
Performance Engineering using MVAPICH and TAU

Sameer Shende
University of Oregon and ParaTools, Inc.

MUG 2023 Conference
Tuesday, August 22, 2023, 5:00 – 5:30pm ET

OSU Translational Data Analytics Institute (TDAI), Pomerene Hall, Room #320
The Ohio State University, Columbus, OH

Download the slides from:

http://tau.uoregon.edu/TAU_MUG23.pdf

Outline

• Introduction
• The MPI Tools Interfaces and Benefits
• Integrating TAU and MVAPICH2 with MPI_T
• Use Cases
• TAU Performance System®

2

Acknowledgments

• The MVAPICH2 team The Ohio State University
• http://mvapich.cse.ohio-state.edu

• TAU team at the University of Oregon
• http://tau.uoregon.edu

3

Overview of the MVAPICH Project
High Performance open-source MPI Library

Support for multiple interconnects
• InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE),

AWS EFA, OPX, Broadcom RoCE, Intel Ethernet, Rockport Networks, Slingshot 10/11

Support for multiple platforms
• x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)

Started in 2001, first open-source version demonstrated at SC ‘02

Supports the latest MPI-3.1 standard

http://mvapich.cse.ohio-state.edu

Additional optimized versions for different systems/environments:
• MVAPICH2-X (Advanced MPI + PGAS), since 2011

• MVAPICH2-GDR with support for NVIDIA (since 2014) and AMD (since 2020) GPUs

• MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014

• MVAPICH2-Virt with virtualization support, since 2015

• MVAPICH2-EA with support for Energy-Awareness, since 2015

• MVAPICH2-Azure for Azure HPC IB instances, since 2019

• MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019

Tools:
• OSU MPI Micro-Benchmarks (OMB), since 2003

• OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

• Used by more than 3,325 organizations in 90 countries

• More than 1.69 Million downloads from the OSU site
directly

• Empowering many TOP500 clusters (June ‘23 ranking)
– 7th , 10,649,600-core (Sunway TaihuLight) at NSC, Wuxi, China

– 21st, 448, 448 cores (Frontera) at TACC

– 36th, 288,288 cores (Lassen) at LLNL

– 49th, 570,020 cores (Nurion) in South Korea and many others

• Available with software stacks of many vendors and Linux
Distros (RedHat, SuSE, OpenHPC, and Spack)

• Partner in the 21st ranked TACC Frontera system

• Empowering Top500 systems for more than 17 years
4

http://mvapich.cse.ohio-state.edu/

TAU Performance System®

• Tuning and Analysis Utilities (25+ year project)
• Comprehensive performance profiling and tracing

• Integrated, scalable, flexible, portable
• Targets all parallel programming/execution paradigms

• Integrated performance toolkit
• Instrumentation, measurement, analysis, visualization
• Widely-ported performance profiling / tracing system
• Performance data management and data mining
• Open source (BSD-style license)
• Uses performance and control variables to interface with MVAPICH2

• Integrates with application frameworks
• http://tau.uoregon.edu

5

Understanding Application Performance using TAU
• How much time is spent in each application routine and outer loops? Within loops, what is

the contribution of each statement?
• How many instructions are executed in these code regions?

Floating point, Level 1 and 2 data cache misses, hits, branches taken?
• How much time did my application spend waiting at a barrier in MPI collective

operations?
• What is the memory usage of the code? When and where is memory allocated/de-

allocated? Are there any memory leaks?
• What are the I/O characteristics of the code? What is the peak read and write bandwidth of

individual calls, total volume?
• What is the contribution of each phase of the program? What is the time wasted/spent

waiting for collectives, and I/O operations in Initialization, Computation, I/O phases?
• How does the application scale? What is the efficiency, runtime breakdown of performance

across different core counts?
• How can I tune MPI for better performance? What performance and control does

MVAPICH2 export to observe and control its performance?

6

Outline

• Introduction
• The MPI Tools Interfaces and Benefits
• Integrating TAU and MVAPICH2 with MPI_T
• Use Cases
• TAU Performance System®

7

MVAPICH2 and TAU

● TAU and MVAPICH2 are enhanced with the ability to generate recommendations and
engineering performance report

● MPI libraries like MVAPICH2 are now “reconfigurable” at runtime
● TAU and MVAPICH2 communicate using the MPI-T interface

8

Why PMPI is not good enough?

