Performance Engineering using MVAPICH and TAU

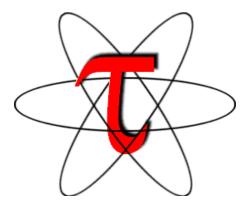
Sameer Shende University of Oregon and ParaTools, Inc. MUG 2023 Conference Tuesday, August 22, 2023, 5:00 – 5:30pm ET OSU Translational Data Analytics Institute (TDAI), Pomerene Hall, Room #320 The Ohio State University, Columbus, OH Download the slides from:

http://tau.uoregon.edu/TAU_MUG23.pdf

Outline

• Introduction

- The MPI Tools Interfaces and Benefits
- Integrating TAU and MVAPICH2 with MPI_T
- Use Cases
- TAU Performance System®



Acknowledgments

- The MVAPICH2 team The Ohio State University
 - http://mvapich.cse.ohio-state.edu
- TAU team at the University of Oregon
 - http://tau.uoregon.edu

Overview of the MVAPICH Project

High Performance open-source MPI Library

Support for multiple interconnects

 InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE), AWS EFA, OPX, Broadcom RoCE, Intel Ethernet, Rockport Networks, Slingshot 10/11

Support for multiple platforms

• x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)

Started in 2001, first open-source version demonstrated at SC '02

Supports the latest MPI-3.1 standard

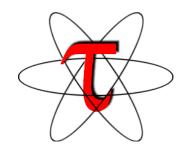
http://mvapich.cse.ohio-state.edu

Additional optimized versions for different systems/environments:

- MVAPICH2-X (Advanced MPI + PGAS), since 2011
- MVAPICH2-GDR with support for NVIDIA (since 2014) and AMD (since 2020) GPUs
- MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014
- MVAPICH2-Virt with virtualization support, since 2015
- MVAPICH2-EA with support for Energy-Awareness, since 2015
- MVAPICH2-Azure for Azure HPC IB instances, since 2019
- MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019

Tools:

THE OHIO STATE UNIVERSITY


- OSU MPI Micro-Benchmarks (OMB), since 2003
- OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

- Used by more than 3,325 organizations in 90 countries
- More than 1.69 Million downloads from the OSU site directly
- Empowering many TOP500 clusters (June '23 ranking)
 - 7th, 10,649,600-core (Sunway TaihuLight) at NSC, Wuxi, China
 - 21st, 448, 448 cores (Frontera) at TACC
 - 36th, 288,288 cores (Lassen) at LLNL
 - 49th, 570,020 cores (Nurion) in South Korea and many others
- Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, OpenHPC, and Spack)
- Partner in the 21st ranked TACC Frontera system
- Empowering Top500 systems for more than 17 years

TAU Performance System[®]

- Tuning and Analysis Utilities (25+ year project)
- Comprehensive performance profiling and tracing
 - Integrated, scalable, flexible, portable
 - Targets all parallel programming/execution paradigms

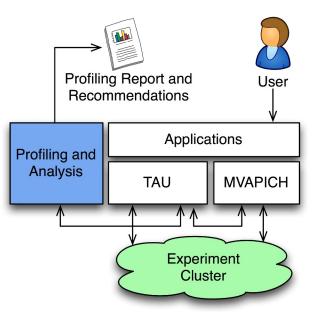
Integrated performance toolkit

- Instrumentation, measurement, analysis, visualization
- Widely-ported performance profiling / tracing system
- Performance data management and data mining
- Open source (BSD-style license)
- Uses performance and control variables to interface with MVAPICH2
- Integrates with application frameworks
- http://tau.uoregon.edu

Understanding Application Performance using TAU

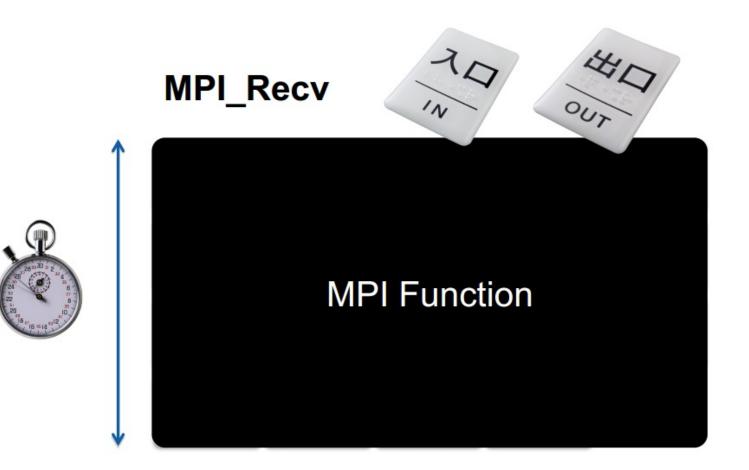
- **How much time** is spent in each application routine and outer *loops*? Within loops, what is the contribution of each *statement*?
- **How many instructions** are executed in these code regions? Floating point, Level 1 and 2 *data cache misses*, hits, branches taken?
- How much time did my application spend waiting at a barrier in MPI collective operations?
- What is the memory usage of the code? When and where is memory allocated/deallocated? Are there any memory leaks?
- What are the I/O characteristics of the code? What is the peak read and write *bandwidth* of individual calls, total volume?
- What is the contribution of each *phase* of the program? What is the time wasted/spent waiting for collectives, and I/O operations in Initialization, Computation, I/O phases?
- How does the application scale? What is the efficiency, runtime breakdown of performance across different core counts?
- How can I tune MPI for better performance? What performance and control does MVAPICH2 export to observe and control its performance?

Outline


Introduction

- The MPI Tools Interfaces and Benefits
- Integrating TAU and MVAPICH2 with MPI_T
- Use Cases
- TAU Performance System®

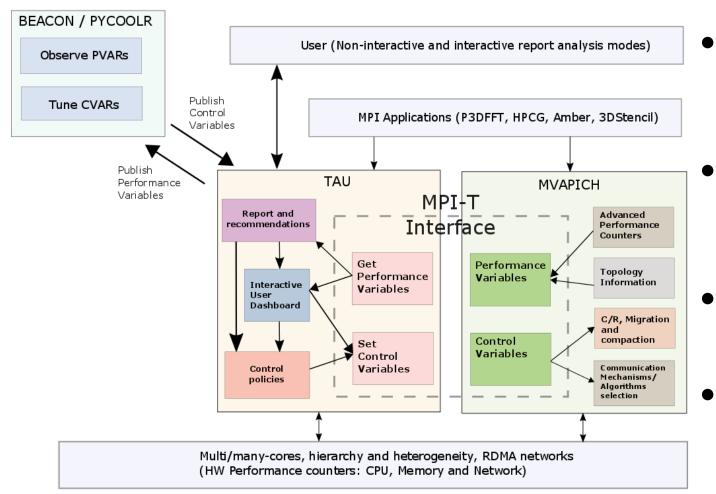
MVAPICH2 and **TAU**



- TAU and MVAPICH2 are enhanced with the ability to generate recommendations and engineering performance report
- MPI libraries like MVAPICH2 are now "reconfigurable" at runtime
- TAU and MVAPICH2 communicate using the MPI-T interface

Why PMPI is not good enough?

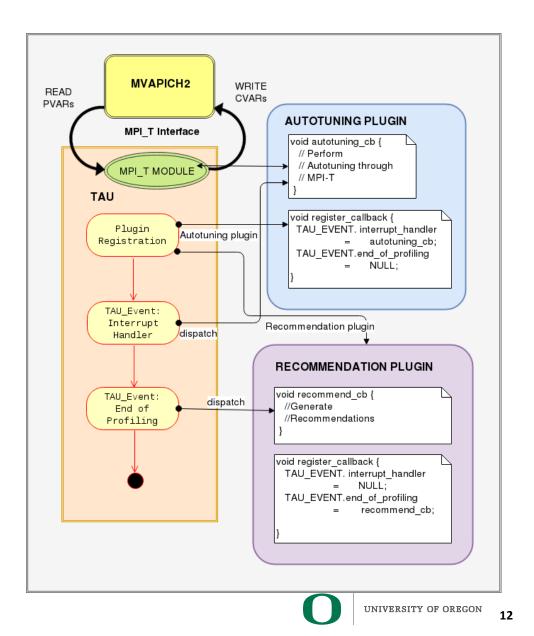
• Takes a "black box" view of the MPI library


Outline

- Introduction
- The MPI Tools Interfaces and Benefits
- Integrating TAU and MVAPICH2 with MPI_T
- Use Cases
- TAU Performance System®

Interacting TAU with MVAPICH2 through MPI_T Interface

- Enhance existing support for MPI_T in MVAPICH2 to expose a richer set of performance and control variables
- Get and display MPI Performance Variables (PVARs) made available by the runtime in TAU
- Control the runtime's behavior via MPI Control Variables (CVARs)
- Add support to MVAPICH2 and TAU for interactive performance engineering sessions



11

Plugin-based Infrastructure for Non-Interactive Tuning

• Performance data collected by TAU

- Support for PVARs and CVARs
- Setting CVARs to control MVAPICH2
- Studying performance data in TAU's ParaProf profile browser
- Multiple plugins available for
 - Tuning application at runtime and
 - Generate post-run recommendations

Enhancing MPI_T Support

- Introduced support for new MPI_T based CVARs to MVAPICH2
 - MPIR_CVAR_MAX_INLINE_MSG_SZ
 - Controls the message size up to which "inline" transmission of data is supported by MVAPICH2
 - MPIR_CVAR_VBUF_POOL_SIZE
 - Controls the number of internal communication buffers (VBUFs)
 MVAPICH2 allocates initially. Also,
 MPIR_CVAR_VBUF_POOL_REDUCED_VALUE[1] ([2...n])
 - MPIR_CVAR_VBUF_SECONDARY_POOL_SIZE
 - Controls the number of VBUFs MVAPICH2 allocates when there are no more free VBUFs available
 - MPIR_CVAR_IBA_EAGER_THRESHOLD
 - Controls the message size where MVAPICH2 switches from eager to rendezvous protocol for large messages
- TAU enhanced with support for setting MPI_T CVARs in a non-interactive mode for uninstrumented applications

13

MVAPICH2

- Several new MPI_T based PVARs added to MVAPICH2
 - o mv2_vbuf_max_use, mv2_total_vbuf_memory etc
- Enhanced TAU with support for tracking of MPI_T PVARs and CVARs for uninstrumented applications
 - ParaProf, TAU's visualization front end, enhanced with support for displaying PVARs and CVARs
 - TAU provides tau_exec, a tool to transparently instrument MPI routines
 - \circ Uninstrumented:
 - % mpirun –np 1024 ./a.out
 - Instrumented:
 - % mpirun –np 1024 tau_exec [options] ./a.out % paraprof

