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The Fast Fourier Transform (FFT)

▶ The FFT is an algorithm developed by Cooley-Tukey in 1965.

▶ Considered one of the top 10 algorithms of the 20th century.

Definition (Discrete Fourier Transform (DFT))
Let x be an m-dimensional array of size N := N1 × N2 × · · · × Nm. Its DFT is defined by
y := DFT (x), obtained as:

y(k1, k2, . . . , km) :=
N1−1∑
n1=0

N2−1∑
n2=0

· · ·
Nm−1∑
nm=0

x(n1, n2, . . . , nm) · e
−2πi

(
k1n1
N1

+
k2n2
N2

···+ kmnm
Nm

)
.

▶ A naive DFT costs O(N2).

▶ Using the FFT, the cost can be reduced to O(N log2 N).

▶ Alternative implementations widely used in the literature, such as the Bluestein Algorithm
(1970).
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FFTs on Large-scale Applications

▶ Several K-space methods in ultrasound and
molecular dynamics applications use large
3D FFTs (sizes ≳ 10243 or greater), and
generally constitute over half of the total
computation time [1].

▶ Cosmological simulation codes, such as
HACC, rely on large scale FFTs that can be
greater than 20, 0003. HACC kernels based
on FFTs have been shown to scale up to
over 1.5 million MPI ranks [2].

▶ Reverse Time Migration (RTM)
Applications rely on operators that heavily
use batches of FFTs.

Figure: LAMMPS Water benchmark with a
cutoff of 3 angstroms. The FFT part of the
PPPM solver can take over 50% of runtime [3].
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State-of-the-art

▶ 2DECOMP&FFT Library is written in Fortran 2008 standard and has recently re-started
development. It supports NVIDIA GPUs using cuFFT, CUDA-aware MPI, and the NVIDIA
collective communication library (NCCL) [4].

▶ AccFFT Library was built on the idea of overlapping computation and blocking collective
communication by reducing the PCIe overhead. It supports NVIDIA GPUs and it is one of
the few supporting four dimensional transforms and FFT-based tools such as Laplace and
divergence useful for diverse scientific applications [5].

▶ cuFFTMp Library is a vendor implementation offered by NVIDIA. The communication is
performed either by a provided MPI library or by nvSHMEM. They also provide a reshape
API with functions such as cufftXtSetDistribution and cufftMpReshape to compute data
transpositions without performing FFTs [6].

▶ DiGPUFFT Library is one of the first parallel libraries with GPU support. Their
implementation was experimental and achieved by replacing default FFTW backend of
P3DFFT with cuFFT. From their experiments, the authors envisaged that the network
cost would account for around 40% of runtime [7].
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State-of-the-art

▶ FFTE Library includes a wide range of optimizations on NVIDIA GPUs, based on 1-D and
2-D decompositions. However it does not support arbitrary grid sizes and numbers of MPI
processors [8].

▶ fftMPI Library is widely used for applications in molecular dynamics. As part of its
KOKKOS package, LAMMPS extended fftMPI support to enable computation on AMD
and NVIDIA GPUs [9].

▶ heFFTe Library extends portability to AMD and Intel GPUs. It also provides features to
support batched parallel FFTs, convolutions, and sine/cosine transforms [10].

▶ MFFT Library uses a “high-precision computation, low precision communication” strategy,
and a shared-exponent floating-point number compression technique [11].

▶ SpFFT Library, supports AMD and NVIDIA GPUs. Their parallel implementation is based
on OpenMP and MPI frameworks that use slab decomposition for the spatial domain and
pencil decomposition for the frequency domain. [12]
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Multidimensional FFT Algorithm
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FFT Parallel Implementation: Slabs

For the slabs-decomposition, a single data transfer is required among processes distributed in
the y axis. Since every process holds N/Π data and communicates a 1/Π fraction to each of
its (Π− 1) neighbors, the communication cost is:

Tslabs = (Π− 1)

(
L+

Sp(N)

W · Π2

)
≈ ΠL+

Sp(N)

W · Π
,

while the number of messages sent by each process is Mslabs = Π− 1.
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FFT Parallel Implementation: Pencils

