
Large-scale FFT on GPUs
Survey and Scalability Analysis

Alan Ayala
alan.ayala@amd.com

2023-08-22

alan.ayala@amd.com


Contents

▶ Introduction

▶ The Fast Fourier Transform (FFT)

▶ FFT in Modern Applications

▶ State-of-the-art: GPU-based libraries

▶ FFT Implementations

▶ Network Topology and Scalability of FFTs

▶ Effective Bandwidth Analysis

▶ Impact of Collective Operations and MPI Distributions

▶ Large-scale FFT on GPU clusters

▶ Conclusions

2/22 Together We Advance



The Fast Fourier Transform (FFT)

▶ The FFT is an algorithm developed by Cooley-Tukey in 1965.

▶ Considered one of the top 10 algorithms of the 20th century.

Definition (Discrete Fourier Transform (DFT))
Let x be an m-dimensional array of size N := N1 × N2 × · · · × Nm. Its DFT is defined by
y := DFT (x), obtained as:

y(k1, k2, . . . , km) :=
N1−1∑
n1=0

N2−1∑
n2=0

· · ·
Nm−1∑
nm=0

x(n1, n2, . . . , nm) · e
−2πi

(
k1n1
N1

+
k2n2
N2

···+ kmnm
Nm

)
.

▶ A naive DFT costs O(N2).

▶ Using the FFT, the cost can be reduced to O(N log2 N).

▶ Alternative implementations widely used in the literature, such as the Bluestein Algorithm
(1970).

3/22 Together We Advance



FFTs on Large-scale Applications

▶ Several K-space methods in ultrasound and
molecular dynamics applications use large
3D FFTs (sizes ≳ 10243 or greater), and
generally constitute over half of the total
computation time [1].

▶ Cosmological simulation codes, such as
HACC, rely on large scale FFTs that can be
greater than 20, 0003. HACC kernels based
on FFTs have been shown to scale up to
over 1.5 million MPI ranks [2].

▶ Reverse Time Migration (RTM)
Applications rely on operators that heavily
use batches of FFTs.

Figure: LAMMPS Water benchmark with a
cutoff of 3 angstroms. The FFT part of the
PPPM solver can take over 50% of runtime [3].

4/22 Together We Advance



State-of-the-art

▶ 2DECOMP&FFT Library is written in Fortran 2008 standard and has recently re-started
development. It supports NVIDIA GPUs using cuFFT, CUDA-aware MPI, and the NVIDIA
collective communication library (NCCL) [4].

▶ AccFFT Library was built on the idea of overlapping computation and blocking collective
communication by reducing the PCIe overhead. It supports NVIDIA GPUs and it is one of
the few supporting four dimensional transforms and FFT-based tools such as Laplace and
divergence useful for diverse scientific applications [5].

▶ cuFFTMp Library is a vendor implementation offered by NVIDIA. The communication is
performed either by a provided MPI library or by nvSHMEM. They also provide a reshape
API with functions such as cufftXtSetDistribution and cufftMpReshape to compute data
transpositions without performing FFTs [6].

▶ DiGPUFFT Library is one of the first parallel libraries with GPU support. Their
implementation was experimental and achieved by replacing default FFTW backend of
P3DFFT with cuFFT. From their experiments, the authors envisaged that the network
cost would account for around 40% of runtime [7].

5/22 Together We Advance



State-of-the-art

▶ FFTE Library includes a wide range of optimizations on NVIDIA GPUs, based on 1-D and
2-D decompositions. However it does not support arbitrary grid sizes and numbers of MPI
processors [8].

▶ fftMPI Library is widely used for applications in molecular dynamics. As part of its
KOKKOS package, LAMMPS extended fftMPI support to enable computation on AMD
and NVIDIA GPUs [9].

▶ heFFTe Library extends portability to AMD and Intel GPUs. It also provides features to
support batched parallel FFTs, convolutions, and sine/cosine transforms [10].

▶ MFFT Library uses a “high-precision computation, low precision communication” strategy,
and a shared-exponent floating-point number compression technique [11].

▶ SpFFT Library, supports AMD and NVIDIA GPUs. Their parallel implementation is based
on OpenMP and MPI frameworks that use slab decomposition for the spatial domain and
pencil decomposition for the frequency domain. [12]

6/22 Together We Advance



Multidimensional FFT Algorithm

7/22 Together We Advance



FFT Parallel Implementation: Slabs

For the slabs-decomposition, a single data transfer is required among processes distributed in
the y axis. Since every process holds N/Π data and communicates a 1/Π fraction to each of
its (Π− 1) neighbors, the communication cost is:

Tslabs = (Π− 1)

(
L+

Sp(N)

W · Π2

)
≈ ΠL+

Sp(N)

W · Π
,

while the number of messages sent by each process is Mslabs = Π− 1.

