Optimizing Amber for Device-to-Device GPU Communication

<u>Samuel Khuvis</u>¹, Karen Tomko¹, Scott R. Brozell¹, Chen-Chun Chen², Hari Subramoni², Dhabaleswar K. Panda²

¹Ohio Supercomputer Center, ²Ohio State University

MUG 2023

Outline

- Introduction
- Experimental Setup
- Performance Analysis
- Code modifications
- Results
- Summary

Introduction

Overview of Amber

- Widely-used suite for MD simulations of proteins and nucleic acids.
- Supports particle-mesh Ewald (PME) explicit solvents and Generalized Born implicit solvents.
- Added GPU support in version 11.
- Multi-GPU implementations in Amber are done by passing data from GPU buffer to host buffer, performing MPI communication, and then passing back to GPU buffers.

GPU support in MPI

- Capability to specify device buffers added to MVAPICH2 in 2011 and HPC-X OpenMPI v1.7.0 in 2013.
- If appropriate hardware/software is available, communication is performed between GPUs without host transfers.
- If unavailable, MPI performs interprocess communication (IPC) via host-to-device and device-to-host communication.
- Additional data copying affects performance.

Availability of Device-to-Device Technologies

- Hardware has only started to become available at HPC centers in the last few years.
- Many scientific codes have been slow to take advantage.
- GROMACS only added support for GPU-to-GPU communication in its 2022 release.

Experimental Setup

Benchmarks

Benchmarks from the Amber20 Benchmark Suite:

- Particle-mesh Ewald (PME)
 - Cellulose production
 - FactorIX production
 - JAC production
 - STMV production
- Generalized Born (GB)
 - Myoglobin
 - Nucleosome

For each PME case, we run with the statistical ensembles:

- NVE holds total number of particles constant; total energy (E) and volume (V) are conserved,
- NPT holds total number of particles constant; pressure (P) and temperature (T) are conserved.

There is a modest computational cost to pressure and temperature control in NPT in comparison to the more straightforward NVE.

System Description

- Pitzer system at OSC
- 48-core cascade lake nodes with 2 NVIDIA V100 GPUs
- Ran with 2 processes per node and 2 GPUs per node on 2, 4, and 8 nodes.
- Mellanox EDR (100Gbps) Infiniband
- MPI implementations:
 - MVAPICH2 2.3.6
 - MVAPICH2-GDR 2.3.7 (cuda-aware)
 - HPC-X OpenMPI 3.1.6 (cuda-aware)

Performance Analysis

10/27

MAP Profile of JAC production (NPT)

Self time 🗸 🗸	Total	MPI	Child	Function
41.9%	41.9%			
28.9%	28.9%			
8.9%	8.8%			
8.1%	8.2%			
5.3%	5.3%			
1.3%	1.3%			
0.9%	0.8%			
0.6%	0.6%			getrusage
0.4%	0.4%			uname
0.4%	0.4%			
0.3%	0.8%		0.4%	pvt_mpi_allgathervec [inlined]
0.3%	0.3%			<unknown> from /usr/lib64/libcuda.so.450.80.02</unknown>
0.3%	0.3%			cudaStreamSynchronize
0.3%	0.6%		0.3%	for_set_fpe_
0.2%	0.2%			cudaFree
0.2%	0.1%			<unknown> from /apps/cuda/10.2.89/targets/x86_64-linux/lib/libcufft.so.10.1.2.89</unknown>
0.2%	0.1%			cudaPopCallConfiguration
0.2%	0.2%		<0.1%	pbc_mod::pressure_scale_crds
0.2%	0.8%		0.7%	gpu_download_frc_
0.1%	0.1%			read
0.1%	0.1%			svml_sincos4_l9
0.1%	99.2%	37.4%	99.0%	runmd_mod::runmd
0.1%	6.0%		5.8%	gpu_calculate_kinetic_energy_
0.1%	0.1%			cudaGetLastError
0.1%	0.1%			write
0.1%	0.1%			gpu_upload_vel_
0.1%	0.1%			
<0.1%	<0.1%			open64
<0.1%	<0.1%			cuModuleGetFunction
<0.1%	1.1%		1.0%	gti_finalize_force_virial_
<0.1%	0.5%		0.4%	b40c::radix_sort::ProblemInstance <b40c::util::multibuffer<2,unsigned int="" int,unsigned=""></b40c::util::multibuffer<2,unsigned>
Showing data from 2 000 samples ta	ken over '	2 process	es (1000	

 Significant time spent in MPI communication (MPI_Allreduce) and device-to-host communication (cudaMemcpy).

