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Why Sparsity?
• Communication latency scales with the size of gradient
• Size of the gradient scales with the size of the model parameters
• Specifically,

• Large scale training require fp32 gradients, e.g., LARS and LAMB.
• Assuming fp32 gradients, the following models must communicate (every 

iteration):
– BERT-Large: (4 bytes/param) * (345M params) = 1.28 GB
– GPT-NeoX 20B: (4 bytes/param) * (20B params) = 74 GB
– GPT-3 175B: (4 bytes/param) * (175B params) = 652 GB
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Why Sparsity?

• Communicating gradients requires expensive networking and bottlenecks training

• However, gradient values are noisy, and most values are near zero

SGD gradient distributions from: https://arxiv.org/pdf/1911.08772.pdf

• Only the gradients with large 
magnitudes matter for training 
convergence

• How many gradient values can be 
removed before convergence is 
affected? 90%, 99%, 99.9%?
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What is Sparsity?
• Reduces communication volume by only propagating some gradient elements

• Compressor function Compk (e.g. TopK or RandK) keeps only k gradient elements, and sums 
+ stores the remaining values as a ‘residual’ (ε) for the next iteration

Standard SGD:

Sparse SGD:
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Topk Sparsity

• The Topk compressor function selects the top k largest elements 
(in terms of magnitudes) of the gradient and accumulates for all 
other elements.
• Topk has commonly been implemented at the Python layer 

(except for SparCML), and has been added to native PyTorch
• Convergence has been proven and demonstrated for many 

model types, but requires careful hyperparameter tuning
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Topk Sparsity

• In dense data-parallel training, 
the full gradients are averaged 
across all workers via an 
AllReduce operation

• TopK sparsity works by applying 
a sparsificiation GPU kernel on 
each worker, then 
communicating the positions 
and topk values via a 
Sparse_AllReduce operation
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Previous SOTA: Deep Gradient Compression
• Attempts to resolve the hyperparameter tuning problem by:

• Topk sparsification of gradients
• Modify the optimizer and gradient update rules to correct sparsity’s 

convergence effects. Use this to push sparsity to 99.9%

• DGC doesn’t help much when
interconnect is fast
• High GPU cost in selecting

gradients
• DGC is not scalable
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Current SOTA: OkTopk Sparsity

• Sparsification overhead scales with number of processes P
• (Cost of sending message of size L) = α + βL
• Where (α = Latency) and (β = Bandwidth)

• Dense: Standard Allreduce

• TopkA: Allgather + local sparse reduction

• TopkDSA: SparCML’s sparse reduce-scatter + allgather

• gTopk: reduction tree + broadcast tree

• Gaussiank: Same as TopkA with gaussian fitting

• Ok-Topk: Split buffers via isend/irecv, sparse reduction, 
allgatherv

Secondary result: BERT Gradients are also sparse
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Shortcomings of Current SOTA

• While OkTopk is scalable, it hurts convergence.

• Language models have two measures of accuracy: 
• Training (perplexity) loss: Accuracy while the model is training on general language data
• Downstream evaluations: Effectiveness on the model on specific tasks (e.g. Q&A)

• While the OkTopk paper demonstrated reasonable training loss, our experiments show poor 
downstream evaluation accuracy

• We seek to find a gradient sparsity scheme that’s scalable and preserves downstream task 
accuracy

Model SQuAD GLUE
BERT-Large 
(Baseline)

90.40 0.802

BERT-Large 
(OkTopK)

88.10 0.770
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Stable TopK

• We hypothesize that gradient elements are 
temporally stable, since: 
• Pre-training should lead to the creation 

of circuits that are comprised of nearby 
neurons

• Such circuits should gradually adapt over 
many training iterations

• We find this hypothesis to be true for CNNs 
(ResNet-50) and transformers (BERT-Large, 
OpenFold, and ViT)
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Stable TopK
• While regions are stable, individual gradient positions are not (see figures below for BERT)

• Such behavior necessitates the use of a “TopK bucket” instead of specific elements 

• These insights introduces the key idea of our work: Instead of communicating the exact TopK 
elements every iteration, only communicate TopK buckets every N iterations

Bucketed Indices Individual Indices
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Stable TopK
• Same insights hold for masked autoencoder (MAE) vision models (see below)

Bucketed Indices Individual Indices
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Stable TopK

• In Stable TopK, the 
sparsification kernel is only 
applied every N iterations

• Communicate buckets of 
indices and their values 
instead of specific indices

• For all other iterations, 
simply apply the bucketed 
mask from the last 
recomputation
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Stable TopK

• By varying the S-TopK bucket size and sample 
frequency, we gain some valuable insights into the 
stable scheme

• If S-TopK bucket size is too small, the model quickly 
diverges because individual positions are not stable

• If S-TopK sample frequency is too high, the stable 
region may decay before the S-TopK bucket indices 
are updated

• If the bucket size and sample frequencies are chosen 
correctly, S-TopK nearly matches baseline loss
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Stable TopK

• For both BERT (top) and MAE 
(bottom), stable TopK trains in 
the shortest time

• Again, new hyperparameters 
must be tuned to achieve 
convergence

• Higher values of N and lower 
values of B lead to lower 
sparsification and 
communication overheads, 
respectively
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Stable TopK

• Since S-TopK doesn’t compute the TopK indices every iteration, its throughput is higher 
than OkTopK

• In addition to maintaining a lower training loss than OkTopK, S-TopK preserves 
downstream evaluation performance

BERT-Large SQuAD GLUE Time (hrs)

Baseline 90.4 0.802 84.3

Ok-TopK 88.10 0.770 52.4

S-TopK 89.96 0.802 41.8

MAE ImageNet Time (hrs)

Baseline 84.1% 20.3

Ok-TopK 81.3% 13.3

S-TopK 83.8% 11.0
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Gradient Sparsification Summary and Future Work

• It’s challenging to ensure convergence for existing methods (e.g. OkTopK)

• Gradient indices are not stable over time, but regions of gradient elements are 
stable

• Stable TopK exploits this property by communicating sparse gradient regions 
periodically

• Stable TopK converges much closer to baseline than competing sparse methods 
in less time for both BERT and MAE

• Continuing on convergence
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