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• The emergence of deep learning applications and frameworks
– Early (2014) frameworks used a single fast GPU
– Today, parallel training on multiple GPUs and multiple nodes is being supported by most 

frameworks
– A lot of fragmentation in the efforts (Horovod, MPI, NCCL, Gloo, gRPC, etc.)

• The development of HPC supports
– Multi-core/many-core technologies
– Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand, RoCE, and 

Slingshot)
– Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD
– Accelerators (NVIDIA GPGPUs, AMD GPUs, Habana Gaudi)

Introduction: Modern HPC for DL Frameworks
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• Founded in 2016 to develop purpose-built AI processors
• Acquired by Intel in 2019
• Designed to optimize AI performance, delivering higher 

AI efficiency than traditional CPUs and GPUs
– GEMM engine (MME) excels at matrix 

multiplication
– 32 GB of HBM2 memory

• Habana Gaudi within a node:
– 8 Habana Gaudi accelerators
– 24 x 100GbE RDMA RoCE for scale-out
– Non-blocking, all-2-all internal interconnect across 

Gaudi AI processors
• Training cost saving on Gaudi 2

Introduction: Habana Gaudi

courtesy: https://extreme
computingtraining.anl.gov
/wp-content/uploads/site
s/96/2022/11/ATPESC-202
2-Track-1-Talk-5-Pandit-Ha
bana-Gaudi.pdfExample of Integrated Server with eight Gaudi AI 

processors, two Xeon CPU and multiple Ethernet Interfaces

courtesy: https://extremecomputingtraining.anl.gov/wp-content/uploads/sites/96/2022/11/ATP
ESC-2022-Track-1-Talk-5-Pandit-Habana-Gaudi.pdf
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• Hardware: 
– Habana Gaudi, Habana Gaudi 2
– Cluster with 8 accelerators per node

• Software: 
– SynapseAI
– A modified TensorFlow or PyTorch image with new implemented computing kernels
– Habana Collective Communication Library (HCCL)

• Parallel training:
– Use HCCL for communication between HPUs
– A modified Horovod with HCCL communication layers

Introduction: Habana Gaudi (cont’d)
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• Besides HCCL, are there other communication approaches for 
HPUs?
– Traditional GPU-aware MPI libraries

• If we have HCCL, why we need MPI libraries to support HPUs?
• Can we run traditional HPC applications on HPUs?

– Can the GEMM engine also offer benefits to applications 
beyond TensorFlow and PyTorch?

• Is HCCL enough? 
– Vender-specific collective communication libraries usually 

have significant overheads, especially at small messages
– Can we use other optimization, such as the hybrid designs, 

to provide better performance over all message sizes?

Motivation

Comparison of MPI and NCCL Allreduce latency 
using 32 GPUs (4 nodes) on a DGX A100 system.

Comparison of MPI and RCCL Allgather latency 
using 8 GPUs (4 nodes) on an AMD GPU system.
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• Given the success of NCCL library, Habana has proposed very 
similar communication APIs with compatible functionalities.
– By changing the prefix to hccl

• MVAPICH2-GDR supports NCCL, and MVAPICH-Plus supports 
xCCL, such as NCCL and RCCL.

• xCCL abstraction layer 
enables us to use a single 
API to access third-party 
libraries.

• A high level of adaptability 
and productivity by 
aggregating existing APIs

xCCL Abstraction Layer for GPU-aware MPI
Category NCCL/RCCL/MSCCL HCCL

Communicator 
Creation

ncclCommInitRank hcclCommInitRank

ncclCommDestroy hcclCommDestroy

Collective 
Communication

ncclBroadcast hcclBroadcast

ncclAllReduce hcclAllreduce

ncclReduce hcclReduce

ncclReduceScatter hcclReduceScatter

ncclAllGather hcclAllGather

Group Calls
ncclGroupStart hcclGroupStart

ncclGroupEnd hcclGroupEnd

Point-to-point 
Communication

ncclSend hcclSend

ncclRecv cclRecv

Types

ncclComm_t hcclComm_t

ncclDataType_t hcclDataType_t

ncclRedOp_t hcclRedOp_t

Datatypes

ncclFloat hcclFloat

ncclInt32 hcclInt32

ncclUint8 hcclUint8

Reduce Operations

ncclSum hcclSum

ncclProd hcclProd

ncclMax hcclMax

   MPI Middleware

   Accelerators NVIDIA GPUs AMD GPUs Habana HPUs

  xCCL Abstraction Layer 

   Applications 

  xCCL
  APIs HCCL APIsRCCL APIs

Device Buffer IdentifyDatatype Support

Reduce Operation Support Communicator Maintenance

Synchronization

Point-to-point CommunicationCollectives Communication

NCCL/MSCCL APIs
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• 5 built-in collective communication functions:
– Broadcast: hcclBroadcast
– AllReduce: hcclAllreduce
– Reduce: hcclReduce
– ReduceScatter: hcclReduceScatter
– AllGather: hcclAllGather