PVARs Exposed by MVAPICH2

ile Options Help		🔀 TAU: ParaProf Manager
Applications	TrialField	Value
Standard Applications	MPI T PVAR[0]: mem allocated	Current level of allocated memory within the MPI library
🕂 🗂 Default App	MPI T PVAR[10]: mv2 num 2level comm success	Number of successful 2-level comm creations
8	MPI_T PVAR[11]: mv2_num_shmem_coll_calls	Number of times MV2 shared-memory collective calls were invoked
	MPI T PVAR[12]: mpit progress poll	CH3 RDMA progress engine polling count
	MPI_T PVAR[13]: mv2_smp_read_progress_poll	CH3 SMP read progress engine polling count
	MPI_T PVAR[14]: mv2_smp_write_progress_poll	CH3 SMP write progress engine polling count
	MPL_T_PVAR[14]. mv2_smp_write_progress_poll MPL_T_PVAP[15]: mv2_smp_road_progress_poll_success	Unsucessful CH3 SMP read progress engine polling count
		Unsucessful CH3 SMP write progress engine polling count
	MPI T PVAR[17]: rdma ud retransmissions	CH3 RDMA UD retransmission count
	MPI_T PVAR[17]: runa_ud_retransmissions MPI_T PVAR[18]: mv2_coll_bcast_binomial	Number of times MV2 binomial bcast algorithm was invoked
		Number of times MV2 billonnal beast algorithm was invoked
		Maximum level of memory ever allocated within the MPI library
	MPI_T PVAR[1]: mem_allocated	
		Number of times MV2 scatter+ring allgather bcast algorithm was invoked
		Number of times MV2 scatter+ring allgather shm bcast algorithm was invoked
	MPI_T PVAR[22]: mv2_coll_bcast_shmem	Number of times MV2 shmem bcast algorithm was invoked
	MPI_T PVAR[23]: mv2_coll_bcast_knomial_internode	Number of times MV2 knomial internode bcast algorithm was invoked
	MPI_T PVAR[24]: mv2_coll_bcast_knomial_intranode	Number of times MV2 knomial intranode bcast algorithm was invoked
	MPI_T PVAR[25]: mv2_coll_bcast_mcast_internode	Number of times MV2 mcast internode bcast algorithm was invoked
	MPI_T PVAR[26]: mv2_coll_bcast_pipelined	Number of times MV2 pipelined bcast algorithm was invoked
	MPI_T PVAR[27]: mv2_coll_alltoall_inplace	Number of times MV2 in-place alltoall algorithm was invoked
	MPI_T PVAR[28]: mv2_coll_alltoall_bruck	Number of times MV2 brucks alltoall algorithm was invoked
	MPI_T PVAR[29]: mv2_coll_alltoall_rd	Number of times MV2 recursive-doubling alltoall algorithm was invoked
	MPI_T PVAR[2]: num_malloc_calls	Number of MPIT_malloc calls
	MPI_T PVAR[30]: mv2_coll_alltoall_sd	Number of times MV2 scatter-destination alltoall algorithm was invoked
	MPI_T PVAR[31]: mv2_coll_alltoall_pw	Number of times MV2 pairwise alltoall algorithm was invoked
	MPI_T PVAR[32]: mpit_alltoallv_mv2_pw	Number of times MV2 pairwise alltoally algorithm was invoked
	MPI_T PVAR[33]: mv2_coll_allreduce_shm_rd	Number of times MV2 shm rd allreduce algorithm was invoked
	MPI T PVAR[34]: mv2 coll allreduce shm rs	Number of times MV2 shm rs allreduce algorithm was invoked
	MPI_T PVAR[35]: mv2_coll_allreduce_shm_intra	Number of times MV2 shm intra allreduce algorithm was invoked
	MPI_T_PVAR[36]: mv2_coll_allreduce_intra_p2p	Number of times MV2 intra p2p allreduce algorithm was invoked
	MPI_T PVAR[37]: mv2_coll_allreduce_2lvl	Number of times MV2 two-level allreduce algorithm was invoked
	MPI_T PVAR[38]: mv2_coll_allreduce_shmem	Number of times MV2 shmem allreduce algorithm was invoked
	MPI T PVAR[39]: mv2 coll allreduce mcast	Number of times MV2 multicast-based allreduce algorithm was invoked
	MPI_T PVAR[3]: num_calloc_calls	Number of MPIT calloc calls
	MPI_T PVAR[40]: mv2_reg_cache_hits	Number of registration cache hits
	MPI_T PVAR[40]: mv2_reg_cache_misses	Number of registration cache misses
	MPI_T PVAR[42]: mv2_vbuf_allocated	Number of VBUFs allocated
	MPI T PVAR[43]: mv2 vbuf allocated array	Number of VBUFs allocated
	MPI_T PVAR[44]: mv2_vbuf_freed	Number of VBUFs freed
	MPI_T PVAR[45]: mv2_ud_vbuf_allocated	Number of UD VBUFs allocated
	MPI_T PVAR[46]: mv2_ud_vbuf_freed	Number of UD VBUFs freed
	MPI_T PVAR[47]: mv2_vbuf_free_attempts	Number of time we attempted to free VBUFs
		Average time for number of times we sucessfully freed VBUFs
		Average time for number of times we sucessfully freed VBUFs
	MPI_T PVAR[4]: num_memalign_calls	Number of MPIT_memalign calls
	MPI_T PVAR[50]: mv2_vbuf_allocate_time	Average time for number of times we allocated VBUFs
	MPI_T PVAR[51]: mv2_vbuf_allocate_time	Average time for number of times we allocated VBUFs

CVARs Exposed by MVAPICH2

ile Options Help		
Applications	TrialField	Value
	Local Time	2016-08-16T10:11:04-07:00
←	MPI Processor Name	cerberus.nic.uoregon.edu
🕂 🚍 Default Exp	MPIR_CVAR_ABORT_ON_LEAKED_HANDLES	If true, MPI will call MPI_Abort at MPI_Finalize if any MPI object handles have been leaked. For example
P → lulesh.ppk	MPIR_CVAR_ALLGATHERV_PIPELINE_MSG_SIZE	The smallest message size that will be used for the pipelined, large-message, ring algorithm in the MPI_
- • TIME	MPIR_CVAR_ALLGATHER_LONG_MSG_SIZE	For MPI_Allgather and MPI_Allgatherv, the long message algorithm will be used if the send buffer size is
	MPIR_CVAR_ALLGATHER_SHORT_MSG_SIZE	For MPI_Allgather and MPI_Allgatherv, the short message algorithm will be used if the send buffer size i
	MPIR_CVAR_ALLREDUCE_SHORT_MSG_SIZE	the short message algorithm will be used if the send buffer size is $<=$ this value (in bytes)
	MPIR_CVAR_ALLTOALL_MEDIUM_MSG_SIZE	the medium message algorithm will be used if the per-destination message size (sendcount*size(sendty
	MPIR_CVAR_ALLTOALL_SHORT_MSG_SIZE	the short message algorithm will be used if the per-destination message size (sendcount*size(sendtype)
	MPIR_CVAR_ALLTOALL_THROTTLE	max no. of irecvs/isends posted at a time in some alltoall algorithms. Setting it to 0 causes all irecvs/iser
	MPIR_CVAR_ASYNC_PROGRESS	If set to true, MPICH will initiate an additional thread to make asynchronous progress on all communica
	MPIR_CVAR_BCAST_LONG_MSG_SIZE	Let's define short messages as messages with size < MPIR_CVAR_BCAST_SHORT_MSG_SIZE, and mediu
	MPIR_CVAR_BCAST_MIN_PROCS	Let's define short messages as messages with size < MPIR_CVAR_BCAST_SHORT_MSG_SIZE, and mediu
	MPIR_CVAR_BCAST_SHORT_MSG_SIZE	Let's define short messages as messages with size < MPIR_CVAR_BCAST_SHORT_MSG_SIZE, and mediu
	MPIR_CVAR_CH3_EAGER_MAX_MSG_SIZE	This cvar controls the message size at which CH3 switches from eager to rendezvous mode.
	MPIR_CVAR_CH3_ENABLE_HCOLL	If true, enable HCOLL collectives.
	MPIR_CVAR_CH3_INTERFACE_HOSTNAME	If non-NULL, this cvar specifies the IP address that other processes should use when connecting to this
	MPIR_CVAR_CH3_NOLOCAL	If true, force all processes to operate as though all processes are located on another node. For example
	MPIR_CVAR_CH3_ODD_EVEN_CLIQUES	If true, odd procs on a node are seen as local to each other, and even procs on a node are seen as local
	MPIR_CVAR_CH3_PORT_RANGE	The MPIR_CVAR_CH3_PORT_RANGE environment variable allows you to specify the range of TCP ports
	MPIR_CVAR_CH3_RMA_ACC_IMMED	Use the immediate accumulate optimization
	MPIR_CVAR_CH3_RMA_GC_NUM_COMPLETED	Threshold for the number of completed requests the runtime finds before it stops trying to find more co
	MPIR_CVAR_CH3_RMA_GC_NUM_TESTED	Threshold for the number of RMA requests the runtime tests before it stops trying to check more reque
	MPIR_CVAR_CH3_RMA_LOCK_IMMED	Issue a request for the passive target RMA lock immediately. Default behavior is to defer the lock requ
	MPIR_CVAR_CH3_RMA_MERGE_LOCK_OP_UNLOCK	Enable/disable an optimization that merges lock, op, and unlock messages, for single-operation passive t
	MPIR_CVAR_CH3_RMA_NREQUEST_NEW_THRESHOLD	Threshold for the number of new requests since the last attempt to complete pending requests. Higher
	MPIR_CVAR_CH3_RMA_NREQUEST_THRESHOLD	Threshold at which the RMA implementation attempts to complete requests while completing RMA ope
	MPIR CVAR CHOP ERROR STACK	If >0, truncate error stack output lines this many characters wide. If 0, do not truncate, and if <0 use a
	MPIR CVAR COLL ALIAS CHECK	Enable checking of aliasing in collective operations
	MPIR CVAR COMM SPLIT USE QSORT	Use qsort(3) in the implementation of MPI Comm split instead of bubble sort.
	MPIR CVAR CTXID EAGER SIZE	The MPIR CVAR CTXID EAGER SIZE environment variable allows you to specify how many words in the
	MPIR CVAR DEBUG HOLD	If true, causes processes to wait in MPI Init and MPI Initthread for a debugger to be attached. Once the
	MPIR CVAR DEFAULT THREAD LEVEL	Sets the default thread level to use when using MPI INIT.
	MPIR_CVAR_DUMP_PROVIDERS	If true, dump provider information at init
	MPIR CVAR ENABLE COLL FT RET	DEPRECATED! Will be removed in MPICH-3.2 Collectives called on a communicator with a failed process
	MPIR CVAR ENABLE SMP ALLREDUCE	Enable SMP aware allreduce.
	MPIR CVAR ENABLE SMP BARRIER	Enable SMP aware barrier.
	MPIR CVAR ENABLE SMP BCAST	Enable SMP aware broadcast (See also: MPIR_CVAR_MAX_SMP_BCAST_MSG_SIZE)
	MPIR CVAR ENABLE SMP COLLECTIVES	Enable SMP aware collective communication.
	MPIR_CVAR_ENABLE_SMP_REDUCE	Enable SMP aware reduce.
	MPIR_CVAR_ERROR_CHECKING	If true, perform checks for errors, typically to verify valid inputs to MPI routines. Only effective when I
	MPIR CVAR GATHERV INTER SSEND MIN PROCS	Use Ssend (synchronous send) for intercommunicator MPI Gatherv if the "group B" size is >= this value
	MPIR CVAR GATHER INTER SHORT MSG SIZE	use the short message algorithm for intercommunicator MPI Gather if the send buffer size is < this value
	MPIR CVAR GATHER VSMALL MSG SIZE	use a temporary buffer for intracommunicator MPI Gather if the send buffer size is < this value (in byte
	MPIR CVAR IBA EAGER THRESHOLD	0 (old) -> 204800 (new), This set the switch point between eager and rendezvous protocol
	MPIR_CVAR_IBA_EAGER_ITTRESHOLD	This set the maximum inline size for data transfer
	MPIR_CVAR_MAX_INEINE_SIZE MPIR_CVAR_MAX_SMP_ALLREDUCE_MSG_SIZE	Maximum message size for which SMP-aware allreduce is used. A value of '0' uses SMP-aware allreduce

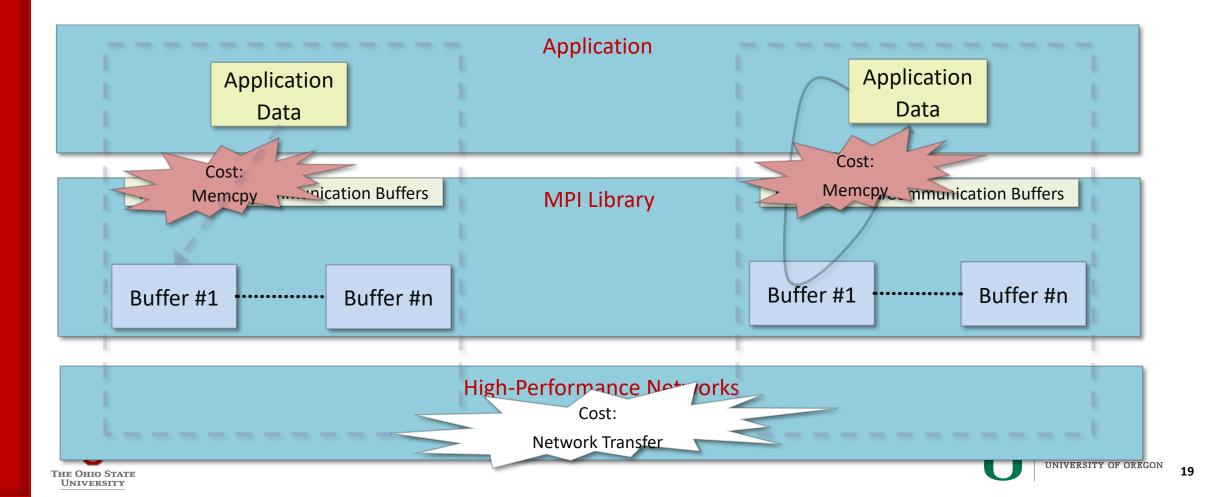
Outline

- Introduction
- The MPI Tools Interfaces and Benefits
- Integrating TAU and MVAPICH2 with MPI_T
- Use Cases
 - Designing Dynamic and Adaptive MPI Point-to-point Protocols
- TAU Performance System®

