
Asynchronism in
MPI Intra-Node Communications

Hyun-Wook Jin Pu-Rum Seo
System Software Laboratory

Dept. of Computer Science and Engineering
Konkuk University
jinh@konkuk.ac.kr

1

Contents

• Background and motivation

• Asynchronism in MPI intra-node communications
– Asynchronous nonblocking data copy

– Asynchronous blocking progress engine

• Concluding remark

2

BACKGROUND & MOTIVATION

3

I/O Models

• Synchronous blocking I/O
– Application blocks until the I/O system call is complete

• Synchronous nonblocking I/O
– I/O command may not be satisfied immediately, requiring

that the application makes calls to await completion

4

Blocking Nonblocking

Synchronous Read/Write
Read/Write

(O_NONBLOCK)

Asynchronous
I/O Multiplexing

(Select/Poll)
Asynchronous I/O

(AIO)

* Source: IBM Developer

I/O Models

• Asynchronous blocking I/O
– Application interrogates the readiness of multiple

descriptors by using select/poll before I/O calls

• Asynchronous nonblocking I/O
– Application can perform other processing while the

background I/O operation completes

5

Blocking Nonblocking

Synchronous Read/Write
Read/Write

(O_NONBLOCK)

Asynchronous
I/O Multiplexing

(Select/Poll)
Asynchronous I/O

(AIO)

* Source: IBM Developer

Data Copies in MPI

• Shared memory channel
– Moves messages from source to destination

via a shared memory region

– Small messages based on eager protocol

• Memory mapping channel
– Directly moves messages from source to

destination without intermediate copies by
means of a kernel level support

– Large messages based on rendezvous
protocol

– CMA, LiMIC2, XPMEM, …

Sender ReceiverShared
Memory

Sender Receiver

Memory
Mapping

6

CPU-based Data Movement

• Data copy operations in intra-node
communications are performed by CPU
– CPU resources are wasted for communication

– CPU-based copying hinders overlapping of computation
and communication

7

Blocking Nonblocking

Synchronous
CPU-based

Data Movement

Asynchronous

Our Goal #1

• Introducing asynchronism to data copy
– Overlapping between computation and communication

– Copy engine (CE)-based data movement
• Asynchronous nonblocking data copy

8

Blocking Nonblocking

Synchronous
CPU-based

Data Movement

Asynchronous
CE-based

Data Movement

Event Processing in MPI

• One-to-one mapping between processes and CPU cores
– In HPC systems, the runtime solely dedicates a CPU core to

each parallel process

– Parallel programming libraries are optimized on the assumption
that a parallel process occupies an entire CPU core

• MPI progress engine
– Performs busy-waiting to check the completion of outstanding

communications

9

SenderReceiver

Call MPI_Send

Calls MPI_Recv

MPI_Recv returns

Busy-Waiting

Busy-Waiting-based Event Processing

• The longer the busy-waiting time,
the higher the energy consumption
– Nonuniformity of network latency

– Asynchronous semantics in APIs

– Load imbalance

10

Blocking Nonblocking

Synchronous
Busy-Waiting-based

Event Processing

Asynchronous

Our Goal #2

• Introducing asynchronism to progress engine
– Energy efficiency

– Blocking-based event processing
• Asynchronous blocking progress engine

11

Blocking Nonblocking

Synchronous
Busy-Waiting-based

Event Processing

Asynchronous
Blocking-based

Event Processing

ASYNCHRONOUS NONBLOCKING

DATA COPY

Asynchronism in MPI Intra-Node Communications

12

Copy Engines

• A special-purpose processor that can independently
access memory and copy data
– Does not cause cache pollution compared to the CPU-based

memory copy

– Examples

• Intel Xeon (I/O Acceleration Technology)

• AMD EPYC

• We can offload copy operations performed by CPU
onto the copy engine
– Can save CPU resources