• Takes a “black box” view of the MPI library
9

Outline

• Introduction
• The MPI Tools Interfaces and Benefits
• Integrating TAU and MVAPICH2 with MPI_T
• Use Cases
• TAU Performance System®

10

Interacting TAU with MVAPICH2 through MPI_T Interface

● Enhance existing support for MPI_T in
MVAPICH2 to expose a richer set of
performance and control variables

● Get and display MPI Performance
Variables (PVARs) made available by
the runtime in TAU

● Control the runtime’s behavior via MPI
Control Variables (CVARs)

● Add support to MVAPICH2 and TAU for
interactive performance engineering
sessions

11

Plugin-based Infrastructure for Non-Interactive Tuning

● Performance data collected by TAU
● Support for PVARs and CVARs
● Setting CVARs to control MVAPICH2
● Studying performance data in TAU’s

ParaProf profile browser
● Multiple plugins available for

● Tuning application at runtime and
● Generate post-run recommendations

12

Enhancing MPI_T Support
● Introduced support for new MPI_T based CVARs to MVAPICH2

○ MPIR_CVAR_MAX_INLINE_MSG_SZ
■ Controls the message size up to which “inline” transmission of data is

supported by MVAPICH2
○ MPIR_CVAR_VBUF_POOL_SIZE

■ Controls the number of internal communication buffers (VBUFs)
MVAPICH2 allocates initially. Also,
MPIR_CVAR_VBUF_POOL_REDUCED_VALUE[1] ([2…n])

○ MPIR_CVAR_VBUF_SECONDARY_POOL_SIZE
■ Controls the number of VBUFs MVAPICH2 allocates when there are no

more free VBUFs available
○ MPIR_CVAR_IBA_EAGER_THRESHOLD

■ Controls the message size where MVAPICH2 switches from eager to
rendezvous protocol for large messages

● TAU enhanced with support for setting MPI_T CVARs in a non-interactive
mode for uninstrumented applications

13

MVAPICH2

● Several new MPI_T based PVARs added to MVAPICH2
○ mv2_vbuf_max_use, mv2_total_vbuf_memory etc

● Enhanced TAU with support for tracking of MPI_T PVARs and CVARs for
uninstrumented applications
○ ParaProf, TAU’s visualization front end, enhanced with support for

displaying PVARs and CVARs
○ TAU provides tau_exec, a tool to transparently instrument MPI routines

○ Uninstrumented:
% mpirun –np 1024 ./a.out

○ Instrumented:
% mpirun –np 1024 tau_exec [options] ./a.out
% paraprof

14

PVARs Exposed by MVAPICH2

15

CVARs Exposed by MVAPICH2

16

Outline

• Introduction
• The MPI Tools Interfaces and Benefits
• Integrating TAU and MVAPICH2 with MPI_T
• Use Cases

• Designing Dynamic and Adaptive MPI Point-to-point Protocols
• TAU Performance System®

17

• Eager Protocol
• Best communication performance for smaller messages

• Rendezvous Protocol
• Best communication performance for larger messages

Point-to-point Communication Protocols in MPI

18

Application

MPI Library

High-Performance Networks

• Eager Protocol
• Best communication performance for smaller messages

Analyzing Communication Costs of Point-to-point Protocols

Application
Data

Pre-registered Communication Buffers Pre-registered Communication Buffers

Buffer #1 Buffer #1Buffer #n Buffer #n

Application
Data

Cost:
Memcpy

Cost:
Memcpy

Cost:
Network Transfer

19

• Rendezvous Protocol
• Best communication performance for larger messages

Analyzing Communication Costs of Point-to-point Protocols (Cont.)