Point-to-point Communication Protocols in MPI

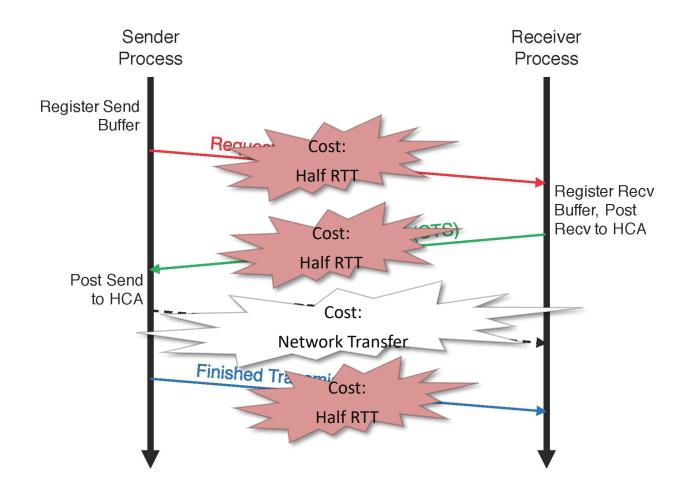
• Eager Protocol

- Best communication performance for smaller messages
- Rendezvous Protocol
 - Best communication performance for larger messages



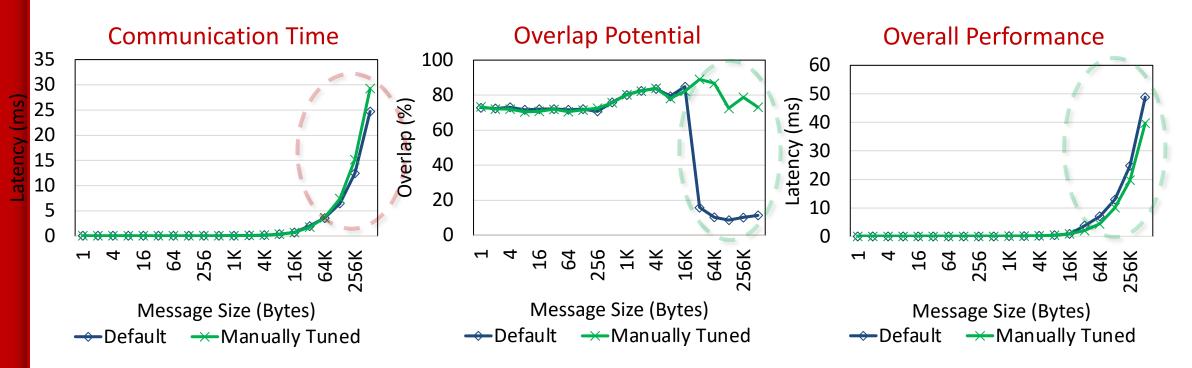
Analyzing Communication Costs of Point-to-point Protocols

Eager Protocol


• Best communication performance for smaller messages

Analyzing Communication Costs of Point-to-point Protocols (Cont.)

Rendezvous Protocol


• Best communication performance for larger messages

20

Studying the Performance and Overlap of 3D Stencil Benchmark

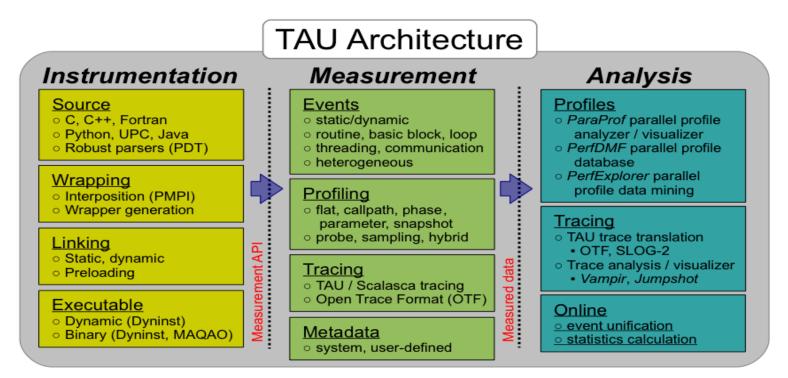
- Default: Uses eager protocol for small messages and rendezvous for large
- Manually Tuned: Forces the use of eager for all message sizes
- Manually Tuned has degradation in raw communication performance
- Manually Tuned has significant benefits for overlap

THE OHIO STATE UNIVERSITY

• Manually Tuned better for overall application execution time

Outline

- Introduction
- The MPI Tools Interfaces and Benefits
- Integrating TAU and MVAPICH2 with MPI_T
- Use Cases
- TAU Performance System®



TAU Performance System[®]

Parallel performance framework and toolkit

- Supports all HPC platforms, compilers, runtime system
- Provides portable instrumentation, measurement, analysis

TAU Performance System

Instrumentation

- Fortran, C++, C, UPC, Java, Python, Chapel, Spark
- Automatic instrumentation

Measurement and analysis support

- MPI, OpenSHMEM, ARMCI, PGAS, DMAPP, uGNI
- pthreads, OpenMP, OMPT interface, hybrid, other thread models
- GPU, CUDA, OpenCL, Level Zero, ROCm, OpenACC
- Parallel profiling and tracing
- Interfaces with OTF2 and Score-P

Analysis

THE OHIO STAT UNIVERSITY

- Parallel profile analysis (ParaProf), data mining (PerfExplorer)
- Performance database technology (TAUdb)
- 3D profile browser

Instrumentation

Add hooks in the code to perform measurements

Source instrumentation using a preprocessor

- Add timer start/stop calls in a copy of the source code.
- Use Program Database Toolkit (PDT) for parsing source code.
- Requires recompiling the code using TAU shell scripts (tau_cc.sh, tau_f90.sh)
- Selective instrumentation (filter file) can reduce runtime overhead and narrow instrumentation focus.

Compiler-based instrumentation

- Use system compiler to add a special flag to insert hooks at routine entry/exit.
- Requires recompiling using TAU compiler scripts (tau_cc.sh, tau_f90.sh...)
- NEW LLVM TAU Plugin for intelligent instrumentation.

Runtime preloading of TAU's Dynamic Shared Object (DSO)

No need to recompile code! Use mpirun tau_exec ./app with options.

TAU's Support for Runtime Systems

MPI

- PMPI profiling interface
- MPI_T tools interface using performance and control variables
- MPI Collective Sync time: time in an implicit barrier in MPI collective operations

Pthread

• Captures time spent in routines per thread of execution

OpenMP

- OMPT tools interface to track salient OpenMP runtime events
- Opari source rewriter
- Preloading wrapper OpenMP runtime library when OMPT is not supported

Intel Level Zero

- Captures time spent in kernels on GPUs using oneAPI Level Zero
- Captures time spent in Intel Level Zero runtime calls

OpenACC

- OpenACC instrumentation API
- Track data transfers between host and device (per-variable)
- Track time spent in kernels

TAU's Support for Runtime Systems (contd.)

OpenCL

- OpenCL profiling interface
- Track timings of kernels

CUDA

- Cuda Profiling Tools Interface (CUPTI)
- Track data transfers between host and GPU
- Track access to uniform shared memory between host and GPU

ROCm

- Rocprofiler and Roctracer instrumentation interfaces
- Track data transfers and kernel execution between host and GPU

Kokkos

- Kokkos profiling API
- Push/pop interface for region, kernel execution interface

Python

- Python interpreter instrumentation API
- Tracks Python routine transitions as well as Python to C transitions

Examples of Multi-Level Instrumentation

MPI + OpenMP

• MPI_T + PMPI + OMPT may be used to track MPI and OpenMP

MPI + CUDA

• PMPI + CUPTI interfaces

OpenCL + **ROCm**

• Rocprofiler + OpenCL instrumentation interfaces

Kokkos + OpenMP

• Kokkos profiling API + OMPT to transparently track events

Kokkos + pthread + MPI

• Kokkos + pthread wrapper interposition library + PMPI layer

Python + *CUDA*

• Python + CUPTI + pthread profiling interfaces (e.g., Tensorflow, PyTorch)

MPI + OpenCL

• PMPI + OpenCL profiling interfaces

Simplifying the use of TAU!

Uninstrumented code:

- % module load mvapich2
- % make
- % mpirun -np 64 ./a.out

With TAU using event-based sampling (EBS):

- % mpirun –np 64 tau_exec –T mvapich2 –ebs ./a.out
- % paraprof (GUI)
- % pprof –a | more

NOTE:

- Requires dynamic executables (-dynamic link flag on Cray XC systems).
- Source code should be compiled with –g for access to symbol table.
- Replace srun with mpirun based on your appropriate launch command.

29

TAU Execution Command (tau_exec)

Uninstrumented execution

• % mpirun -np 256 ./a.out

Track GPU operations

- % mpirun -np 256 tau_exec -rocm ./a.out
- % mpirun -np 256 tau_exec -l0 ./a.out
- % mpirun -np 256 tau_exec -cupti ./a.out
- % mpirun -np 256 tau_exec -cupti -um ./a.out (for Unified Memory)
- % mpirun -np 256 tau_exec -opencl ./a.out
- % mpirun -np 256 tau_exec –openacc ./a.out

Track MPI performance

• % mpirun -np 256 tau_exec ./a.out

Track I/O, and MPI performance (MPI enabled by default)

• % mpirun -np 256 tau_exec -io ./a.out

Track OpenMP and MPI execution (using OMPT for Intel v19)

% export TAU_OMPT_SUPPORT_LEVEL=full;
 % mpirun -np 256 tau_exec –T ompt,v5,mpi -ompt ./a.out

Track memory operations

- % export TAU_TRACK_MEMORY_LEAKS=1
- % mpirun -np 256 tau_exec –memory_debug ./a.out (bounds check)

Use event based sampling (compile with -g)

- % mpirun -np 256 tau_exec -ebs ./a.out
- Also export TAU_METRICS=TIME,<PAPI_COUNTER> to use hardware perf. counters
- tau_exec -ebs_resolution=<file | function | line>

Types of Performance Profiles

Flat profiles

- Metric (e.g., time) spent in an event
- Exclusive/inclusive, # of calls, child calls, ...