– Can improve overlapping of computation and communication

13

Related Work

• Exploiting I/OAT

– [IPDPS07, Cluster07, ICPP09]

– Additional process/thread that takes full charge of
managing the copy engine for intra-node data
movements and monopolizes a CPU core

• No support for collective communication
– Only for point-to-point communication or one-sided

communication

14

Asynchronous Nonblocking Data Copy

• We aim at exploiting copy engines for intra-node
MPI blocking collective communications
– MPI_Bcast

– MPI_Gather

• Asynchronous nonblocking data copy
– CE-based approach

– CE-CPU Hybrid approach

– Enhancement of CPU-based approach

15

Synchronous Blocking Semantics

16

• Traditional collective interfaces
– Do not return its control to user application until the collective

communication is completed

– Progress engine performs busy waiting to poll the completion
or data copying to move data

– No overlapping between computation and communication

• Our collective interfaces
– Return asynchronously though the collective communication is

not completed

– Application can perform computation while the collective
communication is in progress (by the copy engine)

– Reserve synchronous blocking semantics by utilizing the
memory protection mechanism (segmentation fault)

Core-to-Channel Mapping

• There can be multiple copy engines in the same
node, and each copy engine provides several
channels
– Our experimental system

• Two copy engines, each of which provides eight channels

• The copy engine processes requests in channels in a round-robin
fashion

• Core-to-channel mapping
– In a round-robin manner for each NUMA node

17

Copy Engine (CE)-based Approach

18

• Step 1
– Communication buffers are locked, and

their descriptors (physical addresses of
page frames and length) are sent to
leaf processes

• Step 2
– Leaf processes insert requests to channel

• Step 3
– Copy engines move messages

CE-CPU Hybrid Approach

• Hybrid approach
– Uses CPU to move data when lowering the overhead is

more important than overlapping

– Segmentation fault handler switches the copy device
from copy engine to CPU

– Virtual queues
• We can neither preempt nor cancel the DMA request already

submitted to a channel

• Provide a mechanism that switches from the CE mode to the CPU
mode in the middle of data movements

– A DMA request for a collective communication is fragmented into
several requests, each of which include vectors for only n pages

– A callback function invoked whenever a fragmented request is
completed moves fragmented requests in virtual queues to channels

19

Enhancement of CPU-based approach

20

• Existing design
– Both memory mapping and copy operations are done

on the receiver side

• New design
– Segregates memory mapping and copy operations

– The root process performs memory mapping, and the
leaf processes perform data copy

Performance Measurements

• Experiment system
– NUMA-based multi-core system

• Two Intel Xeon 3.10 GHz 10-core Haswell processors

• DDR4 128 GB memory

• Crystal Beach DMA v3.2 copy engine

– Linux kernel version 5.3.7

– Intel QuickData Technology Driver 5.00

• Comparisons
– Default approach (MVAPICH2 version 2.3.7)

– Enhanced CPU-based approach (MVAPICH2 version 2.3)

– CE-CPU hybrid approach (MVAPICH2 version 2.3)

21

OSU Micro-Benchmark

• MPI_Bcast
– Enhanced CPU-based approach outperforms the existing

CPU-based approach and reduces the latency of
MPI_Bcast up to 67%

22

OSU Micro-Benchmark

• MPI_Gather
– Enhanced CPU-based approach reduces the latency of

MPI_Gather up to 85%

23

Overlapping with Computation

• MPI_Bcast
– The enhanced CPU-based approach and the CE-CPU

hybrid approach could reduce the overall execution time
up to 45% and 58%, respectively