8/22 Together We Advance



FFT Parallel Implementation: Pencils

For the pencils-decomposition, Π is split over a 2-D grid of processes, Π := P × Q, with P
processes along the x-axis and Q processes along the y axis. Then, simply by considering each
pencil as a slab, we can apply the idea above and find that the communication cost is:

Tpencils = (P − 1)

(
L+

Sp(N)

W · P · Π

)
+ (Q − 1)

(
L+

Sp(N)

W · Q · Π

)
≈ (P + Q)L+

2Sp(N)

W · Π
,

while the number of messages sent by each process is Mpencils = P + Q − 2.

9/22 Together We Advance



FFT Parallel Implementation: Bricks
For the bricks-decomposition, we need two grids, one to handle the pencil-shapes,
Π = P × P = ρ× ρ× ρ. Four Exchanges are needed:
pencils → bricks → pencils → bricks → pencils.
Each brick needs data from other ρ− 1 pencil-shaped processors, and the amount of data that
each of these processors sends is N/Π/ρ.

Tbricks = 4

[
(ρ− 1)

(
L+

Sp(N)

W · ρ · Π

)]
≈ 4ρL+

4Sp(N)

W · Π
,

while the number of messages sent by each process is Mbricks = 4ρ.

10/22 Together We Advance



Asymptotic Communication Cost for 3-D Array Reshape (Transposition)

Number
 of

 proc
ess

es 

0
50

100
150

200
250

N
100

200
300

400
500

L
a
te

n
c
y
 C

o
s
t (m

s
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Latency model cost for different FFT decompositions

Slabs

Pencils

Bricks

Number of processes 0102030405060

N

75
100

125
150

175
200

225
250

T
im

e
 (
m

s
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Communication cost comparison for Slabs decomposition

Bandwidth cost

Latency cost

11/22 Together We Advance



Communication Time for a Parallel FFT of size N on n nodes, using
Inter-Node Bandwidth Based on Network Topology

Bisection bandwidth: minimum volume of communication allowed between any two halves of
the network, cutting a minimum number of links.

12/22 Together We Advance



Effective Bandwidth for Different MPI Implementations

▶ Frontier has Cray-MPICH by default.

▶ Overall, it performs better than OpenMPI.

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB 512MB

Message Volume

0

20

40

60

80

100

B
a
n
d
w

id
th

 [
G

B
/
s
]

Theoretical Peak

Achievable Peak

Cray MPICH ABI (8.1.23)

OpenMPI (4.1.4)

Figure: Comparison of achievable bandwidth using different MPI distributions on Frontier.

13/22 Together We Advance



Effective Bandwidth for Different MPI Implementations

▶ Summit has Spectrum-MPI by default.

▶ For small sizes, alternative distributions can perform better. This was more notorious with
Spectrum-MPI 10.3.

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB 512MB

Message Volume

0

10

20

30

40

50

B
a
n
d
w

id
th

 [
G

B
/
s
]

Theoretical Peak

Achievable Peak

MVAPICH-GDR (2.3.6)

Spectrum-MPI (10.4.1)

OpenMPI-UCX (4.1.4)

Figure: Comparison of achievable bandwidth using different MPI distributions on Summit.

14/22 Together We Advance



Impact of Collective Operation
In Fig. 4, we compare three MPI all-to-all implementations on up to 128 nodes on Summit,
using a 3-D complex-to-complex FFT of size 5123 with pencils decomposition starting and
ending on brick shape (4 reshapes).

4 8 16 32 64 128

Number of Summit Nodes

0.02

0.04

0.06

0.08

0.10

0.12

0.14

T
im

e
 [
s
]

Comparison of All-to-All Implementations

MPI_Alltoallw - OpenMPI-UCX (4.1.4)

MPI_Alltoall - Spectrum-MPI (10.4.1)

MPI_Alltoallv - Spectrum-MPI (10.4.1)

Figure: Comparison of communication time for different All-to-All MPI implementations. Using 6
GPUs per node on Summit.