Callpath profiles

- Time spent along a calling path (edges in callgraph)
- "main=> f1 => f2 => MPI_Send"
- Set the TAU_CALLPATH and TAU_CALLPATH_DEPTH environment variables

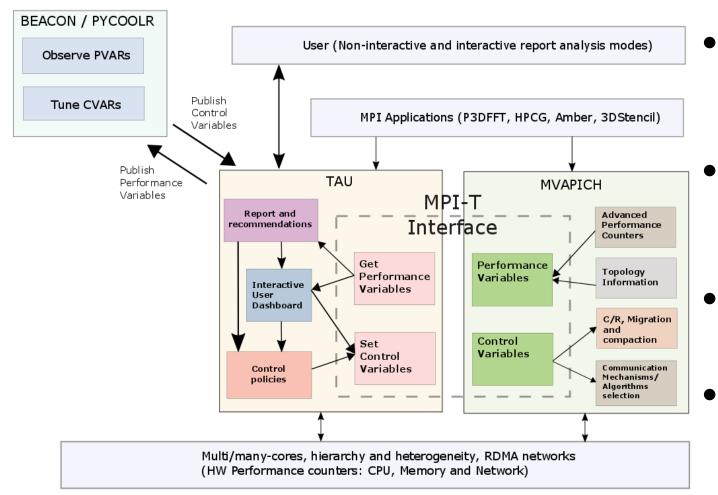
Callsite profiles

- Time spent along in an event at a given source location
- Set the TAU_CALLSITE environment variable

Phase profiles

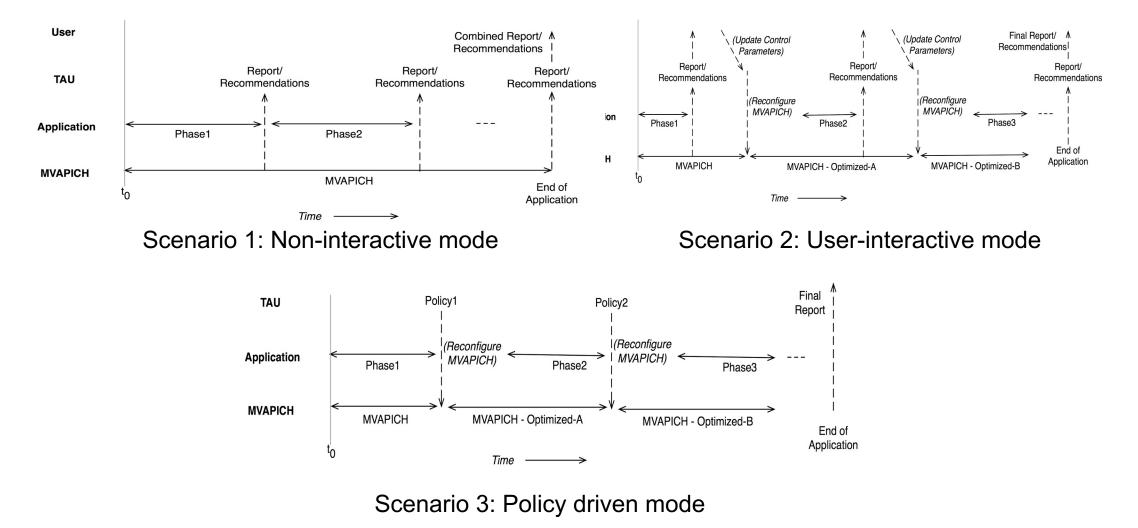
- Flat profiles under a phase (nested phases allowed)
- Default "main" phase
- Supports static or dynamic (e.g. per-iteration) phases

Outline

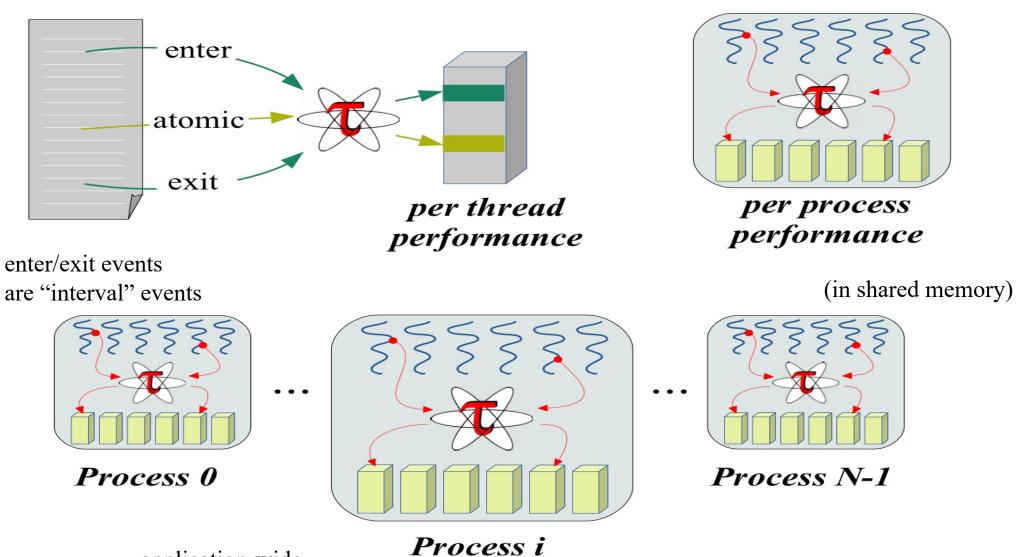

• Introduction

- The MPI Tools Interfaces and Benefits
- Integrating TAU and MVAPICH2 with MPI_T

Integrating TAU with MVAPICH2 through MPI_T Interface



- Enhance existing support for MPI_T in MVAPICH2 to expose a richer set of performance and control variables
- Get and display MPI Performance Variables (PVARs) made available by the runtime in TAU
- Control the runtime's behavior via MPI Control Variables (CVARs)
- Add support to MVAPICH2 and TAU for interactive performance engineering sessions

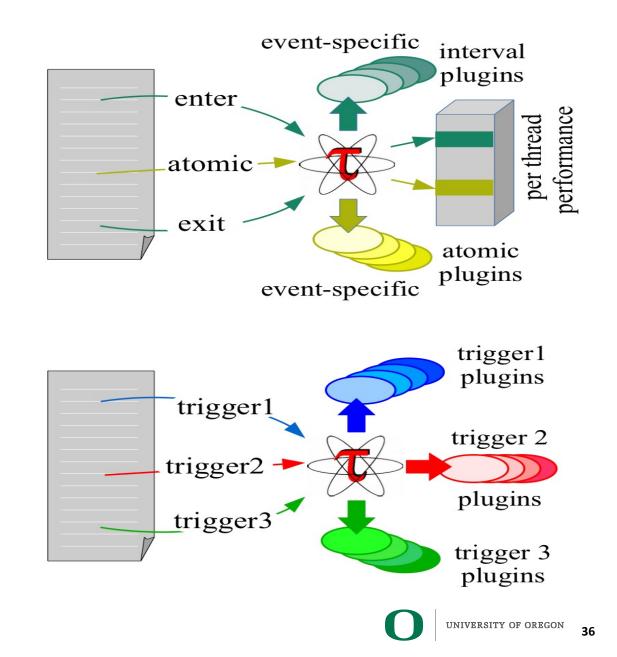

33

Three Scenarios for Integration

TAU Performance Measurement Model

application-wide performance data

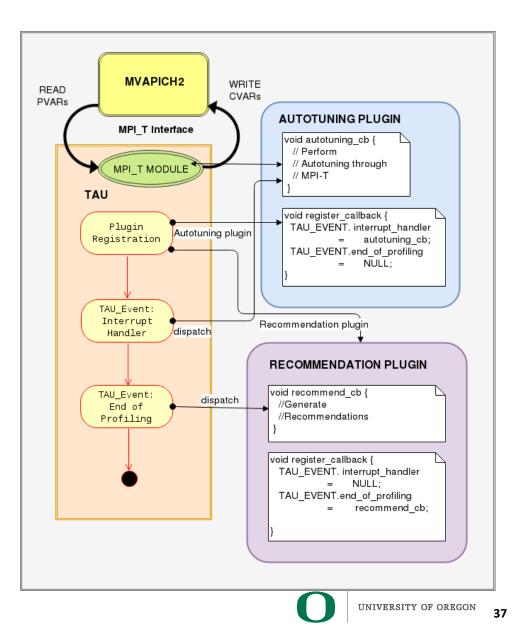
UNIVERSITY OF OREGON 35


TAU Plugin Architecture

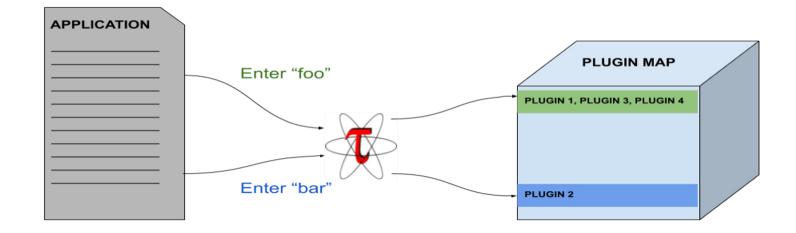
Extend TAU event interface for plugins

- Events: *interval, atomic*
- Specialized on event ID
- Synchronous operation

Create TAU interface for *trigger* **plugins**


- Named trigger
- Pass application data
- Synchronous
- Asynchronous using agent plugin

Plugin-based Infrastructure for Non-Interactive Tuning


- TAU supports a *fully-customizable* plugin infrastructure based on callback event handler registration for salient states inside TAU:
 - Function Registration / Entry / Exit
 - Phase Entry / Exit
 - Atomic Event Registration / Trigger
 - Init / Finalize Profiling
 - Interrupt Handler
 - MPI_T
- Application can define its own "trigger" states and associated plugins
 - Pass arbitrary data to trigger state plugins

TAU Customization

- TAU states can be *named* or *generic*
- TAU distinguishes named states in a way that allows for separation of occurrence of a state from the action associated with it
 - Function entry for "foo" and "bar" represent distinguishable states in TAU
- TAU maintains an internal map of a list of plugins associated with each state

TAU Runtime Control of Plugin

- TAU defines a plugin API to deliver access control to the internal plugin map
- User can specify a regular expression to control plugins executed for a class of named states at runtime
 - Access to map on a process is serialized: application is expected to access map through main thread

TAU Phase Based Recommendations

- MiniAMR: Benefits from hardware offloading using SHArP hardware offload protocol supported by MVAPICH2 for MPI_Allreduce operation
- Recommendation Plugin:
 - Registers callback for *"Phase Exit"* event
 - Monitors message size through PMPI interface
 - If message size is low and execution time inside MPI_Allreduce is significant, a recommendation is generated on ParaProf (TAU's GUI) for the user to set the CVAR enabling SHArP

TAU Per-Phase Recommendations in ParaProf

😣 🖻 🗉 Metadata for n,c,t 7,0,0	
Name	Value
TAU MEMDBG PROTECT BELOW	off
TAU MEMDBG PROTECT FREE	off
TAU MPI T ENABLE USER TUNING POLICY	off
TAU OPENMP RUNTIME	on
TAU OPENMP RUNTIME EVENTS	on
TAU OPENMP RUNTIME STATES	off
TAU OUTPUT CUDA CSV	off
TAU PAPI MULTIPLEXING	off
TAU PROFILE	on
TAU PROFILE FORMAT	profile
TAU RECOMMENDATION PHASE ALLOCATE	MPI T RECOMMEND SHARP USAGE: No perfomance benefit foreseen with SHArP usage
TAU RECOMMENDATION PHASE DEALLOCATE	MPLT RECOMMEND SHARP USAGE: You could see potential improvement in performance by enabling MV2 ENABLE SHARP in MVAPICH version 2.3a and above
TAU RECOMMENDATION PHASE DRIVER	MPI T RECOMMEND SHARP USAGE: You could see potential improvement in performance by enabling MV2 ENABLE SHARP in MVAPICH version 2.3a and above
TAU RECOMMENDATION PHASE INIT	MPI T RECOMMEND SHARP USAGE: No perfomance benefit foreseen with SHArP usage
TAU RECOMMENDATION PHASE PROFILE	MPI T RECOMMEND SHARP USAGE: You could see potential improvement in performance by enabling MV2 ENABLE SHARP in MVAPICH version 2.3a and above
TAU REGION ADDRESSES	off
TAU SAMPLING	off
TAU SHOW MEMORY FUNCTIONS	off
TAU SIGNALS GDB	off
TAU THROTTLE	on
TAU THROTTLE NUMCALLS	100000
TAU THROTTLE PERCALL	10
TAU TRACE	off
TAU TRACE FORMAT	tau
TAU TRACK CUDA CDP	off
TAU TRACK CUDA ENV	off
TAU TRACK CUDA INSTRUCTIONS	
TAU TRACK CUDA SASS	off
TAU TRACK HEADROOM	off
TAU TRACK HEAP	off
TAU TRACK IO PARAMS	off
TAU TRACK MEMORY FOOTPRINT	off

Enhancing MPI_T Support

- Introduced support for new MPI_T based CVARs to MVAPICH2
 - MPIR_CVAR_MAX_INLINE_MSG_SZ
 - Controls the message size up to which "inline" transmission of data is supported by MVAPICH2
 - MPIR_CVAR_VBUF_POOL_SIZE
 - Controls the number of internal communication buffers (VBUFs)
 MVAPICH2 allocates initially. Also,
 MPIR_CVAR_VBUF_POOL_REDUCED_VALUE[1] ([2...n])
 - MPIR_CVAR_VBUF_SECONDARY_POOL_SIZE
 - Controls the number of VBUFs MVAPICH2 allocates when there are no more free VBUFs available
 - MPIR_CVAR_IBA_EAGER_THRESHOLD
 - Controls the message size where MVAPICH2 switches from eager to rendezvous protocol for large messages
- TAU enhanced with support for setting MPI_T CVARs in a non-interactive mode for uninstrumented applications