For the pencils-decomposition, Π is split over a 2-D grid of processes, Π := P × Q, with P
processes along the x-axis and Q processes along the y axis. Then, simply by considering each
pencil as a slab, we can apply the idea above and find that the communication cost is:

Tpencils = (P − 1)

(
L+

Sp(N)

W · P · Π

)
+ (Q − 1)

(
L+

Sp(N)

W · Q · Π

)
≈ (P + Q)L+

2Sp(N)

W · Π
,

while the number of messages sent by each process is Mpencils = P + Q − 2.
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FFT Parallel Implementation: Bricks
For the bricks-decomposition, we need two grids, one to handle the pencil-shapes,
Π = P × P = ρ× ρ× ρ. Four Exchanges are needed:
pencils → bricks → pencils → bricks → pencils.
Each brick needs data from other ρ− 1 pencil-shaped processors, and the amount of data that
each of these processors sends is N/Π/ρ.

Tbricks = 4

[
(ρ− 1)

(
L+

Sp(N)

W · ρ · Π

)]
≈ 4ρL+

4Sp(N)

W · Π
,

while the number of messages sent by each process is Mbricks = 4ρ.
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Asymptotic Communication Cost for 3-D Array Reshape (Transposition)
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Communication Time for a Parallel FFT of size N on n nodes, using
Inter-Node Bandwidth Based on Network Topology

Bisection bandwidth: minimum volume of communication allowed between any two halves of
the network, cutting a minimum number of links.
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Effective Bandwidth for Different MPI Implementations

▶ Frontier has Cray-MPICH by default.

▶ Overall, it performs better than OpenMPI.
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Figure: Comparison of achievable bandwidth using different MPI distributions on Frontier.
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Effective Bandwidth for Different MPI Implementations

▶ Summit has Spectrum-MPI by default.

▶ For small sizes, alternative distributions can perform better. This was more notorious with
Spectrum-MPI 10.3.
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Impact of Collective Operation
In Fig. 4, we compare three MPI all-to-all implementations on up to 128 nodes on Summit,
using a 3-D complex-to-complex FFT of size 5123 with pencils decomposition starting and
ending on brick shape (4 reshapes).
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The impact of GPU-awareness of MPI Implementation

Around a decade ago, Nandapalan et al. performed experiments using GTX580 GPUs (200
GB/s links) and PCIe 2.0 (8GB/s links). Compared to global data exchange via shared
memory, the CUDA-based UVA approach reduced the execution time of a case study 3D FFT
by up to 49% [13]. This was one of the first signs that direct D2D exchanges are a key factor
in obtaining high performance on multi-GPU systems.
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Figure: Average algorithm bandwidth for a complex-to-complex 3-D FFT of size 10243 using heFFTe
with 6 V100 GPUs per Summit node and switching the GPU-awareness of Spectrum-MPI.
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Scalability Analysis
Communication cost becomes an issue when adding more MPI resources. This causes linear
scaling to stop. Therefore, for an efficient and scalable FFT, it is important to leverage each
decomposition approach, MPI distribution, and the type of communication.
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Figure: Scalability of a single reshape using MPI Alltoallv, 10243 FFT on Summit with 6 GPUs/node.
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Scalability Analysis
The following figure shows how the selection of the intermediate grids to be used for the global
transposition (slides 4-7) is critical to ensure scalability of the parallel FFT [14].
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Conclusions
▶ At large-scale, latency effects considerably impact FFT scalability, and algorithmic tuning

is necessary to keep scaling (slide 17).

▶ Our mathematical models can help to define an optimal communication framework for
different hardware and network topologies.

▶ To ensure parallel FFT scalability, it is critical to choose:

▶ The right decomposition approach (slabs, pencils, or bricks).

▶ The type of MPI communication (slide 15).

▶ The processors grids used for the global transpositions (slide 18).

▶ In the literature, collective MPI operations are preferred over point-to-point since they
show better performance at large-scale. From slide 15, we conclude that choosing the
right collective routine can yield significant speedups.

▶ GPU awareness in MPI distributions must be tuned for each implementation type and
architecture to get the best performance of modern interconnections (slide 16).

▶ Parallel FFT performance vary for each MPI distribution. At large scale, it is important to
select an MPI that handles well a large number of small volume messages.
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