• Map these HCCL APIs to our xCCL APIs and directly call those
– E.g.: xcclAllReduce is created on top of hcclAllReduce

• Checking mechanism for the supported datatype and reduce operations
– HCCL support less datatype currently (only support float currently)

Built-in Collective Functions
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• The other collective calls are simple send-recv-based communications
– E.g.: Gather, Scatter, Alltoall

• No vendor-optimized built-in implementation, typically users used to have to 
implement it on their own.
– Use ncclGroupStart, ncclGroupEnd, ncclSend, and ncclRecv to 

implement by their own

• We implemented those functions with our high-level xCCL APIs and provided 
hooks in MPI runtimes
– Alltoall, Alltoallv, Gather, Gatherv, Scatter, Scatterv, and Allgatherv

Customized Send-recv-based Collective Functions
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• Support  MPI_Isend and MPI_Irecv (MPI_Wait)
• Support non-blocking collective operations

– E.g.: MPI_Iallreduce
• The xCCL communication calls are non-blocking operations

– Remove the synchronization and defer it until the MPI_Wait stage
– Maintain the necessary information between the non-blocking and wait operations

Non-blocking Designs
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• Platform: Voyager at San Diego Supercomputer Center (SDSC)
– CPU: Intel Xeon Gold 6336Y
– Memory: 512 GB DDR4
– Sockets: 2
– Core/sockets: 24 
– Accelerator/node: 8 Habana Gaudi Processors
– Device Memory/HPU: 32 GB HDM2
– Interconnection: 400 Gbps interconnect from Arista

• Voyager is designed to support research in science and engineering, especially for artificial intelligence 
and deep learning computing.

• Micro benchmark: OSU Micro-Benchmarks 7.0 with extended features
– Use Synapse AI Software Suite APIs to support the device buffer on Habana Gaudi

• Application-level benchmark: TansorFlow + Horovod

Evaluation Results
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• Intranode overhead for latency around 270 μs, internode overhead for latency around 330 μs.
• However, lower latency and higher bandwidth for internode point-to-point operations.

Micro-Benchmark Evaluation: Point-to-point
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• Observe overheads for small messages, especially at the beginning stage, but mostly good on a single node.
• For Allreduce, Reduce, and Bcast on multiple nodes, we observe degradations shown by a step curve around 16 and 64 bytes.
• Poor performance for Alltoall

Micro-Benchmark Evaluation: Collective
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• On single node, xCCL provides 5139 img/sec throughput with batch size 128, and it is close to the 
throughput of 4936 img/sec using pure HCCL (4% overhead).

• On multiple nodes (4 nodes), both xCCL and pure HCCL reach the throughput of 
11300 img/sec where the overhead is less than 1% 

• This evaluation proves that our xCCL designs can be easily extended to new 
architectures and collective communication libraries with negligible overheads.

Application-Level Evaluation
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• The container image has already contained 
prebuilt Habaha TensorFlow and Horovod.

• The computing kernel is replaced by Habana 
ops through TensorFlow custom ops, the com 
munication layer in Horovod is implemented 
by HCCL directly.

• Modify the Horovod communication by 
replacing all hcclAllreduce calls with 
MPI_Allreduce operations.
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• To support Habana Gaudi accelerators deployed on top supercomputers for HPC and Deep 
Learning applications, it is pertinent to have comprehensive support in the communication 
libraries for optimal and enhanced communication-level performance.

• Early experience in exploring the novel and state-of-the-art Habana Gaudi Accelerators.
• Support HCCL as the backend with GPU-aware MPI library runtimes in MVAPICH-Plus.
• Support blocking and non-blocking, point-to-point and collective MPI operations.
• Application-level evaluations only show few overheads.
• In the future, we intend to continue this work to develop and provide better strategies for small 

messages, such as staging approaches, and propose hybrid designs to leverage the best 
performance over all message sizes.

Conclusion and Future Work
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Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

chen.10252@osu.edu 

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

Follow us on

https://twitter.com/mvapich 

http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
mailto:chen.10252@osu.edu
https://twitter.com/mvapich
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