MVAPICH2

- Several new MPI_T based PVARs added to MVAPICH2
 - o mv2_vbuf_max_use, mv2_total_vbuf_memory etc
- Enhanced TAU with support for tracking of MPI_T PVARs and CVARs for uninstrumented applications
 - ParaProf, TAU's visualization front end, enhanced with support for displaying PVARs and CVARs
 - TAU provides tau_exec, a tool to transparently instrument MPI routines
 - Uninstrumented:
 - % mpirun –np 1024 ./a.out
 - Instrumented:
 - % export TAU_TRACK_MPI_T_PVARS=1
 - % export TAU_MPI_T_CVAR_METRICS=MPIR_CVAR_VBUF_POOL_SIZE
 - % export TAU_MPI_T_CVAR_VALUES=16
 - % mpirun -np 1024 tau_exec -T mvapich2,mpit ./a.out

PVARs Exposed by MVAPICH2

ile Options Help		🔀 TAU: ParaProf Manager
Applications	TrialField	Value
Standard Applications	MPI_T_PVAR[0]: mem_allocated	Current level of allocated memory within the MPI library
🕂 🗂 Default App	MPI T PVAR[10]: mv2 num 2level comm success	Number of successful 2-level comm creations
8	MPI_T PVAR[11]: mv2_num_shmem_coll_calls	Number of times MV2 shared-memory collective calls were invoked
	MPI T PVAR[12]: mpit progress poll	CH3 RDMA progress engine polling count
	MPI_T PVAR[13]: mv2_smp_read_progress_poll	CH3 SMP read progress engine polling count
	MPI_T PVAR[14]: mv2_smp_write_progress_poll	CH3 SMP write progress engine polling count
	MPL_T_PVAR[14]. mv2_smp_write_progress_poli	Unsucessful CH3 SMP read progress engine polling count
		Unsucessful CH3 SMP write progress engine polling count
	MPI T PVAR[17]: rdma ud retransmissions	CH3 RDMA UD retransmission count
	MPI_T PVAR[17]: runa_ud_retransmissions MPI_T PVAR[18]: mv2_coll_bcast_binomial	Number of times MV2 binomial bcast algorithm was invoked
		Number of times MV2 bilonnal beast algorithm was invoked
		Maximum level of memory ever allocated within the MPI library
	MPI_T PVAR[1]: mem_allocated	
		Number of times MV2 scatter+ring allgather bcast algorithm was invoked
		Number of times MV2 scatter+ring allgather shm bcast algorithm was invoked
	MPI_T PVAR[22]: mv2_coll_bcast_shmem	Number of times MV2 shmem bcast algorithm was invoked
	MPI_T PVAR[23]: mv2_coll_bcast_knomial_internode	Number of times MV2 knomial internode bcast algorithm was invoked
	MPI_T PVAR[24]: mv2_coll_bcast_knomial_intranode	Number of times MV2 knomial intranode bcast algorithm was invoked
	MPI_T PVAR[25]: mv2_coll_bcast_mcast_internode	Number of times MV2 mcast internode bcast algorithm was invoked
	MPI_T PVAR[26]: mv2_coll_bcast_pipelined	Number of times MV2 pipelined bcast algorithm was invoked
	MPI_T PVAR[27]: mv2_coll_alltoall_inplace	Number of times MV2 in-place alltoall algorithm was invoked
	MPI_T PVAR[28]: mv2_coll_alltoall_bruck	Number of times MV2 brucks alltoall algorithm was invoked
	MPI_T PVAR[29]: mv2_coll_alltoall_rd	Number of times MV2 recursive-doubling alltoall algorithm was invoked
	MPI_T PVAR[2]: num_malloc_calls	Number of MPIT_malloc calls
	MPI_T PVAR[30]: mv2_coll_alltoall_sd	Number of times MV2 scatter-destination alltoall algorithm was invoked
	MPI_T PVAR[31]: mv2_coll_alltoall_pw	Number of times MV2 pairwise alltoall algorithm was invoked
	MPI_T PVAR[32]: mpit_alltoallv_mv2_pw	Number of times MV2 pairwise alltoally algorithm was invoked
	MPI_T PVAR[33]: mv2_coll_allreduce_shm_rd	Number of times MV2 shm rd allreduce algorithm was invoked
	MPI T PVAR[34]: mv2 coll allreduce shm rs	Number of times MV2 shm rs allreduce algorithm was invoked
	MPI_T PVAR[35]: mv2_coll_allreduce_shm_intra	Number of times MV2 shm intra allreduce algorithm was invoked
	MPI_T_PVAR[36]: mv2_coll_allreduce_intra_p2p	Number of times MV2 intra p2p allreduce algorithm was invoked
	MPI_T PVAR[37]: mv2_coll_allreduce_2lvl	Number of times MV2 two-level allreduce algorithm was invoked
	MPI_T PVAR[38]: mv2_coll_allreduce_shmem	Number of times MV2 shmem allreduce algorithm was invoked
	MPI T PVAR[39]: mv2 coll allreduce mcast	Number of times MV2 multicast-based allreduce algorithm was invoked
	MPI_T PVAR[3]: num_calloc_calls	Number of MPIT calloc calls
	MPI_T PVAR[40]: mv2_reg_cache_hits	Number of registration cache hits
	MPI_T PVAR[40]: mv2_reg_cache_misses	Number of registration cache misses
	MPI_T PVAR[41]: mv2_reg_cache_misses MPI_T PVAR[42]: mv2_vbuf_allocated	Number of VBUFs allocated
	MPI T PVAR[43]: mv2 vbuf allocated array	
		Number of VBUFs allocated
	MPI_T PVAR[44]: mv2_vbuf_freed	Number of VBUFs freed
	MPI_T PVAR[45]: mv2_ud_vbuf_allocated	Number of UD VBUFs allocated
	MPI_T PVAR[46]: mv2_ud_vbuf_freed	Number of UD VBUFs freed
	MPI_T PVAR[47]: mv2_vbuf_free_attempts	Number of time we attempted to free VBUFs
		Average time for number of times we sucessfully freed VBUFs
		Average time for number of times we sucessfully freed VBUFs
	MPI_T PVAR[4]: num_memalign_calls	Number of MPIT_memalign calls
	MPI_T PVAR[50]: mv2_vbuf_allocate_time	Average time for number of times we allocated VBUFs
	MPI_T PVAR[51]: mv2_vbuf_allocate_time	Average time for number of times we allocated VBUFs

CVARs Exposed by MVAPICH2

Applications	TrialField	Value
Standard Applications	Local Time	2016-08-16T10:11:04-07:00
🕂 🗂 Default App	MPI Processor Name	cerberus.nic.uoregon.edu
🕂 🗂 Default Exp	MPIR CVAR ABORT ON LEAKED HANDLES	If true, MPI will call MPI_Abort at MPI_Finalize if any MPI object handles have been leaked. For example
Iulesh.ppk	MPIR CVAR ALLGATHERV PIPELINE MSG SIZE	The smallest message size that will be used for the pipelined, large-message, ring algorithm in the MPI
- • TIMĖ	MPIR CVAR ALLGATHER LONG MSG SIZE	For MPI Allgather and MPI Allgathery, the long message algorithm will be used if the send buffer size is
Default (jdbc:h2:/home	MPIR_CVAR_ALLGATHER_SHORT_MSG_SIZE	For MPI_Allgather and MPI_Allgatherv, the short message algorithm will be used if the send buffer size is
•	MPIR_CVAR_ALLREDUCE_SHORT_MSG_SIZE	the short message algorithm will be used if the send buffer size is <= this value (in bytes)
	MPIR_CVAR_ALLTOALL_MEDIUM_MSG_SIZE	the medium message algorithm will be used if the per-destination message size (sendcount*size(sendty)
	MPIR CVAR ALLTOALL SHORT MSG SIZE	the short message algorithm will be used if the per-destination message size (sendcount*size(sendtype)
	MPIR CVAR ALLTOALL THROTTLE	max no. of irecvs/isends posted at a time in some alltoall algorithms. Setting it to 0 causes all irecvs/iser
	MPIR_CVAR_ASYNC_PROGRESS	If set to true, MPICH will initiate an additional thread to make asynchronous progress on all communical
	MPIR CVAR BCAST LONG MSG SIZE	Let's define short messages as messages with size < MPIR CVAR BCAST SHORT MSG SIZE, and mediu
	MPIR CVAR BCAST MIN PROCS	Let's define short messages as messages with size < MPIR_CVAR_BCAST_SHORT_MSG_SIZE, and mediu
	MPIR CVAR BCAST SHORT MSG SIZE	Let's define short messages as messages with size < MPIR_CVAR_BCAST_SHORT_MSG_SIZE, and mediu
	MPIR CVAR CH3 EAGER MAX MSG SIZE	This cvar controls the message size at which CH3 switches from eager to rendezvous mode.
	MPIR CVAR CH3 ENABLE HCOLL	If true, enable HCOLL collectives.
	MPIR_CVAR_CH3_INTERFACE_HOSTNAME	If non-NULL, this cvar specifies the IP address that other processes should use when connecting to this
	MPIR_CVAR_CH3_NOLOCAL	If true, force all processes to operate as though all processes are located on another node. For example
	MPIR_CVAR_CH3_ODD_EVEN_CLIQUES	If true, odd procs on a node are seen as local to each other, and even procs on a node are seen as local
	MPIR_CVAR_CH3_PORT_RANGE	The MPIR_CVAR_CH3_PORT_RANGE environment variable allows you to specify the range of TCP ports
	MPIR_CVAR_CH3_RMA_ACC_IMMED	Use the immediate accumulate optimization
	MPIR_CVAR_CH3_RMA_GC_NUM_COMPLETED	Threshold for the number of completed requests the runtime finds before it stops trying to find more of
	MPIR_CVAR_CH3_RMA_GC_NUM_TESTED	Threshold for the number of RMA requests the runtime tests before it stops trying to check more reque
	MPIR_CVAR_CH3_RMA_LOCK_IMMED	Issue a request for the passive target RMA lock immediately. Default behavior is to defer the lock requ
	MPIR_CVAR_CH3_RMA_MERGE_LOCK_OP_UNLOCK	Enable/disable an optimization that merges lock, op, and unlock messages, for single-operation passive t
	MPIR_CVAR_CH3_RMA_NREQUEST_NEW_THRESHOLD	Threshold for the number of new requests since the last attempt to complete pending requests. Higher
	MPIR_CVAR_CH3_RMA_NREQUEST_THRESHOLD	Threshold at which the RMA implementation attempts to complete requests while completing RMA ope
	MPIR_CVAR_CHOP_ERROR_STACK	If >0, truncate error stack output lines this many characters wide. If 0, do not truncate, and if <0 use a
	MPIR_CVAR_COLL_ALIAS_CHECK	Enable checking of aliasing in collective operations
	MPIR_CVAR_COMM_SPLIT_USE_QSORT	Use qsort(3) in the implementation of MPI_Comm_split instead of bubble sort.
	MPIR_CVAR_CTXID_EAGER_SIZE	The MPIR_CVAR_CTXID_EAGER_SIZE environment variable allows you to specify how many words in the
	MPIR_CVAR_DEBUG_HOLD	If true, causes processes to wait in MPI_Init and MPI_Initthread for a debugger to be attached. Once the
	MPIR_CVAR_DEFAULT_THREAD_LEVEL	Sets the default thread level to use when using MPI_INIT.
	MPIR_CVAR_DUMP_PROVIDERS	If true, dump provider information at init
	MPIR_CVAR_ENABLE_COLL_FT_RET	DEPRECATED! Will be removed in MPICH-3.2 Collectives called on a communicator with a failed proces
	MPIR_CVAR_ENABLE_SMP_ALLREDUCE	Enable SMP aware allreduce.
	MPIR_CVAR_ENABLE_SMP_BARRIER	Enable SMP aware barrier.
	MPIR_CVAR_ENABLE_SMP_BCAST	Enable SMP aware broadcast (See also: MPIR_CVAR_MAX_SMP_BCAST_MSG_SIZE)
	MPIR_CVAR_ENABLE_SMP_COLLECTIVES	Enable SMP aware collective communication.
	MPIR_CVAR_ENABLE_SMP_REDUCE	Enable SMP aware reduce.
	MPIR_CVAR_ERROR_CHECKING	If true, perform checks for errors, typically to verify valid inputs to MPI routines. Only effective when N
	MPIR_CVAR_GATHERV_INTER_SSEND_MIN_PROCS	Use Ssend (synchronous send) for intercommunicator MPI_Gatherv if the "group B" size is >= this value
	MPIR_CVAR_GATHER_INTER_SHORT_MSG_SIZE	use the short message algorithm for intercommunicator MPI_Gather if the send buffer size is < this value
	MPIR_CVAR_GATHER_VSMALL_MSG_SIZE	use a temporary buffer for intracommunicator MPI_Gather if the send buffer size is < this value (in byte
	MPIR_CVAR_IBA_EAGER_THRESHOLD	0 (old) -> 204800 (new), This set the switch point between eager and rendezvous protocol
	MPIR_CVAR_MAX_INLINE_SIZE	This set the maximum inline size for data transfer
	MPIR CVAR MAX SMP ALLREDUCE MSG SIZE	Maximum message size for which SMP-aware allreduce is used. A value of '0' uses SMP-aware allreduce