15/22 Together We Advance



The impact of GPU-awareness of MPI Implementation

Around a decade ago, Nandapalan et al. performed experiments using GTX580 GPUs (200
GB/s links) and PCIe 2.0 (8GB/s links). Compared to global data exchange via shared
memory, the CUDA-based UVA approach reduced the execution time of a case study 3D FFT
by up to 49% [13]. This was one of the first signs that direct D2D exchanges are a key factor
in obtaining high performance on multi-GPU systems.

1 2 4 8 16 32 64 128

Number of Summit Nodes

0

2

4

6

8

A
lg

o
r
it

h
m

 B
a
n
d
w

id
th

 [
G

B
/
s
]

Slabs (GPU-aware)

Slabs (Non GPU-aware)

Pencils (GPU-aware)

Pencils (Non GPU-aware)

Bricks (GPU-aware)

Bricks (Non GPU-aware)

Figure: Average algorithm bandwidth for a complex-to-complex 3-D FFT of size 10243 using heFFTe
with 6 V100 GPUs per Summit node and switching the GPU-awareness of Spectrum-MPI.

16/22 Together We Advance



Scalability Analysis
Communication cost becomes an issue when adding more MPI resources. This causes linear
scaling to stop. Therefore, for an efficient and scalable FFT, it is important to leverage each
decomposition approach, MPI distribution, and the type of communication.

12 24 48 96 192 384 768 1536 3072 6144

Number of MPI processes, 1 GPU per MPI

10-3

10-2

10-1

100

T
im

e 
[s

]

Figure: Scalability of a single reshape using MPI Alltoallv, 10243 FFT on Summit with 6 GPUs/node.

17/22 Together We Advance



Scalability Analysis
The following figure shows how the selection of the intermediate grids to be used for the global
transposition (slides 4-7) is critical to ensure scalability of the parallel FFT [14].

21 22 23 24 25 26 27 28 29 21010-2

10-1

100

101

102

Ti
m

e 
(s

ec
on

ds
)

1
2
4

8
16
32

64
128
256

512
1024
2048

4096
8192

21 22 23 24 25 26 27 28 29 210

Nodes

10-2

10-1

100

101

102

Ti
m

e 
(s

ec
on

ds
)

5
10
20

40
80
160

320
640
1280

2560
5120
10240

20480
40960

Figure: Scalability of a 3D
FFT of size 10243 using
P3DFFT library on different
number of Summit nodes with
different shapes of
two-dimensional processors
grids: processor rows as power
of 2: 2ℓ of row MPI ranks
(top) and power of 2 multiple
of 5: 5× 2ℓ of row MPI ranks
(bottom).

18/22 Together We Advance



Conclusions
▶ At large-scale, latency effects considerably impact FFT scalability, and algorithmic tuning

is necessary to keep scaling (slide 17).

▶ Our mathematical models can help to define an optimal communication framework for
different hardware and network topologies.

▶ To ensure parallel FFT scalability, it is critical to choose:

▶ The right decomposition approach (slabs, pencils, or bricks).

▶ The type of MPI communication (slide 15).

▶ The processors grids used for the global transpositions (slide 18).

▶ In the literature, collective MPI operations are preferred over point-to-point since they
show better performance at large-scale. From slide 15, we conclude that choosing the
right collective routine can yield significant speedups.

▶ GPU awareness in MPI distributions must be tuned for each implementation type and
architecture to get the best performance of modern interconnections (slide 16).

▶ Parallel FFT performance vary for each MPI distribution. At large scale, it is important to
select an MPI that handles well a large number of small volume messages.

19/22 Together We Advance



Bibliography I

[1] Bradley Treeby, Jiri Jaros, Alistair Rendell, et al. “Modeling nonlinear ultrasound
propagation in heterogeneous media with power law absorption using a k-space
pseudospectral method”. In: The Journal of the Acoustical Society of America 131 (June
2012), pp. 4324–36. doi: 10.1121/1.4712021.

[2] Susan M Mniszewski, James Belak, Jean-Luc Fattebert, et al. “Enabling particle
applications for exascale computing platforms”. In: The International Journal of High
Performance Computing Applications 35.6 (2021), pp. 572–597. doi:
10.1177/10943420211022829.

[3] William McDoniel, Markus Höhnerbach, Rodrigo Canales, et al. “LAMMPS’ PPPM
Long-Range Solver for the Second Generation Xeon Phi”. In: High Performance
Computing. Cham: Springer International Publishing, 2017, pp. 61–78.

