
Implementing an MPI Library over Collective
Communication Libraries for Habana

Accelerators

Chen-Chun Chen

Presented at MUG 2023

E-mail: chen.10252@osu.edu

mailto:chen.10252@osu.edu

2Network Based Computing Laboratory MUG 2023

• Introduction
• Motivation
• Implementation
• Evaluation Results
• Conclusion and Future Work

Outline

3Network Based Computing Laboratory MUG 2023

• The emergence of deep learning applications and frameworks
– Early (2014) frameworks used a single fast GPU
– Today, parallel training on multiple GPUs and multiple nodes is being supported by most

frameworks
– A lot of fragmentation in the efforts (Horovod, MPI, NCCL, Gloo, gRPC, etc.)

• The development of HPC supports
– Multi-core/many-core technologies
– Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand, RoCE, and

Slingshot)
– Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD
– Accelerators (NVIDIA GPGPUs, AMD GPUs, Habana Gaudi)

Introduction: Modern HPC for DL Frameworks

4Network Based Computing Laboratory MUG 2023

• Founded in 2016 to develop purpose-built AI processors
• Acquired by Intel in 2019
• Designed to optimize AI performance, delivering higher

AI efficiency than traditional CPUs and GPUs
– GEMM engine (MME) excels at matrix

multiplication
– 32 GB of HBM2 memory

• Habana Gaudi within a node:
– 8 Habana Gaudi accelerators
– 24 x 100GbE RDMA RoCE for scale-out
– Non-blocking, all-2-all internal interconnect across

Gaudi AI processors
• Training cost saving on Gaudi 2

Introduction: Habana Gaudi

courtesy: https://extreme
computingtraining.anl.gov
/wp-content/uploads/site
s/96/2022/11/ATPESC-202
2-Track-1-Talk-5-Pandit-Ha
bana-Gaudi.pdfExample of Integrated Server with eight Gaudi AI

processors, two Xeon CPU and multiple Ethernet Interfaces

courtesy: https://extremecomputingtraining.anl.gov/wp-content/uploads/sites/96/2022/11/ATP
ESC-2022-Track-1-Talk-5-Pandit-Habana-Gaudi.pdf

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu

5Network Based Computing Laboratory MUG 2023

• Hardware:
– Habana Gaudi, Habana Gaudi 2
– Cluster with 8 accelerators per node

• Software:
– SynapseAI
– A modified TensorFlow or PyTorch image with new implemented computing kernels
– Habana Collective Communication Library (HCCL)

• Parallel training:
– Use HCCL for communication between HPUs
– A modified Horovod with HCCL communication layers

Introduction: Habana Gaudi (cont’d)

6Network Based Computing Laboratory MUG 2023

• Introduction
• Motivation
• Implementation
• Evaluation Results
• Conclusion and Future Work

Outline

7Network Based Computing Laboratory MUG 2023

• Besides HCCL, are there other communication approaches for
HPUs?
– Traditional GPU-aware MPI libraries

• If we have HCCL, why we need MPI libraries to support HPUs?
• Can we run traditional HPC applications on HPUs?

– Can the GEMM engine also offer benefits to applications
beyond TensorFlow and PyTorch?

• Is HCCL enough?
– Vender-specific collective communication libraries usually

have significant overheads, especially at small messages
– Can we use other optimization, such as the hybrid designs,

to provide better performance over all message sizes?

Motivation

Comparison of MPI and NCCL Allreduce latency
using 32 GPUs (4 nodes) on a DGX A100 system.

Comparison of MPI and RCCL Allgather latency
using 8 GPUs (4 nodes) on an AMD GPU system.

8Network Based Computing Laboratory MUG 2023

• Introduction
• Motivation
• Implementation

– xCCL Abstraction Layer for GPU-aware MPI
– Built-in Collective Communication Functions
– Customized Send-recv-based Collective Communication Functions
– Non-blocking Designs

• Evaluation Results
• Conclusion and Future Work

Outline

9Network Based Computing Laboratory MUG 2023

• Given the success of NCCL library, Habana has proposed very
similar communication APIs with compatible functionalities.
– By changing the prefix to hccl

• MVAPICH2-GDR supports NCCL, and MVAPICH-Plus supports
xCCL, such as NCCL and RCCL.