Using MVAPICH2 and TAU with Multiple CVARs

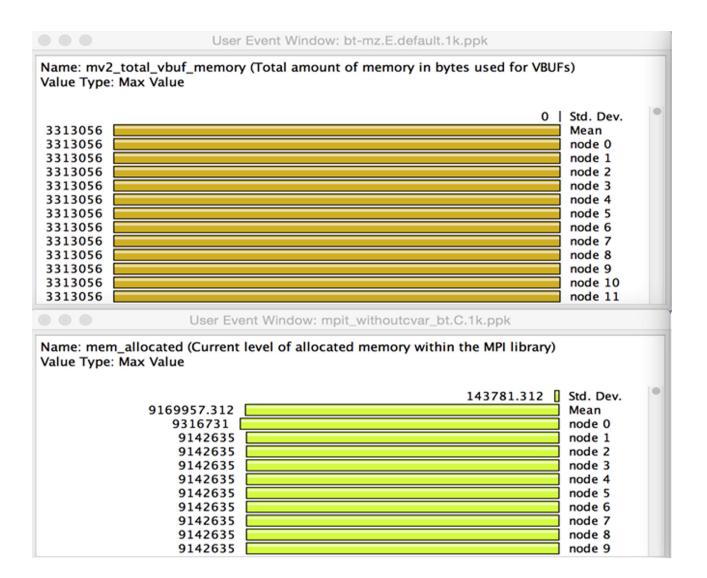
 To set CVARs or read PVARs using TAU for an uninstrumented binary: % export TAU_TRACK_MPI_T_PVARS=1 % export TAU_MPI_T_CVAR_METRICS= MPIR_CVAR_VBUF_POOL_REDUCED_VALUE[1], MPIR_CVAR_IBA_EAGER_THRESHOLD % export TAU_MPI_T_CVAR_VALUES=32,64000 % export PATH=/path/to/tau/x86_64/bin:\$PATH % mpirun -np 1024 tau_exec -T mvapich2,mpit ./a.out % paraprof

VBUF usage without CVARs

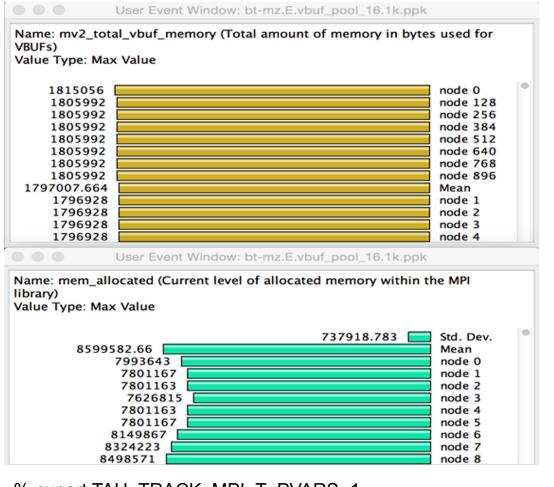
TAU: ParaProf: Context Event	s for: node 0 - mpit_	withoutcvar_bt.C.	1k.ppk			
Name 🛆	MaxValue	MinValue	MeanValue	Std. Dev.	NumSamples	Total
mv2_total_vbuf_memory (Total amount of memory in bytes used for VBUFs)	3,313,056	3,313,056	3,313,056	0	1	3,313,056
mv2_ud_vbuf_allocated (Number of UD VBUFs allocated)	0	0	0	0	0	0
mv2_ud_vbuf_available (Number of UD VBUFs available)	0	0	0	0	0	0
mv2_ud_vbuf_freed (Number of UD VBUFs freed)	0	0	0	0	0	0
mv2_ud_vbuf_inuse (Number of UD VBUFs inuse)	0	0	0	0	0	0
mv2_ud_vbuf_max_use (Maximum number of UD VBUFs used)	0	0	0	0	0	0
mv2_vbuf_allocated (Number of VBUFs allocated)	320	320	320	0	1	320
mv2_vbuf_available (Number of VBUFs available)	255	255	255	0	1	255
mv2_vbuf_freed (Number of VBUFs freed)	25,545	25,545	25,545	0	1	25,545
mv2_vbuf_inuse (Number of VBUFs inuse)	65	65	65	0	1	65
mv2_vbuf_max_use (Maximum number of VBUFs used)	65	65	65	0	1	65
num_calloc_calls (Number of MPIT_calloc calls)	89	89	89	0	1	89
num_free_calls (Number of MPIT_free calls)	47,801	47,801	47,801	0	1	47,801
num_malloc_calls (Number of MPIT_malloc calls)	49,258	49,258	49,258	0	1	49,258
num_memalign_calls (Number of MPIT_memalign calls)	34	34	34	0	1	34
num_memalign_free_calls (Number of MPIT_memalign_free calls)	0	0	0	0	0	0

47

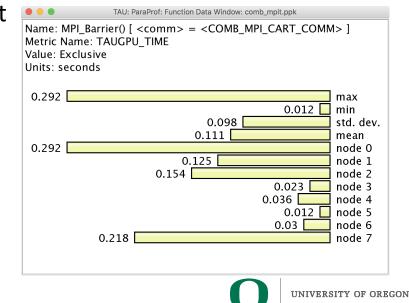
VBUF usage with CVARs


Name 🛆	TAU: ParaProf: Context Ever	MaxValue	MinValue		. Dev. NumS	amp	Total
mv2_total_vbuf_memory (Total amount of	memory in bytes used for VBLEs)	1,815,056		1,815,056	0	amp 1	1,815,056
mv2_ud_vbuf_allocated (Number of UD VE		1,015,050		0	ő	0	1,019,090
mv2_ud_vbuf_available (Number of UD VE		0		0	0	0	0
mv2_ud_vbuf_freed (Number of UD VBUFs		0	-	0	0	0	0
mv2_ud_vbuf_inuse (Number of UD VBUFs		0		0	0	0	0
mv2 ud vbuf max use (Maximum numbe		0	0	0	0	0	0
mv2_vbuf_allocated (Number of VBUFs all		160	160	160	0	1	160
mv2_vbuf_available (Number of VBUFs available		94	94	94	0	1	94
mv2_vbuf_freed (Number of VBUFs freed)		5,479	5,479	5,479	0	1	5,479
mv2_vbuf_inuse (Number of VBUFs inuse)		66	66	66	0	1	66
mv2_vbuf_max_use (Maximum number of		66	66	66	0) 1	66
num_calloc_calls (Number of MPIT_calloc of	alls)	89	89	89	0	1	89
num_free_calls (Number of MPIT_free calls	s)	130	130 1,625	130	0		130 1,625
num_malloc_calls (Number of MPIT_malloo	calls)	1,625		1,625	0		
num_memalign_calls (Number of MPIT_me	malign calls)	56	56	56	0	1	56
num_memalign_free_calls (Number of MPI	T_memalign_free calls)	0	0	0	0	0	0
	TA	U: ParaProf Manager					
Applications	TrialField		Value				
Standard Applications		c526-502.stamp	ede.tacc.utexas.edu				
🔻 🚞 Default App		0 (old) -> 16 (ne	w), This set the size	of the VBUF p	ool		
V Default Exp	c						
bt-mz.E.vbuf_pool_16.1k.pp							

Total memory used by VBUFs is reduced from 3,313,056 to 1,815,056


VBUF Memory Usage Without CVAR

VBUF Memory Usage With CVAR


% export TAU_TRACK_MPI_T_PVARS=1 % export TAU_MPI_T_CVAR_METRICS=MPIR_CVAR_VBUF_POOL_SIZE % export TAU_MPI_T_CVAR_VALUES=16 % mpirun -np 1024 *tau exec -T mvapich2* ./a.out

TAU: Extending Control Variables on a Per-Communicator Basis

- Based on named communicators (MPI_Comm_set_name) in an application,
 TAU allows a user to specify triples to set MPI_T cvars for each communicator:
 - Communicator name
 - MPI_T CVAR name
 - MPI_T CVAR value
 - % ./configure -mpit -mpi -c++=mpicxx -cc=mpicc -fortran=mpif90 ...
 - % make install
 - % export TAU_MPI_T_COMM_METRIC_VALUES=<comm, cvar, value>,...
 - % mpirun np 64 tau_exec T mvapich2, mpit ./a.out
 - % paraprof

51

COMB LLNL App MPI_T Tuning for COMB_MPI_CART_COMM

bash-4.2\$

TAU_MPI_T_COMM_METRIC_VALUES=COMB_MPI_CART_COMM, MPIR_CVAR_GPUDIRECT_LIMIT, 2097152, COMB_MPI_CART_COMM, MPIR_CVAR_USE_GPUDIRECT_RECEIVE_LIMIT, 2097152, COMB_MPI_CART_COMM, MPIR_CVAR_CUDA_IPC_THRESHOLD, 16384 MV2_USE_CUDA=1 mpirun -np 8 tau_exec -ebs -T mvapich2, mpit, cuda9, cupti, communicators, gnu -cupti ./comb -comm post_recv wait_all_comm post_recv wait_all_comm wait_send wait_all_200_200_200_divide 2_2_2_neriodic 1_1_1_expost 1_1_expost 1_

post_recv wait_all -comm post_send wait_ 250 -omp_threads 1	all -comm wait recv wait all -comm wait send wait all 200 200 200 - TAU: ParaProf: Function Data Window: comb_default.ppk	divide 2 2 2 -periodic 1 1 1 -ghost 1 1 1 -vars 3 -cvcles 100 -comm cutoff TAU: ParaProf: Function Data Window: comb_mpit.ppk
Started rank 0 of 8	Name: .TAU application	Name: .TAU application
Node lassen710	Metric Name: TAUGPU_TIME Value: Inclusive	Metric Name: TAUGPU_TIME Value: Inclusive
Compiler COMB_COMPILER	Units: seconds	Units: seconds
Cuda compiler COMB_CUDA_COMPILER		
GPU 0 visible undefined	7.39 max	6.855 max
Not built with openmp, ignoring -omp_threads 1.	7.241 min 0.048 std. dev.	6.559 min 0.096 [std. dev.
	7.263 mean	6.6 mean
	7.39 node 0	6.855 node 0
Message policy cutoff 250	7.246 node 1	6.563 node 1
Post Recv using wait_all method	7.248 node 2	6.565 node 2
Post Send using wait_all method	7.244 node 3	6.564 node 3
Wait Recv using wait_all method	7.243 node 4 7.247 node 5	6.564 node 4 6.563 node 5
Wait Send using wait_all method	7.246 node 6	6.564 node 6
Num cycles 100	7.241 node 7	6.559 node 7
-		
Num vars 3		
ghost_widths 1 1 1		ta for n,c,t 0,0,0
sizes 200 200 200	Name Value	
divisions 2 2 2		VAR_GPUDIRECT_LIMIT,2097152,COMB_MPI_CART_COMM,MPIR_CVAR
periodic 1 1 1		
division map	Default	With MPI T CVARs
·		_
map 0 0 0		ParaProf: Comparison Window
map 100 100 100		Metric: TAUGPU_TIME comb_default.ppk - Mean
map 200 200 200		Value: Inclusive comb_mpit.ppk - Mean Units: seconds
Starting test memcpy seq dst Host src Host		

Starting test Comm mock Mesh seq Host Buffers seq Host seq Host Starting test Comm mpi Mesh seq Host Buffers seq Host seq Host

.TAU application

52

7.263

6.6 (90.863%)