Cost:
Half RTT

Cost:
Half RTT

Cost:
Network Transfer

Cost:
Half RTT

20

Studying the Performance and Overlap of 3D Stencil Benchmark

• Default: Uses eager protocol for small messages and rendezvous for large
• Manually Tuned: Forces the use of eager for all message sizes
• Manually Tuned has degradation in raw communication performance
• Manually Tuned has significant benefits for overlap
• Manually Tuned better for overall application execution time

0
5

10
15
20
25
30
35

1 4 16 64 25
6 1K 4K 16
K

64
K

25
6K

La
te

nc
y

(m
s)

Message Size (Bytes)

Communication Time

Default Manually Tuned

0

20

40

60

80

100

1 4 16 64 25
6 1K 4K 16
K

64
K

25
6K

O
ve

rla
p

(%
)

Message Size (Bytes)

Overlap Potential

Default Manually Tuned

0
10
20
30
40
50
60

1 4 16 64 25
6 1K 4K 16
K

64
K

25
6K

La
te

nc
y

(m
s)

Message Size (Bytes)

Overall Performance

Default Manually Tuned

21

Outline

• Introduction
• The MPI Tools Interfaces and Benefits
• Integrating TAU and MVAPICH2 with MPI_T
• Use Cases
• TAU Performance System®

22

TAU Performance System®

Parallel performance framework and toolkit
• Supports all HPC platforms, compilers, runtime system
• Provides portable instrumentation, measurement, analysis

23

TAU Performance System

24

Instrumentation
• Fortran, C++, C, UPC, Java, Python, Chapel, Spark
• Automatic instrumentation

Measurement and analysis support
• MPI, OpenSHMEM, ARMCI, PGAS, DMAPP, uGNI
• pthreads, OpenMP, OMPT interface, hybrid, other thread models
• GPU, CUDA, OpenCL, Level Zero, ROCm, OpenACC
• Parallel profiling and tracing
• Interfaces with OTF2 and Score-P

Analysis
• Parallel profile analysis (ParaProf), data mining (PerfExplorer)
• Performance database technology (TAUdb)
• 3D profile browser

Instrumentation

Source instrumentation using a preprocessor
• Add timer start/stop calls in a copy of the source code.
• Use Program Database Toolkit (PDT) for parsing source code.
• Requires recompiling the code using TAU shell scripts (tau_cc.sh, tau_f90.sh)
• Selective instrumentation (filter file) can reduce runtime overhead and narrow

instrumentation focus.
Compiler-based instrumentation

• Use system compiler to add a special flag to insert hooks at routine entry/exit.
• Requires recompiling using TAU compiler scripts (tau_cc.sh, tau_f90.sh…)
• NEW LLVM TAU Plugin for intelligent instrumentation.

Runtime preloading of TAU’s Dynamic Shared Object (DSO)
• No need to recompile code! Use mpirun tau_exec ./app with options.

Add hooks in the code to perform measurements

25

TAU’s Support for Runtime Systems

MPI
• PMPI profiling interface
• MPI_T tools interface using performance and control variables
• MPI Collective Sync time: time in an implicit barrier in MPI collective operations

Pthread
• Captures time spent in routines per thread of execution

OpenMP
• OMPT tools interface to track salient OpenMP runtime events
• Opari source rewriter
• Preloading wrapper OpenMP runtime library when OMPT is not supported

Intel Level Zero
• Captures time spent in kernels on GPUs using oneAPI Level Zero
• Captures time spent in Intel Level Zero runtime calls

OpenACC
• OpenACC instrumentation API
• Track data transfers between host and device (per-variable)
• Track time spent in kernels

26

TAU’s Support for Runtime Systems (contd.)
OpenCL

• OpenCL profiling interface
• Track timings of kernels

CUDA
• Cuda Profiling Tools Interface (CUPTI)
• Track data transfers between host and GPU
• Track access to uniform shared memory between host and GPU

ROCm
• Rocprofiler and Roctracer instrumentation interfaces
• Track data transfers and kernel execution between host and GPU

Kokkos
• Kokkos profiling API
• Push/pop interface for region, kernel execution interface

Python
• Python interpreter instrumentation API
• Tracks Python routine transitions as well as Python to C transitions

27

Examples of Multi-Level Instrumentation

MPI + OpenMP
• MPI_T + PMPI + OMPT may be used to track MPI and OpenMP

MPI + CUDA
• PMPI + CUPTI interfaces

OpenCL + ROCm
• Rocprofiler + OpenCL instrumentation interfaces

Kokkos + OpenMP
• Kokkos profiling API + OMPT to transparently track events

Kokkos + pthread + MPI
• Kokkos + pthread wrapper interposition library + PMPI layer

Python + CUDA
• Python + CUPTI + pthread profiling interfaces (e.g., Tensorflow, PyTorch)

MPI + OpenCL
• PMPI + OpenCL profiling interfaces

28

Simplifying the use of TAU!
Uninstrumented code:

• % module load mvapich2

• % make

• % mpirun -np 64 ./a.out

With TAU using event-based sampling (EBS):
• % mpirun –np 64 tau_exec –T mvapich2 –ebs ./a.out

• % paraprof (GUI)

• % pprof –a | more

NOTE:

• Requires dynamic executables (-dynamic link flag on Cray XC systems).