• xCCL abstraction layer
enables us to use a single
API to access third-party
libraries.

• A high level of adaptability
and productivity by
aggregating existing APIs

xCCL Abstraction Layer for GPU-aware MPI
Category NCCL/RCCL/MSCCL HCCL

Communicator
Creation

ncclCommInitRank hcclCommInitRank

ncclCommDestroy hcclCommDestroy

Collective
Communication

ncclBroadcast hcclBroadcast

ncclAllReduce hcclAllreduce

ncclReduce hcclReduce

ncclReduceScatter hcclReduceScatter

ncclAllGather hcclAllGather

Group Calls
ncclGroupStart hcclGroupStart

ncclGroupEnd hcclGroupEnd

Point-to-point
Communication

ncclSend hcclSend

ncclRecv cclRecv

Types

ncclComm_t hcclComm_t

ncclDataType_t hcclDataType_t

ncclRedOp_t hcclRedOp_t

Datatypes

ncclFloat hcclFloat

ncclInt32 hcclInt32

ncclUint8 hcclUint8

Reduce Operations

ncclSum hcclSum

ncclProd hcclProd

ncclMax hcclMax

 MPI Middleware

 Accelerators NVIDIA GPUs AMD GPUs Habana HPUs

 xCCL Abstraction Layer

 Applications

 xCCL
 APIs HCCL APIsRCCL APIs

Device Buffer IdentifyDatatype Support

Reduce Operation Support Communicator Maintenance

Synchronization

Point-to-point CommunicationCollectives Communication

NCCL/MSCCL APIs

10Network Based Computing Laboratory MUG 2023

• 5 built-in collective communication functions:
– Broadcast: hcclBroadcast
– AllReduce: hcclAllreduce
– Reduce: hcclReduce
– ReduceScatter: hcclReduceScatter
– AllGather: hcclAllGather

• Map these HCCL APIs to our xCCL APIs and directly call those
– E.g.: xcclAllReduce is created on top of hcclAllReduce

• Checking mechanism for the supported datatype and reduce operations
– HCCL support less datatype currently (only support float currently)

Built-in Collective Functions

11Network Based Computing Laboratory MUG 2023

• The other collective calls are simple send-recv-based communications
– E.g.: Gather, Scatter, Alltoall

• No vendor-optimized built-in implementation, typically users used to have to
implement it on their own.
– Use ncclGroupStart, ncclGroupEnd, ncclSend, and ncclRecv to

implement by their own

• We implemented those functions with our high-level xCCL APIs and provided
hooks in MPI runtimes
– Alltoall, Alltoallv, Gather, Gatherv, Scatter, Scatterv, and Allgatherv

Customized Send-recv-based Collective Functions

12Network Based Computing Laboratory MUG 2023

• Support MPI_Isend and MPI_Irecv (MPI_Wait)
• Support non-blocking collective operations

– E.g.: MPI_Iallreduce
• The xCCL communication calls are non-blocking operations

– Remove the synchronization and defer it until the MPI_Wait stage
– Maintain the necessary information between the non-blocking and wait operations

Non-blocking Designs

13Network Based Computing Laboratory MUG 2023

• Introduction
• Motivation
• Implementation
• Evaluation Results
• Conclusion and Future Work

Outline

14Network Based Computing Laboratory MUG 2023

• Platform: Voyager at San Diego Supercomputer Center (SDSC)
– CPU: Intel Xeon Gold 6336Y
– Memory: 512 GB DDR4
– Sockets: 2
– Core/sockets: 24
– Accelerator/node: 8 Habana Gaudi Processors
– Device Memory/HPU: 32 GB HDM2
– Interconnection: 400 Gbps interconnect from Arista

• Voyager is designed to support research in science and engineering, especially for artificial intelligence
and deep learning computing.

• Micro benchmark: OSU Micro-Benchmarks 7.0 with extended features
– Use Synapse AI Software Suite APIs to support the device buffer on Habana Gaudi

• Application-level benchmark: TansorFlow + Horovod

Evaluation Results

15Network Based Computing Laboratory MUG 2023

• Intranode overhead for latency around 270 μs, internode overhead for latency around 330 μs.
• However, lower latency and higher bandwidth for internode point-to-point operations.