– 20-process case with 4, 8, and 16 MB messages

24

Overlapping with Computation

25

• MPI_Gather
– The enhanced CPU-based approach and the CE-CPU

hybrid approach could reduce the execution time up to
63% and 65%, respectively

– 20-process case with 4, 8, and 16 MB messages

ASYNCHRONOUS BLOCKING

PROGRESS ENGINE

Asynchronism in MPI Intra-Node Communications

26

CPU Power Management States

• Dynamic Voltage and Frequency Scaling (DVFS)
– Provides different levels of voltage and frequency for

operating processors

– P-states (ACPI)
• P0: Maximum power and frequency

• Pn: Less than P(n–1) voltage and frequency scaled

• Core-Idling
– Turns off hardware components of idle cores

– C-states (ACPI)
• C0: Active

• C1: Halt

• C2: Stop-clock

• C3: Sleep

27

Related Work

• Decision policies
– EAM [SC’15]

• Estimates the duration of MPI and communication phases based on
temporal execution patterns

• Interrupt-based core-idling

– COUNTDOWN [ToC 2021]
• Intercepts MPI calls and uses a time-out strategy for DVFS

• Countdown Slack [TPDS 2020]

– EAR/EARL [Cluster 2020]
• Detects iterative regions and maintains application signatures by

intercepting MPI calls

• Decides the CPU frequency based on an energy model

• No support for core-idling on intra-node
communication channels

28

Asynchronous Blocking Progress Engine

• We aim to provide a framework that efficiently
supports core-idling over multiple MPI
communication channels
– Intra-node communication channels

• Shared memory

• Memory mapping

• Asynchronous Blocking Progress Engine
– Framework for energy-efficient MPI

– Asynchronous blocking intra-node communication

– Integration with blocking inter-node communication

29

Framework for Energy Efficient MPI

• Interfaces
– APIs

• MPI_Energy_handler_reg()

– int *(enter_function) (MPI_Energy_Info*)

• MPI_Energy_handler_dereg()

• Application can change the policy at runtime

– Hooking of MPI calls
• MPI_Init() and MPI_Finalize()

• No application-level modification is required

30

MPI

Progress Engine User-defined
Policy

MPI_Energy_handler_reg MPI_Init

Framework for Energy Efficient MPI

• Internal runtime information
– Ranks

– Communication channel

– Message size

– Number of busy-waiting iterations

– Current busy-waiting time

– Last busy-waiting time

– …

31

MPI

Progress Engine User-defined
Policy

Runtime Information

Signal-based Blocking Communication

• CPU dependent implementation
– Assembly instructions (e.g., mwait)

• CPU independent implementation
– Timers: only for coarse-grained controls

– Semaphores: deadlock-prone

– Signals: lossy
• Easy to support callback functions

• Flexible enough to support the inter-node communication
channel

• Able to leverage existing decision policies used in DVFS and
core-idling approaches

32

Signaling Points

• Shared memory channel
– When a shared buffer becomes available

– When a new message is arrived

33

SenderReceiver

MPI_Recv
Shared
Memory

Full > T.Avail

MPI_Send

(Blocked)

Signal

SenderReceiver
MPI_Recv

Shared
Memory

(Blocked) MPI_Send

Signal
Empty > R.Avail

Signaling Points

• Memory mapping channel
– When a control message of rendezvous protocol arrives

34

SenderReceiver

MPI_Send

(Blocked)

Signal

SenderReceiver

MPI_Recv

(Blocked)

Signal

SenderReceiver

MPI_Recv

(Blocked)

Signal

MPI_Send

Integration with Blocking Inter-Node

Communication

• Blocking inter-node communication
– MV2_USE_BLOCKING

• epoll-based integration

– File descriptors
• Signal for

intra-node
communication

• Completion channel for
inter-node
communication

35

Asynchronous Blocking Progress Engine

Signal
Completion

Channel

Intra-node
Communication

Channel

Inter-node
Communication

Channel

File
Descriptor

File
Descriptorepoll

Resume Arrival

Performance Measurements

• Experiment system
– Two ARM-based multi-core systems

• Ampere eMAG 8180 (ARMv8) 3 GHz 32-core processor

• DDR4 250 GB memory

– NVIDIA ConnectX-5 InfiniBand adapter

– Linux kernel version 5.4.0-156-generic

– Wattman HPM-100A power meter

• Comparisons
– Default blocking mode

• MVAPICH2 version 2.3.7 with MV2_USE_BLOCKING

– Our energy efficient framework
• MVAPICH2 version 2.3.1

36

OSU Micro-Benchmark

• MPI_Alltoall
– Execution time: 43.4% reduction (1 MB)