11/27

Callstack of JAC production (NPT)

Total core time	∽ ∣Self	MPI	Function(s) on line	Position
			∨ ጶ pmemd.cuda.MPI [program]	
			∽ 🖌 pmemd	pmemd.F90:75
			v runmd_mod::runmd	pmemd.F90:866
			<pre> v pme_force_mod::pme_force </pre>	runmd.F90:1536
			✓ gpu_allreduce,gti_finalize_force_viri	pme_force.F90:423
				gpu.cpp:7915
32.9%	415.3		> cudaMemcpy	gpuBuffer.h:205
28.4%				gpu.cpp:7916
7.4%			> GpuBuffer <long long="">::Upload(lon</long>	gpu.cpp:7918
1.0%			> ik_RemoveTINetForce(gti_gpuCont	gti_f95.cpp:1533
<0.1%			> 1 other	
8.1%			> pme_force_mod::dist_enes_virs_net	pme_force.F90:469
2.3%			> icc_CalculateElecRecipForceEnergy(pme_force.F90:419
1.8%	11		> kPMEGetGridWeights	pme_force.F90:418
1.6%	110		> gti_build_nl_list_	pme_force.F90:417
1.6%			> 9 others	
5.9%			> gpu_calculate_kinetic_energy_	runmd.F90:2445
3.0%			> barostats_mod::mcbar_trial	runmd.F90:1559
1.4%			> gpu_update_	runmd.F90:1986
0 70/			10 athara	

 Device-to-host communication and MPI communication called from gpu_allreduce.

Code modifications

cudaMemcpy Device-to-Host MPI_Allreduce Host-to-Host cudaMemcpy Host-to-Device

cudaDeviceSynchronize MPI_Allreduce Device-to-Device cudaMemcpy Device-to-Host

Only 5 lines of code changed.

Results

14/27

JAC Benchmark

Average Throughputs for All Benchmarks

MPI Implementation	Throughput (ns/day)	Speedup
MVAPICH2 (original code)	192.5	1.00
MVAPICH2 (modified code)	201.4	1.05
HPC-X OpenMPI (modified code)	234.7	1.22
MVAPICH2-GDR (modified code)	262.9	1.36

▶ 36% improvement with GDR over original code.

Average Throughputs for PME Benchmarks

MPI Implementation	Throughput (ns/day)	Speedup
MVAPICH2 (original code)	118.2	1.00
MVAPICH2 (modified code)	120.3	1.02
HPC-X OpenMPI (modified code)	197.2	1.67
MVAPICH2-GDR (modified code)	217.8	1.84

▶ 84% improvement with GDR over original code.

Results

- For the myoglobin benchmark, performance of GDR is degraded compared to reference and modified code with MV2.
- Some benchmarks (Cellulose and STMV) show worse performance with modified code compared to original code.
- From the benchmarks tested, only GB nuclesome shows good scaling.

Summary

- Most expensive functions in benchmark runs were MPI_Allreduce and cudaMemcpy from gpu_allreduce.
- Modified gpu_allreduce to communicate between GPU buffers, reducing host ↔ device communication.
- Increases throughput by 36% over all benchmarks and 84% for PME subset.
- Other molecular dynamics (MD) techniques would benefit from scalable multi-GPU capability, such as long time-scale MD, free energy calculations, enhanced sampling, conformational sampling, and drug discovery.

Paper

For more details, read our paper from PEARC: Samuel Khuvis, Karen Tomko, Scott R. Brozell, Chen-Chun Chen, Hari Subramoni, and Dhabaleswar K. Panda. 2023. Optimizing Amber for Device-to-Device GPU Communication. In Practice and Experience in Advanced Research Computing (PEARC '23), July 23–27, 2023, Portland, OR, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3569951.3597553

OH·TECH

Ohio Technology Consortium A Division of the Onio Department of Higher Education

y twitter.com/osc

 facebook.com/ohiosuperco mputercenter osc.edu

B oh-tech.org/blog

in linkedin.com/company/ohiosupercomputer-center

Appendix

22/27

Cellulose Benchmark

FactorIX Benchmark

STMV Benchmark

GB Benchmarks

Message sizes for 2 MPI ranks

Benchmark	Message size (KB)
JAC	553
Cellulose	9577
FactorIX	2131
STMV	25011
myoglobin	20
nucleosome	197