COMB Profile

TAU: ParaProf: Statistics	s for: node 0 - cor	mb_mpit.ppk			
				Calla	Child Calls
		Exclusive TAUGP 3.114	Inclusive TAUGP	Calls	Child Calls
 TAU application CONTEXT] .TAU application 		3.114		1 103	6,806
[CONTEXT] TAO application [SAMPLE] COMB::detail::reset_1::operator()(int, int, int, int) const [{/usr/global/t	tools /tou/tr	-		103	0
SAMPLE] COMB.:detail::reset_1::operator()(int, int, int) const [{/usr/global/to				19	0
[SAMPLE] COMB::detail::set_copy::operator()(int, int) const [{/usr/global/tools/t				2	0
[SAMPLE] COMB::detail::set_copy::operator()(int, int) const [{/usr/global/tools/t				15	0
[SAMPLE] COMB::detail::set_copy.:operator()(int, int) const [{/usr/global/tools/tau				2	0
[SAMPLE]nv_hdl_wrapper_t <false, (*)(commcontext<="" false,nv_dl_tag<void="" p=""></false,>				1	0
[SAMPLE] syscall [{/usr/lib64/libc-2.17.so} {0}]	<moor por<="" td=""><td>0.03</td><td></td><td>1</td><td>0</td></moor>	0.03		1	0
[SAMPLE] void detail::copy_idxr_idxr <double const,="" detail::indexer_list_idx,="" detail::indexer_list_idx<="" double="" p=""></double>	uble, detail:			1	0
[SUMMARY] void COMB::do_cycles <mock_pol, seq_pol="" seq_pol,="">(Com</mock_pol,>				12	0
[SUMMARY] void COMB::do_cycles <mock_pol, seq_pol="" seq_pol,="">(Com</mock_pol,>				11	0
[SUMMARY] void COMB::do_cycles < mpi_pol, seq_pol, seq_pol, seq_pol> (Comm			0.39	13	0
[SUMMARY] void COMB::do_cycles <mpi_pol, seq_pol="" seq_pol,="">(Commission)</mpi_pol,>			0.36	12	0
► MPI_Barrier()		0.292	0.292	8	0
MPI_Barrier() [<comm> = <comb_mpi_cart_comm>]</comb_mpi_cart_comm></comm>		0.292	0.292	8	0
TAU: ParaProf: Function Data Window: comb_mpit.ppk		TAU: Pa	araProf: Function Data Window: co	mb_mpit.ppk	
Name: .TAU application => [CONTEXT] .TAU application => [SAMPLE] COMB::detail::reset_1::operator()(int, int, int) const [{/usr/global/tools/tau/training/apps/COMB_LLNL/Comb/include/comb.hpp} {121}] Metric Name: TAUGPU_TIME Value: Exclusive Units: seconds	COMB::det ; [{/usr/glo	tail::set_1::operator()(bal/tools/tau/training me: TAUGPU_TIME :lusive	NTEXT] .TAU applicatio int, int, int, int) const g/apps/COMB_LLNL/Co		b.hpp} {90}]
0.712 max 0.51 min 0.081 std. dev. 0.595 mean 0.57 node 0 0.69 node 1	0.6	0.3 0.436 0.42 0.45	61	0.068	max min std. dev. mean node 0 node 1

CVARs Exposed by MVAPICH2

• • • Metadata	for n,c,t 0,0,0
Name	Value
MPI Processor Name	lassen710
MPIR_CVAR_CUDA_IPC_THRESHOLD	16384
MPIR_CVAR_GPUDIRECT_LIMIT	2097152
MPIR CVAR USE GPUDIRECT RECEIVE LIMIT	2097152
MPI T CVAR: MPIR CVAR ABORT ON LEAKED HANDLES	If true, MPI will call MPI Abort at MPI Finalize if any MPI object handles ha
MPI_T CVAR: MPIR_CVAR_ALLGATHERV_PIPELINE_MSG_SIZE	The smallest message size that will be used for the pipelined, large-mes
MPI_T CVAR: MPIR_CVAR_ALLGATHER_COLLECTIVE_ALGORITHM	This CVAR selects proper collective algorithm for allgather operation.
MPI_T CVAR: MPIR_CVAR_ALLGATHER_LONG_MSG_SIZE	For MPI_Allgather and MPI_Allgatherv, the long message algorithm will be
MPI_T CVAR: MPIR_CVAR_ALLGATHER_SHORT_MSG_SIZE	For MPI_Allgather and MPI_Allgatherv, the short message algorithm will b
MPI_T CVAR: MPIR_CVAR_ALLREDUCE_COLLECTIVE_ALGORITHM	This CVAR selects proper collective algorithm for allreduce operation.
MPI_T CVAR: MPIR_CVAR_ALLREDUCE_SHORT_MSG_SIZE	the short message algorithm will be used if the send buffer size is <= th
MPI T CVAR: MPIR CVAR ALLTOALLV COLLECTIVE ALGORITHM	This CVAR selects proper collective algorithm for alltoally operation.
MPI T CVAR: MPIR CVAR ALLTOALL COLLECTIVE ALGORITHM	This CVAR selects proper collective algorithm for alltoall operation.
MPI_T CVAR: MPIR_CVAR_ALLTOALL_MEDIUM_MSG_SIZE	the medium message algorithm will be used if the per-destination messa
MPI_T CVAR: MPIR_CVAR_ALLTOALL_SHORT_MSG_SIZE	the short message algorithm will be used if the per-destination message
MPI_T CVAR: MPIR_CVAR_ALLTOALL_THROTTLE	max no. of irecvs/isends posted at a time in some alltoall algorithms. Set
MPI_T CVAR: MPIR_CVAR_ASYNC_PROGRESS	If set to true, MPICH will initiate an additional thread to make asynchrono
MPI T CVAR: MPIR CVAR BCAST COLLECTIVE ALGORITHM	This CVAR selects proper collective algorithm for broadcast operation.
MPI_T CVAR: MPIR_CVAR_BCAST_LONG_MSG_SIZE	Let's define short messages as messages with size < MPIR_CVAR_BCAST
MPI_T CVAR: MPIR_CVAR_BCAST_MIN_PROCS	Let's define short messages as messages with size < MPIR_CVAR_BCAST
MPI_T CVAR: MPIR_CVAR_BCAST_SHORT_MSG_SIZE	Let's define short messages as messages with size < MPIR_CVAR_BCAST
MPI_T CVAR: MPIR_CVAR_CH3_EAGER_MAX_MSG_SIZE	This cvar controls the message size at which CH3 switches from eager to
MPI_T CVAR: MPIR_CVAR_CH3_ENABLE_HCOLL	If true, enable HCOLL collectives.
MPI_T CVAR: MPIR_CVAR_CH3_INTERFACE_HOSTNAME	If non-NULL, this cvar specifies the IP address that other processes shoul
MPI T CVAR: MPIR CVAR CH3 NOLOCAL	If true, force all processes to operate as though all processes are located
MPI T CVAR: MPIR CVAR CH3 ODD EVEN CLIQUES	If true, odd procs on a node are seen as local to each other, and even pr
MPI_T CVAR: MPIR_CVAR_CH3_PORT_RANGE	The MPIR_CVAR_CH3_PORT_RANGE environment variable allows you to s
MPI_T CVAR: MPIR_CVAR_CH3_RMA_ACTIVE_REQ_THRESHOLD	Threshold of number of active requests to trigger blocking waiting in op
MPI_T CVAR: MPIR_CVAR_CH3_RMA_DELAY_ISSUING_FOR_PIGGYBACKING	Specify if delay issuing of RMA operations for piggybacking LOCK/UNLOC
MPI_T CVAR: MPIR_CVAR_CH3_RMA_OP_GLOBAL_POOL_SIZE	Size of the Global RMA operations pool (in number of operations) that st
MPI_T CVAR: MPIR_CVAR_CH3_RMA_OP_PIGGYBACK_LOCK_DATA_SIZE	Specify the threshold of data size of a RMA operation which can be piggy
MPI_T CVAR: MPIR_CVAR_CH3_RMA_OP_WIN_POOL_SIZE	Size of the window-private RMA operations pool (in number of operation
MPI_T CVAR: MPIR_CVAR_CH3_RMA_POKE_PROGRESS_REQ_THRESHOLD	Threshold at which the RMA implementation attempts to complete reque
MPI_T CVAR: MPIR_CVAR_CH3_RMA_SCALABLE_FENCE_PROCESS_NUM	Specify the threshold of switching the algorithm used in FENCE from the
MPI_T CVAR: MPIR_CVAR_CH3_RMA_SLOTS_SIZE	Number of RMA slots during window creation. Each slot contains a linked
MPI_T CVAR: MPIR_CVAR_CH3_RMA_TARGET_GLOBAL_POOL_SIZE	Size of the Global RMA targets pool (in number of targets) that stores inf
MPI_T CVAR: MPIR_CVAR_CH3_RMA_TARGET_LOCK_DATA_BYTES	Size (in bytes) of available lock data this window can provided. If current
MPI T CVAR: MPIR CVAR CH3 RMA TARGET LOCK ENTRY WIN POOL SIZE	Size of the window-private RMA lock entries pool (in number of lock entr

Path Aware Profiling in TAU and MVAPICH2

- To identify the path taken by an MPI message:
 - GPU memory to GPU memory
 - Unique send and receive path ids captured
- Configure TAU with -PROFILEPATHS:
- Partition the time in MPI pt-to-pt operations:
 - MPI_Send and MPI_Recv
 - Parameter based profiling identifies paths
- Path captured as metadata in TAU profiles
 - PVARs based on CUPTI counters
 - MVAPICH2 exports PVARs to TAU with MPI_T

• • •	Metadata for n,c,t 0,0,0	
Name	Value	
TAU_PROFILE	on	
TAU_PROFILE_FORMAT	profile	
TAU_RECV_PATH_ID_ _0	gpu1-gpu0	
TAU_RECV_PATH_ID_ _1	gpu2-gpu0	
TAU_RECV_PATH_ID_ _10	internodelink-nic	
TAU_RECV_PATH_ID_ _2	gpu3-gpu0	
TAU_RECV_PATH_ID_ _3	gpu2-gpu1	
TAU_RECV_PATH_ID_ _4	gpu3-gpu1	
TAU_RECV_PATH_ID_ _5	gpu3-gpu2	
TAU_RECV_PATH_ID_ _6	cpu-gpu0	
TAU_RECV_PATH_ID_ _7	cpu-gpu1	
TAU_RECV_PATH_ID_ _8	cpu-gpu2	
TAU_RECV_PATH_ID_ _9	cpu-gpu3	
TAU_RECYCLE_THREADS	off	
TAU_REGION_ADDRESSES	off	
TAU_SAMPLING	off	
TAU_SEND_PATH_ID_ _0	gpu0-gpu1	
TAU_SEND_PATH_ID_ _1	gpu0-gpu2	
TAU_SEND_PATH_ID_ _10	nic–internodelink	
TAU_SEND_PATH_ID_ _2	gpu0-gpu3	
TAU_SEND_PATH_ID_ _3	gpu1-gpu2	
TAU_SEND_PATH_ID_ _4	gpu1-gpu3	
TAU_SEND_PATH_ID_ _5	gpu2-gpu3	
TAU_SEND_PATH_ID_ _6	gpu0-cpu	
TAU_SEND_PATH_ID_ _7	gpu1-cpu	
TAU_SEND_PATH_ID_ _8	gpu2-cpu	
TAU_SEND_PATH_ID_ _9	gpu3-cpu	