– Energy consumption: 41.8% saving (1 MB)

37

OSU Micro-Benchmarks

• MPI_Allreduce
– Execution time: 28.1% reduction (128 KB)

– Energy consumption: 28.9% saving (128 KB)

38

NAS Parallel Benchmarks

• Class C
– Execution time: 16.5% reduction (CG)

– Energy consumption: 14.9% saving (CG)

39

CONCLUDING REMARK

40

Conclusions

• Asynchronous nonblocking data copy
– A scheme to exploit multiple copy engines and CPUs for intra-

node MPI collective communications

– J.-Y. Cho, P.-R. Seo, and H.-W. Jin, “Exploiting Copy Engines for
Intra-Node MPI Collective Communication,” The Journal of
Supercomputing, May 2023

• Asynchronous blocking progress engine
– A framework for better supports for energy-aware decision

policies over multiple MPI communication channels

– K.-W. Kim, H.-W. Jin, and E.-K. Byun, “Core-idling on MPI Intra-
node Communication Channels for Energy Efficiency,” SC’21,
Poster, November 2021

41

Future Work

• Asynchronous nonblocking data copy
– Other collective calls

• Blocking and nonblocking collective communications

– Integration with inter-node communication

– Measurement with real applications

• Asynchronous blocking progress engine
– Various policies

– Measurement with real applications

42

	슬라이드 1: Asynchronism in MPI Intra-Node Communications
	슬라이드 2: Contents
	슬라이드 3: Background & Motivation
	슬라이드 4: I/O Models
	슬라이드 5: I/O Models
	슬라이드 6: Data Copies in MPI
	슬라이드 7: CPU-based Data Movement
	슬라이드 8: Our Goal #1
	슬라이드 9: Event Processing in MPI
	슬라이드 10: Busy-Waiting-based Event Processing
	슬라이드 11: Our Goal #2
	슬라이드 12: Asynchronous Nonblocking data copy
	슬라이드 13: Copy Engines
	슬라이드 14: Related Work
	슬라이드 15: Asynchronous Nonblocking Data Copy
	슬라이드 16: Synchronous Blocking Semantics
	슬라이드 17: Core-to-Channel Mapping
	슬라이드 18: Copy Engine (CE)-based Approach
	슬라이드 19: CE-CPU Hybrid Approach
	슬라이드 20: Enhancement of CPU-based approach
	슬라이드 21: Performance Measurements
	슬라이드 22: OSU Micro-Benchmark
	슬라이드 23: OSU Micro-Benchmark
	슬라이드 24: Overlapping with Computation
	슬라이드 25: Overlapping with Computation
	슬라이드 26: Asynchronous blocking Progress Engine
	슬라이드 27: CPU Power Management States
	슬라이드 28: Related Work
	슬라이드 29: Asynchronous Blocking Progress Engine
	슬라이드 30: Framework for Energy Efficient MPI
	슬라이드 31: Framework for Energy Efficient MPI
	슬라이드 32: Signal-based Blocking Communication
	슬라이드 33: Signaling Points
	슬라이드 34: Signaling Points
	슬라이드 35: Integration with Blocking Inter-Node Communication
	슬라이드 36: Performance Measurements
	슬라이드 37: OSU Micro-Benchmark
	슬라이드 38: OSU Micro-Benchmarks
	슬라이드 39: NAS Parallel Benchmarks
	슬라이드 40: Concluding remark
	슬라이드 41: Conclusions
	슬라이드 42: Future Work