• Source code should be compiled with –g for access to symbol table.

• Replace srun with mpirun based on your appropriate launch command.

29

TAU Execution Command (tau_exec)
Uninstrumented execution

• % mpirun -np 256 ./a.out
Track GPU operations

• % mpirun -np 256 tau_exec –rocm ./a.out
• % mpirun -np 256 tau_exec –l0 ./a.out
• % mpirun -np 256 tau_exec –cupti ./a.out
• % mpirun -np 256 tau_exec –cupti -um ./a.out (for Unified Memory)
• % mpirun -np 256 tau_exec –opencl ./a.out
• % mpirun -np 256 tau_exec –openacc ./a.out

Track MPI performance
• % mpirun -np 256 tau_exec ./a.out

Track I/O, and MPI performance (MPI enabled by default)
• % mpirun -np 256 tau_exec -io ./a.out

Track OpenMP and MPI execution (using OMPT for Intel v19)
• % export TAU_OMPT_SUPPORT_LEVEL=full;

% mpirun -np 256 tau_exec –T ompt,v5,mpi -ompt ./a.out
Track memory operations

• % export TAU_TRACK_MEMORY_LEAKS=1
• % mpirun -np 256 tau_exec –memory_debug ./a.out (bounds check)

Use event based sampling (compile with –g)
• % mpirun -np 256 tau_exec –ebs ./a.out
• Also export TAU_METRICS=TIME,<PAPI_COUNTER> to use hardware perf. counters
• tau_exec -ebs_resolution=<file | function | line>

30

Types of Performance Profiles

Flat profiles
• Metric (e.g., time) spent in an event
• Exclusive/inclusive, # of calls, child calls, …

Callpath profiles
• Time spent along a calling path (edges in callgraph)
• “main=> f1 => f2 => MPI_Send”
• Set the TAU_CALLPATH and TAU_CALLPATH_DEPTH environment variables

Callsite profiles
• Time spent along in an event at a given source location
• Set the TAU_CALLSITE environment variable

Phase profiles
• Flat profiles under a phase (nested phases allowed)
• Default “main” phase
• Supports static or dynamic (e.g. per-iteration) phases

31

Outline

• Introduction
• The MPI Tools Interfaces and Benefits
• Integrating TAU and MVAPICH2 with MPI_T

32

Integrating TAU with MVAPICH2 through MPI_T Interface

● Enhance existing support for MPI_T in
MVAPICH2 to expose a richer set of
performance and control variables

● Get and display MPI Performance
Variables (PVARs) made available by
the runtime in TAU

● Control the runtime’s behavior via MPI
Control Variables (CVARs)

● Add support to MVAPICH2 and TAU for
interactive performance engineering
sessions

33

Three Scenarios for Integration

34

Scenario 1: Non-interactive mode

Scenario 3: Policy driven mode

Scenario 2: User-interactive mode

TAU Performance Measurement Model

enter/exit events
are “interval” events (in shared memory)

application-wide
performance data

35

TAU Plugin Architecture
Extend TAU event interface for plugins

• Events: interval, atomic
• Specialized on event ID
• Synchronous operation

Create TAU interface for trigger plugins
• Named trigger
• Pass application data
• Synchronous
• Asynchronous using agent plugin

36

Plugin-based Infrastructure for Non-Interactive Tuning

• TAU supports a fully-customizable plugin
infrastructure based on callback event handler
registration for salient states inside TAU:
• Function Registration / Entry / Exit
• Phase Entry / Exit
• Atomic Event Registration / Trigger
• Init / Finalize Profiling
• Interrupt Handler
• MPI_T

• Application can define its own “trigger” states
and associated plugins
• Pass arbitrary data to trigger state plugins

