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Introduction: Drivers of Modern HPC Cluster Architectures

High Performance Interconnects -

Multi-/Many-core InfiniBand Accelerators
Processors <1usec latency, 200-400Gbps Bandwidth> high compute density, high SSD, NVMe-S5D, NVRAM
performance/watt
*  Multi-core/many-core technologies >9.7 TFlop DP on a chip

*  Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand, RoCE, Slingshot)
*  Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD
*  Accelerators (NVIDIA GPGPUs)




MPI Reduction collectives and In-network Computing

Reduction collectives (such as MPI_Allreduce) are important for HPC/DL

— Involve both compute and communication

Using CPUs everywhere leads to sub-optimal scale-up and scale-out efficiency

— Motivates the need for offloading common operations away from the CPU to allow
the CPU to perform other useful tasks

In-network compute allows offloading operations to network devices

— Switches are a good candidate due to high bandwidth and ability to reduce data on-
the-fly eliminating redundancy

— High scale-out efficiency and network topology awareness

— Frees up CPU cycles for other operations




SHARP Reduction trees and Streaming Aggregation (SAT)

Out to the Network
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Aggregation Tree Switch-level reduction (radix 16)

Images taken from Graham, Richard et al. Scalable Hierarchical Aggregation and Reduction Protocol (SHARP)™ Streaming-Aggregation Hardware Design
and Evaluation. DOI : 10.1007/978-3-030-50743-5_3 (https://link.springer.com/content/pdf/10.1007/978-3-030-50743-5_3.pdf )




Limitations of state-of-the-art schemes for large message
reduction collectives

Prior work on reduction collectives with SHARP

— Used leader-based schemes that had a reduction, followed by a SHARP operation and
finally a broadcast

— Not suitable for message sizes >= 8K
Single-copy schemes are very efficient for large message data movement
— XPMEM allows remote process to have load/store access through address space mapping

Using Sharp SAT in MPI has a few limitations and bottlenecks that need to be
addressed for achieving good scale-out performance

Motivates the need for large message reduction designs that combine advantages of
SHARP and single-copy schemes like XPMEM




Motivation

SHARP SAT provides excellent bandwidth with close to
point-to-point latency
Registration involves pinning pages to memory (like
InfiniBand registration)
— Overhead increases significantly with increase in message size
— Requires a cache that avoids expensive calls to
sharp_coll_reg_mr
Switch resources are limited

— Causes bottlenecks when scaling up on modern CPUs with
hundreds of cores

— The SHARP runtime places limits to manage resources
Motivates need for designs that are aware of SHARP

runtime capabilities, overcome bottlenecks and scale-up
efficiently for many processes per node
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Problem Statement and Contributions

* Problem Statement - Can we propose an algorithm for large message allreduce
that overcomes bottlenecks and resource constraints in the SHARP runtime by
making efficient use of node and network level resources?

* Contributions

— Identify registration overheads involved in the use of SHARP streaming aggregation for
large messages and propose solutions to address them

— Analyze the impact of chunking reductions when using streaming aggregation for different
message sizes to empirically determine ways to overlap intra-node reductions with SHARP-
based reductions

— Propose an algorithm for large allreduce that utilizes SAT and CPUs efficiently

— Evaluate the proposed design by comparing it against state-of-the-art MPI libraries




Proposed Allreduce Design

NO

N1

NO

N1

PO
sendbuf m m
tmpbuf ED
recvbuf ED ED

P3
sendbuf m m
tmpbuf ED
recvbuf ED ED

PO
sendbuf m m
tmpbuf ED
recvbuf m ED

P3
sendbuf m m
tmpbuf ED
oot [l O

Initial state be

fore allreduce starts

NO N1
PO P3
sendbuf J sendbuf J
tmpbuf tmpbuf
recvbuf ED ED recvbuf ED ED

Buffer states after Waitall

NO

N1

Buffer states after all processes reduce to leader

NO

N1

PO
sendbuf m m
tmpbuf ED
recvbuf m m

P3
sendbuf m m
tmpbuf ED
recvbuf m m

PO
sendbuf m m

P3
sendbuf m m

Buffer states after broadcast

More information in the following paper

tmpbuf m tmpbuf F
B. Ramesh, G. Kuncham, K. Suresh, R. Vaidya, N. Alnaasan, M. Abduljabbar, A. Shafi,
recvbuf 17 [T l recbuf T[] D. Panda, Designing In-network Computing Aware Reduction Collectives in MPI, Hot
Interconnects 2023, Aug 2023.

Initiate non-blocking SHARP-based inter-node allreduce




Experimental setup

Processor model AMD EPYC 7713 Intel(R) Xeon(R) Gold 6138
Max Clock speed 3.72GHz 2GHz
Number of sockets 2 2
Cores per socket 64 20
RAM 256GB 196GB
Interconnect NVIDIA HDR-200 with NVIDIA HDR-200 with
Quantum 2 switches Quantum 2 switches
MPI libraries MVAPICH2-X, HPC-X MVAPICH2-X, HPC-X




Results for MPI_Allreduce - 2 nodes
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Results for MPI_Allreduce - 4 nodes
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Results for MPI_Allreduce - 8 nodes
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Conclusion and Future Work

SHARP runtime enables in-network offload with excellent bandwidth utilization
Proposed designs overcome various bottlenecks by using a leader-based
algorithm and streaming aggregation for large message reductions

— Outperforms state-of-the-art by up to 86%

*  Will be available in a future release of MVAPICH-plus
*  Future work

— Comprehensive application evaluation

— Evaluating performance at larger scales

— Exploring NUMA-awareness
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