Micro-Benchmark Evaluation: Point-to-point

4 8 16 32 64 128 256 512 1K 2K 4K
200
220
240
260
280
300
320
340
360
380
400

xCCL w/HCCL 1.17.1

Message Size (bytes)

La
te

nc
y

(u
s)

8K
16K

32K
64K

128K
256K

512K 1M 2M 4M
0

200
400
600
800

1000
1200
1400
1600
1800

xCCL w/HCCL 1.17.1

Message Size (bytes)

La
te

nc
y

(u
s)

8K
16K

32K
64K

128K
256K

512K 1M 2M 4M
0

500

1000

1500

2000

2500

3000

3500
xCCL w/HCCL 1.17.1

Message Size (bytes)

Ba
nd

w
id

th
 (M

B/
s)

8K
16K

32K
64K

128K
256K

512K 1M 2M 4M
0

1000

2000

3000

4000

5000

6000

7000
xCCL w/HCCL 1.17.1

Message Size (bytes)

Ba
nd

w
id

th
 (M

B/
s)

4 8 16 32 64 128 256 512 1K 2K 4K
300
320
340
360
380
400
420
440
460
480
500

xCCL w/HCCL 1.17.1

Message Size (bytes)

La
te

nc
y

(u
s)

8K
16K

32K
64K

128K
256K

512K 1M 2M 4M
0

100
200
300
400
500
600
700
800
900

xCCL w/HCCL 1.17.1

Message Size (bytes)

La
te

nc
y

(u
s)

8K
16K

32K
64K

128K
256K

512K 1M 2M 4M
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
xCCL w/HCCL 1.17.1

Message Size (bytes)

Ba
nd

w
id

th
 (M

B/
s)

8K
16K

32K
64K

128K
256K

512K 1M 2M 4M
0

2000

4000

6000
8000

10000

12000

14000

16000
xCCL w/HCCL 1.17.1

Message Size (bytes)

Ba
nd

w
id

th
 (M

B/
s)

Intranode Point-to-Point Latency (Small Message) Intranode Point-to-Point Latency (Large Message) Intranode Point-to-Point Bandwidth Intranode Point-to-Point Bi-Directional Bandwidth

Internode Point-to-Point Latency (Small Message) Internode Point-to-Point Latency (Large Message) Internode Point-to-Point Bandwidth Internode Point-to-Point Bi-Directional Bandwidth

16Network Based Computing Laboratory MUG 2023

• Observe overheads for small messages, especially at the beginning stage, but mostly good on a single node.
• For Allreduce, Reduce, and Bcast on multiple nodes, we observe degradations shown by a step curve around 16 and 64 bytes.
• Poor performance for Alltoall

Micro-Benchmark Evaluation: Collective

4 16 64
256 1K 4K

16K
64K

256K 1M
0

10
20
30
40
50
60
70
80
90

100

xCCL w/HCCL 1.17.1

Message Size (bytes)

La
te

nc
y

(u
s)

4 16 64
256 1K 4K

16K
64K

256K 1M
0

20
40
60
80

100
120
140
160
180
200

xCCL w/HCCL 1.17.1

Message Size (bytes)

La
te

nc
y

(u
s)

4 16 64
256 1K 4K

16K
64K

256K 1M
0

10
20
30
40
50
60
70
80
90

100

xCCL w/HCCL 1.17.1

Message Size (bytes)

La
te

nc
y

(u
s)

4 16 64
256 1K 4K

16K
64K

256K 1M
0

100
200
300
400
500
600
700
800
900

1000

xCCL w/HCCL 1.17.1

Message Size (bytes)

La
te

nc
y

(u
s)

Allreduce w/ HCCL (1 Node, 8 HPUs) Reduce w/ HCCL (1 Node, 8 HPUs) Bcast w/ HCCL (1 Node, 8 HPUs) Alltoall w/ HCCL (1 Node, 8 HPUs)

4 16 64
256 1K 4K

16K
64K

256K 1M
0

200

400

600

800

1000

1200

xCCL w/HCCL 1.17.1

Message Size (bytes)