37

TAU Customization

38

• TAU states can be named or generic
• TAU distinguishes named states in a way that allows for separation of

occurrence of a state from the action associated with it
• Function entry for “foo” and “bar” represent distinguishable states in TAU

• TAU maintains an internal map of a list of plugins associated with each state

TAU Runtime Control of Plugin

39

• TAU defines a plugin API to deliver access control to the internal
plugin map

• User can specify a regular expression to control plugins executed
for a class of named states at runtime
• Access to map on a process is serialized: application is expected

to access map through main thread

TAU Phase Based Recommendations

40

• MiniAMR: Benefits from hardware offloading using SHArP
hardware offload protocol supported by MVAPICH2 for
MPI_Allreduce operation

• Recommendation Plugin:
• Registers callback for “Phase Exit” event
• Monitors message size through PMPI interface
• If message size is low and execution time inside

MPI_Allreduce is significant, a recommendation is
generated on ParaProf (TAU’s GUI) for the user to set the
CVAR enabling SHArP

TAU Per-Phase Recommendations in ParaProf

41

Enhancing MPI_T Support
● Introduced support for new MPI_T based CVARs to MVAPICH2

○ MPIR_CVAR_MAX_INLINE_MSG_SZ
■ Controls the message size up to which “inline” transmission of data is

supported by MVAPICH2
○ MPIR_CVAR_VBUF_POOL_SIZE

■ Controls the number of internal communication buffers (VBUFs)
MVAPICH2 allocates initially. Also,
MPIR_CVAR_VBUF_POOL_REDUCED_VALUE[1] ([2…n])

○ MPIR_CVAR_VBUF_SECONDARY_POOL_SIZE
■ Controls the number of VBUFs MVAPICH2 allocates when there are no

more free VBUFs available
○ MPIR_CVAR_IBA_EAGER_THRESHOLD

■ Controls the message size where MVAPICH2 switches from eager to
rendezvous protocol for large messages

● TAU enhanced with support for setting MPI_T CVARs in a non-interactive
mode for uninstrumented applications

42

MVAPICH2

● Several new MPI_T based PVARs added to MVAPICH2
○ mv2_vbuf_max_use, mv2_total_vbuf_memory etc

● Enhanced TAU with support for tracking of MPI_T PVARs and CVARs for
uninstrumented applications
○ ParaProf, TAU’s visualization front end, enhanced with support for

displaying PVARs and CVARs
○ TAU provides tau_exec, a tool to transparently instrument MPI routines

○ Uninstrumented:
% mpirun –np 1024 ./a.out

○ Instrumented:
– % export TAU_TRACK_MPI_T_PVARS=1
– % export TAU_MPI_T_CVAR_METRICS=MPIR_CVAR_VBUF_POOL_SIZE
– % export TAU_MPI_T_CVAR_VALUES=16
– % mpirun -np 1024 tau_exec -T mvapich2,mpit ./a.out

43

PVARs Exposed by MVAPICH2

44

CVARs Exposed by MVAPICH2

45

Using MVAPICH2 and TAU with Multiple CVARs

• To set CVARs or read PVARs using TAU for an uninstrumented binary:
% export TAU_TRACK_MPI_T_PVARS=1
% export TAU_MPI_T_CVAR_METRICS=

MPIR_CVAR_VBUF_POOL_REDUCED_VALUE[1],
MPIR_CVAR_IBA_EAGER_THRESHOLD

% export TAU_MPI_T_CVAR_VALUES=32,64000
% export PATH=/path/to/tau/x86_64/bin:$PATH
% mpirun -np 1024 tau_exec -T mvapich2,mpit ./a.out
% paraprof

46

VBUF usage without CVARs

47

VBUF usage with CVARs

Total memory used by VBUFs is reduced from 3,313,056 to 1,815,056

48

VBUF Memory Usage Without CVAR

49

VBUF Memory Usage With CVAR

% export TAU_TRACK_MPI_T_PVARS=1
% export TAU_MPI_T_CVAR_METRICS=MPIR_CVAR_VBUF_POOL_SIZE
% export TAU_MPI_T_CVAR_VALUES=16
% mpirun -np 1024 tau_exec -T mvapich2 ./a.out

