High Performance Machine Learning, Deep Learning, and Data Science with MVAPICH2

Tutorial at MUG ’22

by

Aamir Shafi
The Ohio State University
shafi.16@osu.edu
https://cse.osu.edu/people/shafi.16

Arpan Jain
The Ohio State University
jain.575@osu.edu
http://u.osu.edu/jain.575
Outline

• **Introduction**
 • Machine Learning
 – Distributed K-Means
 – ML Solutions
 • Deep Learning
 – Deep Neural Networks
 – Distributed Deep Learning
 – DL Solutions

• Data Science

• Conclusion
What is Machine Learning and Deep Learning?

- **Machine Learning (ML)**
 - “the study of computer algorithms to improve automatically through experience and use of data”
- **Deep Learning (DL) – a subset of ML**
 - Uses Deep Neural Networks (DNNs)
 - Perhaps, the most revolutionary subset!
- Based on learning data representation
- DNN Examples: Convolutional Neural Networks, Recurrent Neural Networks, Hybrid Networks
- Data Scientist or Developer Perspective for using DNNs
 1. Identify DL as solution to a problem
 2. Determine Data Set
 3. Select Deep Learning Algorithm to Use
 4. Use a large data set to train an algorithm

Courtesy:
https://blog.dataiku.com/ai-vs-machine-learning-vs-deep-learning
History: Milestones in the Development of ML/DL

1800 1900 1805 1901

Linear Regression

Turing Machine

ADALINE

Electronic Brain

XOR Problem

Golden Age

Multi-layered Perceptron (Backpropagation)

Perceptron

1943 1957

XOR Problem

1960

1969

1986

DBN

AlexNet

WGAN

ResNet

Transformers

1990 2006 2012 2015 2017

Deep Forest

K-Means

Evolutionary Algorithms

1936 1954 1965 1967

K- Means

Bayesian Network

Decision Trees

1979 1985

SVM

Random Forest

XGBoost

CatBoost

1995 2000 2014 2017

K-Means

1996

S. McCulloch – W. Pitts

F. Rosenblatt

B. Widrow – M. Hoff

M. Minsky – S. Papert

D. Rumelhart – G. Hinton – R. Williams

A. Legendre – J. Gauss

A. Turing

S. McCulloch – W. Pitts

F. Rosenblatt

B. Widrow – M. Hoff

M. Minsky – S. Papert

J. Pearl

V. Vapnik – C. Cortes

A. Krizhevsky

A. Ng

Y. Bengio

Y. LeCun

Y. Bengio

K. Pearson

A. Turing
Outline

• Introduction

• **Machine Learning**
 – Distributed K-Means
 – ML Solutions

• Deep Learning
 – Deep Neural Networks
 – Distributed Deep Learning
 – DL Solutions

• Data Science

• Conclusion
Three Main Types of Machine Learning

Classification of Machine Learning

- Supervised Learning
- Reinforcement Learning
- Unsupervised Learning

Supervised Learning

Input Raw Data → Supervised Learning → Testing Dataset → Supervised Output → Algorithm → Processing → Output

Unsupervised Learning

Input Raw Data → Unsupervised Learning → Algorithm → Processing → Output

Reinforcement Learning

Input Row Data → Environment → Reward → State → Agent → Selection of Algorithm → Best Action → Output

Support for Parallel and Distributed Execution

• Scikit-learn:
 − Supports execution via Joblib (https://joblib.readthedocs.io/en/latest/)
 − Joblib supports multi-threaded and multi-process execution (on multiple nodes)

• XGBoost:
 − Multiple ways to run on cluster of nodes:
 • Dask (http://dask.org)
 • Ray (https://ray.io/)
 • AWS YARN
 • Apache Spark (https://spark.apache.org/) using XGBoost4J-Spark

• cuML:
 − Execution is supposed on multiple nodes using Dask (http://dask.org) and NVIDIA's NCCL
Allreduce Collective Communication Pattern

