MVAPICH2-GDR reaching ~0.42 million 
images per second for ImageNet-1k!

ImageNet-1k has 1.2 million images
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Distributed TensorFlow on TACC Frontera (2048 CPU nodes)
• Scaled TensorFlow to 2048 nodes on 

Frontera using MVAPICH2 and IntelMPI

• MVAPICH2 delivers close to the ideal 
performance for DNN training

• Report a peak of 260,000 images/sec on 
2048 nodes

• On 2048 nodes, ResNet-50 can be trained 
in 7 minutes! 

A. Jain, A. A. Awan, H. Subramoni, DK Panda, “Scaling TensorFlow, PyTorch, and MXNet using MVAPICH2 for High-Performance Deep 
Learning on Frontera”, DLS ’19 (SC ’19 Workshop). 

1 2 4 8 16 32 64 128 256 512 10242048
100

1000

10000

100000

1000000

MVAPICH2-X Ideal

Nodes
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c
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AccDP: Exploiting Data Parallelism

• ResNet18 training throughput comparison between 
regular training and AccDP (proposed design) for 
different DNN models on up to 8 nodes 2 GPUs per 
node (16 GPUs) with 4 MPS clients per GPU

• ShuffleNet training throughput comparison between 
regular training and AccDP (proposed design) for 
different DNN models on up to 8 nodes 2 GPUs per 
node (16 GPUs) with 4 MPS clients per GPU.

Multi node with ResNet18 Multi node with ShuffleNet

N. Alnaasan, A. Jain, A. Shafi, H. Subramoni, and DK Panda, “AccDP: Accelerated Data-Parallel Distributed DNN Training for Modern 
GPU-Based HPC Clusters”, HiPC’22. 
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• Pathology whole slide image (WSI) 
– Each WSI = 100,000 x 100,000 pixels
– Can not fit in a single GPU memory
– Tiles are extracted to make training possible

• Two main problems with tiles
– Restricted tile size because of GPU memory limitation
– Smaller tiles loose structural information

• Reduced training time significantly
– GEMS-Basic: 7.25 hours (1 node, 4 GPUs)
– GEMS-MAST: 6.28 hours (1 node, 4 GPUs)
– GEMS-MASTER: 4.21 hours (1 node, 4 GPUs)
– GEMS-Hybrid: 27 mins (32 nodes, 128 GPUs)
– Overall 15x reduction in training time!!!!

Exploiting Model Parallelism in AI-Driven Digital Pathology

Courtesy: 
https://blog.kitware.com/digital-slide-archive-large-i
mage-and-histomicstk-open-source-informatics-tools-f
or-management-visualization-and-analysis-of-digital-hi
stopathology-data/
 

Scaling ResNet 110 v2 on 1024×1024 image tiles 
us ing histopathology data

A. Jain, A. Awan, A. Aljuhani, J. Hashmi, Q. Anthony, H. Subramoni, D. K. Panda, R. Machiraju, and A. Parwani,  “GEMS: 
GPU Enabled Memory Aware Model Parallelism System for Distributed DNN Training”, Supercomputing (SC ‘20).
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https://blog.kitware.com/digital-slide-archive-large-image-and-histomicstk-open-source-informatics-tools-for-management-visualization-and-analysis-of-digital-histopathology-data/
https://blog.kitware.com/digital-slide-archive-large-image-and-histomicstk-open-source-informatics-tools-for-management-visualization-and-analysis-of-digital-histopathology-data/
https://blog.kitware.com/digital-slide-archive-large-image-and-histomicstk-open-source-informatics-tools-for-management-visualization-and-analysis-of-digital-histopathology-data/
https://blog.kitware.com/digital-slide-archive-large-image-and-histomicstk-open-source-informatics-tools-for-management-visualization-and-analysis-of-digital-histopathology-data/
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Upcoming Release: MPI4DL v0.5
MPI4DL v0.5 is a distributed and accelerated training framework 
for very high-resolution images that integrates Spatial Parallelism, 
Layer Parallelism, and Pipeline Parallelism.
Features:

• Based on PyTorch
• Support for training very high-resolution images
• Distributed training support for:

– Layer Parallelism (LP)
– Pipeline Parallelism (PP)
– Spatial Parallelism (SP)
– Spatial and Layer Parallelism (SP+LP)
– Spatial and Pipeline Parallelism (SP+PP)

• Support for different image sizes and custom datasets.
• Exploits collective features of MVAPICH2-GDR
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• Exponential growth in Machine Learning and Deep Learning frameworks
• Provided an overview of issues, challenges, and opportunities for 

designing efficient communication runtimes 
– Efficient, scalable, and hierarchical designs are crucial for ML and DL frameworks
– Co-design of communication runtimes and ML and DL frameworks will be essential

• Presented use-cases to demonstrate the complex interaction between DL and ML 
middleware with the underling HPC technologies and middleware 

• Need collaborative efforts to achieve the full potential

Conclusion
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