50

TAU: Extending Control Variables on a Per-Communicator Basis
• Based on named communicators (MPI_Comm_set_name) in an application,

TAU allows a user to specify triples to set MPI_T cvars for each communicator:
• Communicator name
• MPI_T CVAR name
• MPI_T CVAR value

• % ./configure –mpit –mpi –c++=mpicxx –cc=mpicc –fortran=mpif90 …
• % make install
• % export TAU_MPI_T_COMM_METRIC_VALUES=<comm, cvar, value>,…
• % mpirun –np 64 tau_exec –T mvapich2,mpit ./a.out
• % paraprof

51

COMB LLNL App MPI_T Tuning for COMB_MPI_CART_COMM
bash-4.2$

TAU_MPI_T_COMM_METRIC_VALUES=COMB_MPI_CART_COMM,MPIR_CVAR_GPUDIRECT_LIMIT,2097152,COMB_MPI_CART_COMM,MPIR_CVAR_USE_GPUDIRECT_RECEIVE_LIMIT,2097152,
COMB_MPI_CART_COMM,MPIR_CVAR_CUDA_IPC_THRESHOLD,16384 MV2_USE_CUDA=1 mpirun -np 8 tau_exec -ebs -T mvapich2,mpit,cuda9,cupti,communicators,gnu -cupti ./comb -comm
post_recv wait_all -comm post_send wait_all -comm wait_recv wait_all -comm wait_send wait_all 200_200_200 -divide 2_2_2 -periodic 1_1_1 -ghost 1_1_1 -vars 3 -cycles 100 -comm cutoff
250 -omp_threads 1

Started rank 0 of 8
Node lassen710
Compiler COMB_COMPILER
Cuda compiler COMB_CUDA_COMPILER
GPU 0 visible undefined
Not built with openmp, ignoring -omp_threads 1.
Cart coords 0 0 0
Message policy cutoff 250
Post Recv using wait_all method
Post Send using wait_all method
Wait Recv using wait_all method
Wait Send using wait_all method
Num cycles 100
Num vars 3
ghost_widths 1 1 1
sizes 200 200 200
divisions 2 2 2
periodic 1 1 1
division map
map 0 0 0
map 100 100 100
map 200 200 200
Starting test memcpy seq dst Host src Host
Starting test Comm mock Mesh seq Host Buffers seq Host seq Host
Starting test Comm mpi Mesh seq Host Buffers seq Host seq Host

52

Default With MPI_T CVARs

COMB Profile

53

CVARs Exposed by MVAPICH2

54

Path Aware Profiling in TAU and MVAPICH2

55

• To identify the path taken by an MPI message:
• GPU memory to GPU memory
• Unique send and receive path ids captured

• Configure TAU with -PROFILEPATHS:
• Partition the time in MPI pt-to-pt operations:

• MPI_Send and MPI_Recv
• Parameter based profiling identifies paths

• Path captured as metadata in TAU profiles
• PVARs based on CUPTI counters
• MVAPICH2 exports PVARs to TAU with MPI_T

Path Aware Profiling in TAU and MVAPICH2

56

• Available for download in TAU v2.29.1

Identifying Collective Wait States

57

MPI Collective Sync is the time spent in a barrier operation inside a collective

Comparing Rank 118 with 22.
Right click on “node 118” -> Add node to comparison window

58

ParaProf Comparison Window

Driving Example (3D Stencil)
3D Stencil benchmark

• Each process talks to at
most six neighbors

• Two in each Cartesian
dimension
• X-right, X-left
• Y-right, Y-left
• Z-right, Z-left

• Repeat same
communication pattern for
multiple iterations

0 1 2 3

4 5 6 7

9 10 11

12 13 14 15

8

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

3D Stencil communication pattern for a 32
process job scheduled on 4 nodes

Process on Node 1 Process on Node 2

Process on Node 3 Process on Node 4
59

Case Study: 3D Stencil – Performance Engineering with TAU
Experimental Setup

• Platform:
– Broadcom RoCEv2 Thor Adapter
– 64 Nodes x 2 x AMD EPYC 7713 64-Core Processor

• Application:
– 3D Stencil HPC Benchmark
– Dataset: 3000k-atoms dataset

• Raw run lines:

– MVAPICH2-2.3.7-Broadcom
mpirun_rsh -np $NP -ppn $PPN ./3Dstencil_overlap 8 8 8 1000

• Execution time tests on 2 Nodes x 128 PPN (512
ranks)

• We are measuring the latency
– Lower is better

• Degradation observed at 256K message
• This is the unoptimized MVAPICH2-2.3.7 version
• Need to use TAU to see

– what MPI calls are causing the
degradation

– What is the dominant communication
pattern

Case Study: 3D Stencil – Performance Engineering with TAU
First experiment – Unoptimized version

62 125 253 494 632.12
1587

3154.3

11770.9

17889.4

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

2K 4K 8K 16K 32K 64K 128K 256K 512K

La
te

nc
y

(u
s)

Message Size (Bytes)

3.5x jump !!
Lower is
better

Understanding Basic Performance Trends with TAU-based Profiling

62

Default

Less Overlap, Less Useful
work done by
Application!

Case Study: 3D Stencil – Performance Engineering with TAU
Diagnosis and workaround found

• Diagnosis: more time is spent in inter-node pt-to-pt
Rendezvous communication

• Solution: Use pt-to-pt eager communication
• Gains:

– 2x reduction in latency
• Update the following parameter for the 3D Stencil

runs
MV2_IBA_EAGER_THRESHOLD = 524288

this will enable inter-node eager communication until
the specified message size*

*For more details check user-guide:
https://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-

userguide.html#:~:text=for%20the%20job.-,12.5,-MV2_IBA_EAGER_THRESHOLD

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

2K 4K 8K 16K 32K 64K 128K 256K 512K

La
te

nc
y

(u
s)

Message Size (Bytes)

MVAPICH2 (Unoptimized) MVAPICH2 (Optimized)

https://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-userguide.html

Introspecting Impact of Eager Threshold on 3D Stencil Benchmark

64

Optimized

More Overlap, More
Useful work done by

Application!

3Dstencil on AWS

cd ~/SRC/demo/3Dstencil
./run.sh
ls *.ppk
% paraprof *.ppk &
Right click “Add Thread to

Comparison Window”
while clicking on Node 0 in each
of the three trials

Options -> Select Metric ->
Inclusive

65

Usage Scenarios with MVAPICH2

• TAU measures the high water mark of total memory usage
(TAU_TRACK_MEMORY_FOOTPRINT=1), finds that it is at 98% of available memory, and
queries MVAPICH2 to find out how much memory it is using. Based on the number of pools
allocated and used, it requests it to reduce the number of VBUF pools and controls the size of the
these pools using the MPI-T interface. The total memory memory footprint of the application
reduces.

• TAU tracks the message sizes of messages (TAU_COMM_MATRIX=1), detects excessive time
spent in MPI_Wait and other synchronization operations. It compares the average message size
with the eager threshold and sets the new eager threshold value to match the message size. This
could be done offline by re-executing the application with the new CVAR setting for eager
threshold or online.

66

Download TAU from U. Oregon

http://www.hpclinux.com [OVA file]
http://tau.uoregon.edu/tau.tgz

for more information

Free download, open source, BSD license

67

http://tau.uoregon.edu/tau.tgz

PRL, University of Oregon, Eugene

www.uoregon.edu

68

http://www.uoregon.edu

Support Acknowledgments
US Department of Energy (DOE)

• ANL
• Office of Science contracts, ECP
• SciDAC, LBL contracts
• LLNL-LANL-SNL ASC/NNSA contract
• Battelle, PNNL and ORNL contract

CEA, France
Department of Defense (DoD)

• PETTT, HPCMP
National Science Foundation (NSF)

• SI2-SSI, Glassbox, CSSI
NASA
AMD, AWS, Broadcom, Google, IBM, Intel, NVIDIA, OCI
Partners:

•University of Oregon
•The Ohio State University
•ParaTools, Inc.
•University of Tennessee, Knoxville
•T.U. Dresden, GWT
•Jülich Supercomputing Center

69

Acknowledgment

“This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of
two U.S. Department of Energy organizations (Office of Science and the National Nuclear Security

Administration) responsible for the planning and preparation of a capable exascale ecosystem, including
software, applications, hardware, advanced system engineering, and early testbed platforms, in support

of the nation’s exascale computing imperative.”

70