La
te

nc
y

(u
s)

4 16 64
256 1K 4K

16K
64K

256K 1M
0

500

1000

1500

2000

2500

3000

xCCL w/HCCL 1.17.1

Message Size (bytes)

La
te

nc
y

(u
s)

4 16 64
256 1K 4K

16K
64K

256K 1M
0

200

400

600
800

1000

1200

1400
1600

xCCL w/HCCL 1.17.1

Message Size (bytes)

La
te

nc
y

(u
s)

4 16 64
256 1K 4K

16K
64K

256K 1M
0

200000

400000

600000

800000

1000000

1200000

1400000
xCCL w/HCCL 1.17.1

Message Size (bytes)

La
te

nc
y

(u
s)

Allreduce w/ HCCL (4 Nodes, 32 HPUs) Reduce w/ HCCL (4 Nodes, 32 HPUs) Bcast w/ HCCL (4 Nodes, 32 HPUs) Alltoall w/ HCCL (4 Nodes, 32 HPUs)

17Network Based Computing Laboratory MUG 2023

• On single node, xCCL provides 5139 img/sec throughput with batch size 128, and it is close to the
throughput of 4936 img/sec using pure HCCL (4% overhead).

• On multiple nodes (4 nodes), both xCCL and pure HCCL reach the throughput of
11300 img/sec where the overhead is less than 1%

• This evaluation proves that our xCCL designs can be easily extended to new
architectures and collective communication libraries with negligible overheads.

Application-Level Evaluation

32 64 128
0

1000
2000
3000
4000
5000
6000
7000
8000

Proposed xCCL w/ HCCL 1.17.1
Pure HCCL 1.17.1

Batch Size

Th
ro

ug
hp

ut
 (I

m
ag

e/
se

c)

32 64 128
0

2000

4000

6000

8000

10000

12000

14000 Proposed xCCL w/ HCCL 1.17.1
Pure HCCL 1.17.1

Batch Size

Th
ro

ug
hp

ut
 (I

m
ag

e/
se

c)

1 Node, 8 HPUs 4 Nodes, 32 HPUs

• The container image has already contained
prebuilt Habaha TensorFlow and Horovod.

• The computing kernel is replaced by Habana
ops through TensorFlow custom ops, the com
munication layer in Horovod is implemented
by HCCL directly.

• Modify the Horovod communication by
replacing all hcclAllreduce calls with
MPI_Allreduce operations.

18Network Based Computing Laboratory MUG 2023

• Introduction
• Motivation
• Implementation
• Evaluation Results
• Conclusion and Future Work

Outline

19Network Based Computing Laboratory MUG 2023

• To support Habana Gaudi accelerators deployed on top supercomputers for HPC and Deep
Learning applications, it is pertinent to have comprehensive support in the communication
libraries for optimal and enhanced communication-level performance.

• Early experience in exploring the novel and state-of-the-art Habana Gaudi Accelerators.
• Support HCCL as the backend with GPU-aware MPI library runtimes in MVAPICH-Plus.
• Support blocking and non-blocking, point-to-point and collective MPI operations.
• Application-level evaluations only show few overheads.
• In the future, we intend to continue this work to develop and provide better strategies for small

messages, such as staging approaches, and propose hybrid designs to leverage the best
performance over all message sizes.

Conclusion and Future Work

20Network Based Computing Laboratory MUG 2023

Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

chen.10252@osu.edu

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

Follow us on

https://twitter.com/mvapich

http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
mailto:chen.10252@osu.edu
https://twitter.com/mvapich

	Implementing an MPI Library over Collective Communication Libra
	Outline
	Introduction: Modern HPC for DL Frameworks
	Introduction: Habana Gaudi
	Introduction: Habana Gaudi (cont’d)
	Outline (2)
	Motivation
	Outline (3)
	xCCL Abstraction Layer for GPU-aware MPI
	Built-in Collective Functions
	Customized Send-recv-based Collective Functions
	Non-blocking Designs
	Outline (4)
	Evaluation Results
	Micro-Benchmark Evaluation: Point-to-point
	Micro-Benchmark Evaluation: Collective
	Application-Level Evaluation
	Outline (5)
	Conclusion and Future Work
	Thank You!