[4] N. Li et al. 2DECOMP&FFT library. Available at
https://github.com/2decomp-fft/2decomp-fft. 2023.

[5] Amir Gholami, Judith Hill, Dhairya Malhotra, et al. “AccFFT: A library for
distributed-memory FFT on CPU and GPU architectures”. In: CoRR abs/1506.07933
(2015). arXiv: 1506.07933.

20/22 Together We Advance

https://doi.org/10.1121/1.4712021
https://doi.org/10.1177/10943420211022829
https://github.com/2decomp-fft/2decomp-fft
https://arxiv.org/abs/1506.07933


Bibliography II
[6] NVIDIA. Multinode Multi-GPU: Using NVIDIA cuFFTMp FFTs at Scale. 2023. url:

https://developer.nvidia.com/blog/multinode-multi-gpu-using-nvidia-

cufftmp-ffts-at-scale.

[7] Kenneth Czechowski, Chris McClanahan, Casey Battaglino, et al. “On the
communication complexity of 3D FFTs and its implications for Exascale”. In: June 2012.
doi: 10.1145/2304576.2304604.

[8] Daisuke Takahashi. FFTE 7.0: A fast Fourier transform package. 2021. url:
http://www.ffte.jp/.

[9] Aidan P. Thompson, H. Metin Aktulga, Richard Berger, et al. “LAMMPS - a flexible
simulation tool for particle-based materials modeling at the atomic, meso, and
continuum scales”. In: Computer Physics Communications 271 (2022), p. 108171. issn:
0010-4655. doi: https://doi.org/10.1016/j.cpc.2021.108171. url:
https://www.sciencedirect.com/science/article/pii/S0010465521002836.

[10] Alan Ayala et al. heFFTe library. Available at https://bitbucket.org/icl/heffte.
2023.

21/22 Together We Advance

https://developer.nvidia.com/blog/multinode-multi-gpu-using-nvidia-cufftmp-ffts-at-scale
https://developer.nvidia.com/blog/multinode-multi-gpu-using-nvidia-cufftmp-ffts-at-scale
https://doi.org/10.1145/2304576.2304604
http://www.ffte.jp/
https://doi.org/https://doi.org/10.1016/j.cpc.2021.108171
https://www.sciencedirect.com/science/article/pii/S0010465521002836
https://bitbucket.org/icl/heffte


Bibliography III
[11] Yuwen Zhao, Fangfang Liu, Wenjing Ma, et al. “MFFT: A GPU Accelerated Highly

Efficient Mixed-Precision Large-Scale FFT Framework”. In: ACM Trans. Archit. Code
Optim. (June 2023). Just Accepted.

[12] Simon Frasch et al. spFFT library. Available at
https://github.com/eth-cscs/SpFFT. 2023.

[13] Nimalan Nandapalan, Jiri Jaros, Alistair P. Rendell, et al. “Implementation of 3D FFTs
Across Multiple GPUs in Shared Memory Environments”. In: 2012 13th International
Conference on Parallel and Distributed Computing, Applications and Technologies. 2012,
pp. 167–172.

[14] Alan Ayala, Stan Tomov, Piotr Luszczek, et al. Interim Report on Benchmarking FFT
Libraries on High Performance Systems. ICL Tech Report ICL-UT-21-03. University of
Tennessee, 2021-07 2021.

22/22 Together We Advance

https://github.com/eth-cscs/SpFFT

	anm62: 
	62.1: 
	62.0: 
	anm59: 
	59.1: 
	59.0: 
	anm56: 
	56.1: 
	56.0: 
	anm53: 
	53.1: 
	53.0: 
	anm50: 
	50.1: 
	50.0: 
	anm47: 
	47.1: 
	47.0: 
	anm44: 
	44.1: 
	44.0: 
	anm41: 
	41.1: 
	41.0: 
	anm38: 
	38.1: 
	38.0: 
	anm35: 
	35.1: 
	35.0: 
	anm32: 
	32.1: 
	32.0: 
	anm29: 
	29.1: 
	29.0: 
	anm26: 
	26.1: 
	26.0: 
	anm23: 
	23.1: 
	23.0: 
	anm20: 
	20.1: 
	20.0: 
	anm17: 
	17.1: 
	17.0: 
	anm14: 
	14.1: 
	14.0: 
	anm11: 
	11.1: 
	11.0: 
	anm8: 
	8.1: 
	8.0: 
	anm5: 
	5.1: 
	5.0: 
	anm2: 
	2.1: 
	2.0: 


