

Proposed MPI Library Enhancements for Improving Latency and Rate for Small Messages

Hemal Shah, Distinguished Engineer and Architect Broadcom Inc.

Date: August 22, 2023

MPI Message Characterization – where small messages are used?

- Small messages focus of this talk
 - Synchronization
 - PGAS
 - Control packets
 - Collectives
 - **–** ...
- Medium (1KB to 10s-100s of KB)
- Large (> 100s KB)

Communication Overhead for Small RoCE Messages

Latency and Message Rate Considerations

- CPU cycles spent per message
- Scaling of message rate with number of CPU cores

Copy Optimization

Small MPI send messages may incur multiple copies

- Small MPI recv message incur at least one CPU copy
- Potential MPI library enhancements
 - Use of vector mode instructions for copies → improves latency and message rate
 - MPI buffer pool per core (pinned in core cache) reduces CPU overhead for copies

MPI Message Coalescing Enhancements

- Coalescing of MPI messages into a single RoCE packet
 - Improves MPI msg rate as RoCE pkt overhead is amortized
 - Adds complexity at the MPI layer
 - Impacts MPI message latency
- Posting of MPI messages as a list of WRs in a single verbs call
 - Amortizes the cost of verbs layer processing
 - Reduces doorbell rate → reduces MMIO overhead → improves MPI message rate
 - Impacts MPI message latency
- MPI libs typically have env variables to control coalescing (all or nothing)
- Enhancement: selectively bypass coalescing for latency sensitive messages
 - Example 1: MPI SendRecv → expected to be latency sensitive
 - Example 2: Small messages of low latency Class of Service (CoS)

MPI Buffer Management

- MPI buffer pinning and caching
 - MPI buffer pool per core (pinned in cache) → reduces CPU overhead for copies
- Shared ownership of buffers between MPI and verbs layers
 - Avoids intermediate copies
 - Buffer ownership is transferred during calls and completions

MPI Library Hints

- MPI lib hints for pending WRs (to be posted) on the QPs
 - Helps with moderating doorbell rates
- MPI lib hints for low latency/high message rate QPs
 - Allows verbs library to optimize WRs processing per QP for low latency and/or message rate
- Use of thread domain verbs
 - Provides hint to verbs library that access to resources within a thread domain is thread safe
 - Helps in avoiding internal locking in the verbs library
 - ibv_alloc_td: a thread safe alternative to ibv_alloc_pd (thread unsafe)

Use of Multiple Class of Service Queues (CoSQs)

MPI traffic separation in different CoSQs

- Small Send/Recv (latency sensitive)
- Small Send/Recv (high message rate)
- RDMA Read/Write (throughput)
- Small message-oriented collectives e.g. AllReduce OR operation on 1-byte

– ...

Use of separate CoSQs for low latency and high-rate small message traffic

- Enables different message processing policies at MPI layer
- Allow MPI layer to provide verbs layer hints for WRs and QPs

Summary

- MPI layer overheads impact small message latency and message rate
- MPI enhancements improve message latency and message rate scaling
- Copy optimization, selective coalescing, buffer caching, hints, CoSQs help

Call to action: Investigate propose MPI lib enhancements