Path Aware Profiling in TAU and MVAPICH2

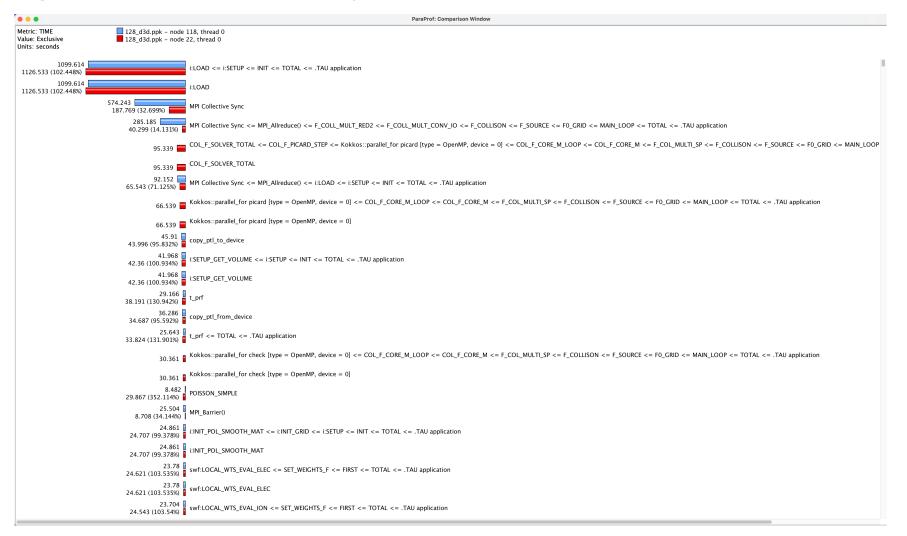
• Available for download in TAU v2.29.1

	TAU: ParaProf: Statistics for: node 0 - path	_3ranks.ppk			
	Name	Exclusive … ⊽	Inclusive	Calls	Child
main [{/g/g24/shende1/mpit/	path_test_3ranks.c} {61,0}]	40.332	42.472	1	12
MPI_Init()		0.86	0.86	1	0
MPI_Send()		0.746	0.746	4	2
MPI_Send() [<message p<="" send="" td=""><td>ath id > = <1006 >]</td><td>0.617</td><td>0.617</td><td>2</td><td>0</td></message>	ath id > = <1006 >]	0.617	0.617	2	0
init_accel [{/g/g24/shende1/m	pit/path_test_3ranks.c} {42,0}]	0.263	0.263	1	1
MPI_Finalize()		0.254	0.254	1	0
MPI_Send() [<message p<="" send="" td=""><td>ath id> = <100600>]</td><td>0.129</td><td>0.129</td><td>2</td><td>0</td></message>	ath id> = <100600>]	0.129	0.129	2	0
.TAU application		0.033	42.505	1	1
MPI_Barrier()		0.017	0.017	3	0
get_local_rank [{/g/g24/shend	e1/mpit/path_test_3ranks.c} {26,0}]	0	0	1	0
MPI_Get_processor_name()		0	0	2	0
MPI_Comm_rank()		0	0	1	0
MPI_Comm_size()		0	0	1	0

Identifying Collective Wait States

orted B	lame: TIME By: Exclusive econds			
	Exclusive	Inclusive	Calls/Tot.Calls	Name[id]
	1099.614	1191.772	1/1	i:SETUP
>	1099.614 0.006	1191.772 92.158	1 3/9543	i:LOAD MPI_Allreduce()
	9.8E-4	9.8E-4	11/15177	MPI_Gatherv()
	1.448	1.448	43/15177	MPI_Gather()
	15.353	15.353	46/15177	MPI_Alltoall()
	89.821	89.821	4311/15177	MPI_Bcast()
	6.777	6.777	195/15177	MPI_Allgather()
	68.678 9.179	68.678 9.179	991/15177 12/15177	MPI_Reduce()
	0.125	0.125	25/15177	MPI_Comm_dup() MPI_Allgatherv()
	382.861	382.861	9543/15177	MPI_Allreduce()
>	574.243	574.243	15177	MPI Collective Sync
	2.507	2.508	10/186	DISTRIBUTE_F0G
	2.433	2.434	10/186	F_UPD_F0_SP
	5.156	5.158	20/186	F0_CHARGE_SEARCH_INDEX
	5.505	5.507	22/186	PULLBACK_WEIGHT
	24.86	24.872	102/186	UPDATE_PTL_WEIGHT
	0.473	0.473	2/186	MAIN_LOOP
	4.975	4.977	20/186	DIAG_f0_PORT1_PTL
>	45.91 0.02	45.93 0.02	186 186/272	<pre>copy_ptl_to_device Kokkos::parallel_for set_buffer_particles_d [type = Cuda, device = 0</pre>

MPI Collective Sync is the time spent in a barrier operation inside a collective



ParaProf Comparison Window

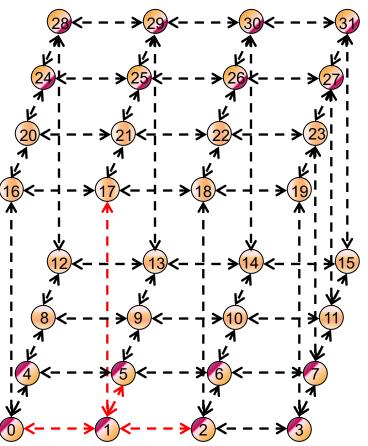
Comparing Rank 118 with 22.

Right click on "node 118" -> Add node to comparison window

Driving Example (3D Stencil)

3D Stencil benchmark

- Each process talks to at most six neighbors
- Two in each Cartesian dimension
 - X-right, X-left
 - Y-right, Y-left
 - Z-right, Z-left
- Repeat same communication pattern for multiple iterations


THE OHIO STATE UNIVERSITY

Process on Node 3

3D Stencil communication pattern for a 32 process job scheduled on 4 nodes

Case Study: 3D Stencil – Performance Engineering with TAU Experimental Setup

- Platform:
 - Broadcom RoCEv2 Thor Adapter
 - 64 Nodes x 2 x AMD EPYC 7713 64-Core Processor
- Application:
 - 3D Stencil HPC Benchmark
 - Dataset: 3000k-atoms dataset
- Raw run lines:
 - MVAPICH2-2.3.7-Broadcom

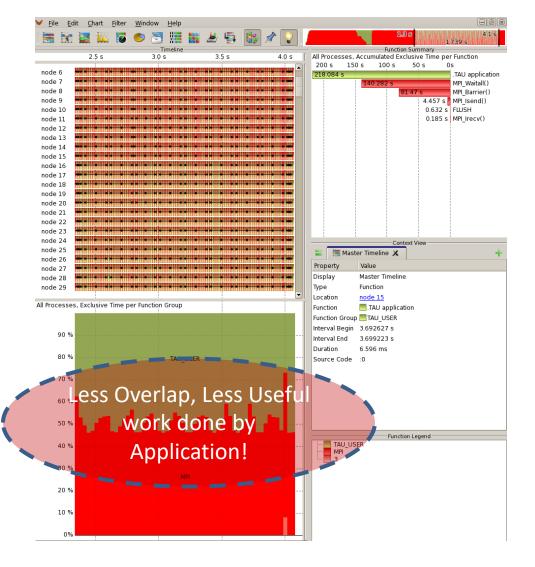
mpirun_rsh -np \$NP -ppn \$PPN ./3Dstencil_overlap 8 8 8 1000



Case Study: 3D Stencil – Performance Engineering with TAU

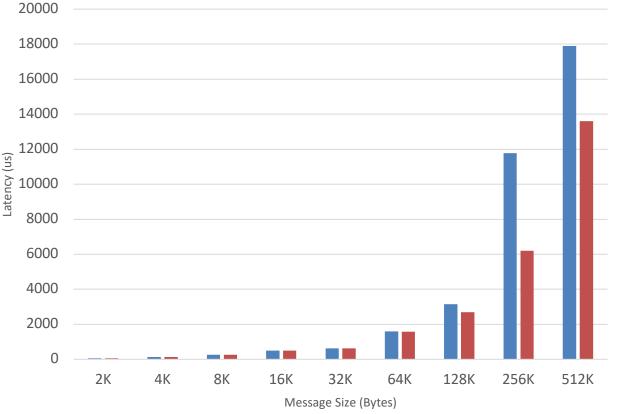
First experiment – Unoptimized version

- Execution time tests on 2 Nodes x 128 PPN (512 ranks)
- We are measuring the latency
 - Lower is better
- Degradation observed at 256K message
- This is the unoptimized MVAPICH2-2.3.7 version
- Need to use TAU to see
 - what MPI calls are causing the degradation
 - What is the dominant communication pattern



Understanding Basic Performance Trends with TAU-based Profiling

Default



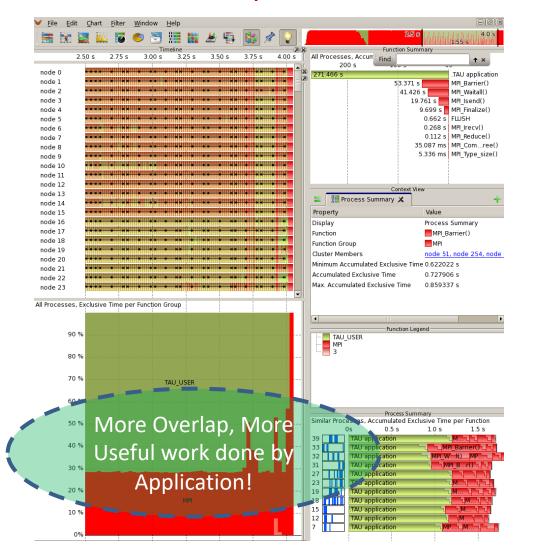
Case Study: 3D Stencil – Performance Engineering with TAU

Diagnosis and workaround found

- Diagnosis: more time is spent in inter-node pt-to-pt Rendezvous communication
- Solution: Use pt-to-pt eager communication
- Gains:
 - 2x reduction in latency
- Update the following parameter for the 3D Stencil runs

MV2_IBA_EAGER_THRESHOLD = 524288 this will enable inter-node eager communication until the specified message size*

■ MVAPICH2 (Unoptimized) ■ MVAPICH2 (Optimized)

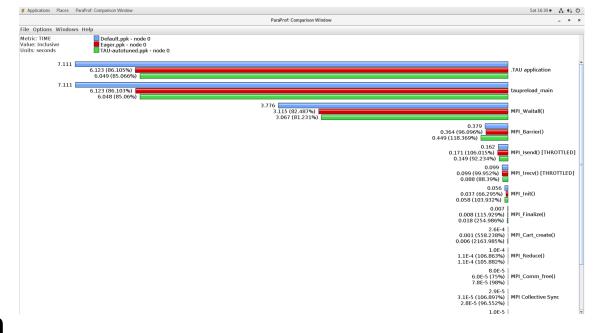

*For more details check user-guide: <u>https://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-</u> <u>userguide.html#:~:text=for%20the%20job.-,12.5,-MV2_IBA_EAGER_THRESHOLD</u>

Introspecting Impact of Eager Threshold on 3D Stencil Benchmark

Optimized

3Dstencil on AWS

cd ~/SRC/demo/3Dstencil


./run.sh

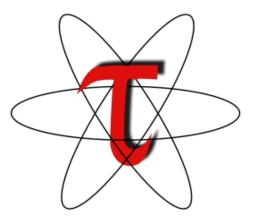
ls *.ppk

% paraprof *.ppk &

Right click "Add Thread to Comparison Window" while clicking on Node 0 in each of the three trials

Options -> Select Metric -> Inclusive

65


Usage Scenarios with MVAPICH2

- TAU measures the high water mark of total memory usage (TAU_TRACK_MEMORY_FOOTPRINT=1), finds that it is at 98% of available memory, and queries MVAPICH2 to find out how much memory it is using. Based on the number of pools allocated and used, it requests it to reduce the number of VBUF pools and controls the size of the these pools using the MPI-T interface. The total memory memory footprint of the application reduces.
- TAU tracks the message sizes of messages (TAU_COMM_MATRIX=1), detects excessive time spent in MPI_Wait and other synchronization operations. It compares the average message size with the eager threshold and sets the new eager threshold value to match the message size. This could be done offline by re-executing the application with the new CVAR setting for eager threshold or online.

Download TAU from U. Oregon

http://www.hpclinux.com [OVA file] http://tau.uoregon.edu/tau.tgz for more information

Free download, open source, BSD license

PRL, University of Oregon, Eugene

www.uoregon.edu

Support Acknowledgments

US Department of Energy (DOE)

- ANL
- Office of Science contracts, ECP
- SciDAC, LBL contracts
- LLNL-LANL-SNL ASC/NNSA contract
- Battelle, PNNL and ORNL contract

CEA, France

Department of Defense (DoD)

• PETTT, HPCMP

National Science Foundation (NSF)

SI2-SSI, Glassbox, CSSI

NASA

THE OHIO STATE

UNIVERSITY

AMD, AWS, Broadcom, Google, IBM, Intel, NVIDIA, OCI Partners:

- University of Oregon
- •The Ohio State University
- •ParaTools, Inc.
- •University of Tennessee, Knoxville
- •T.U. Dresden, GWT
- •Jülich Supercomputing Center

Acknowledgment

"This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two U.S. Department of Energy organizations (Office of Science and the National Nuclear Security Administration) responsible for the planning and preparation of a capable exascale ecosystem, including software, applications, hardware, advanced system engineering, and early testbed platforms, in support of the nation's exascale computing imperative."