• Element-wise Sum data from all processes and sends to all processes

```c
int MPI_Allreduce (const void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op operation, MPI_Comm comm)
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sendbuf</td>
<td>Starting address of send buffer</td>
</tr>
<tr>
<td>recvbuf</td>
<td>Starting address of recv buffer</td>
</tr>
<tr>
<td>type</td>
<td>Data type of buffer elements</td>
</tr>
<tr>
<td>count</td>
<td>Number of elements in the buffers</td>
</tr>
<tr>
<td>operation</td>
<td>Reduction operation to be performed (e.g. sum)</td>
</tr>
<tr>
<td>comm</td>
<td>Communicator handle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>recvbuf</td>
<td>Starting address of receive buffer</td>
</tr>
</tbody>
</table>

Sendbuf (Before):

- T1: 1 2 3 4
- T2: 1 2 3 4
- T3: 1 2 3 4
- T4: 1 2 3 4

Recvbuf (After):

- T1: 4 8 12 16
- T2: 4 8 12 16
- T3: 4 8 12 16
- T4: 4 8 12 16

Network Based Computing Laboratory
Overview of the MVAPICH2 Project

- High Performance open-source MPI Library
- Support for multiple interconnects
 - InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE), AWS EFA, Rockport Networks, and Slingshot10/11, Broadcom
- Support for multiple platforms
 - x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)
- Started in 2001, first open-source version demonstrated at SC ’02
- Supports the latest MPI-3.1 standard
- http://mvapich.cse.ohio-state.edu
- Additional optimized versions for different systems/environments:
 - MVAPICH2-X (Advanced MPI + PGAS), since 2011
 - MVAPICH2-GDR with support for NVIDIA (since 2014) and AMD (since 2020) GPUs
 - MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014
 - MVAPICH2-Virt with virtualization support, since 2015
 - MVAPICH2-EA with support for Energy-Awareness, since 2015
 - MVAPICH2-Azure for Azure HPC IB instances, since 2019
 - MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019
- Tools:
 - OSU MPI Micro-Benchmarks (OMB), since 2003
 - OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015
- Used by more than 3,275 organizations in 90 countries
- More than 1.61 Million downloads from the OSU site directly
- Empowering many TOP500 clusters (June ‘22 ranking)
 - 6th, 10,649,600-core (Sunway TaihuLight) at NSC, China
 - 16th, 448,448 cores (Frontera) at TACC
 - 30th, 288,288 cores (Lassen) at LLNL
 - 42nd, 570,020 cores (Nurion) in South Korea and many more
- Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, OpenHPC, and Spack)
- Partner in the 16th ranked TACC Frontera system
- Empowering Top500 systems for more than 20 years
Parallelizing K-Means

- **Step 0: Initialize centroids**
 - Assign initial cluster means randomly
- **Step 1: Data Division**
 - Distribute elements among GPUs
- **Step 2: Assign elements (colors)**
 - Assign each element to the cluster with the closest mean
- **Step 3: Update local cluster mean**
 - Calculate local cluster means for all local points
- **Step 4: Update global cluster mean**
 - Calculate global cluster means by calling Allreduce()
- **Step 5: Repeat steps 2-4 until convergence**
Parallelizing the K-means Algorithm

- **Step 0:** Initialize centroids
 - Assign initial cluster means randomly
- **Step 1:** Data Division
 - Distribute elements among GPUs
- **Step 2:** Assign elements (color)
 - Assign each element to the cluster with the closest mean
- **Step 3:** Update local cluster mean
 - Calculate local cluster means for all local points
- **Step 4:** Update global cluster mean*
 - Calculate global cluster means by calling Allreduce()
- **Step 5:** Repeat steps 2-4 until convergence
Parallelizing K-Means Clustering

Input:
\[D = \{ t_1, t_2, \ldots, t_n \} \] // Set of elements
\[K \] // Number of desired clusters

Output:
\[K \] // Set of clusters

K-Means algorithm:
Assign initial values for \(m_1, m_2, \ldots, m_k \)

repeat
assign each item \(t_j \) to the clusters which has the closest mean;
calculate new mean for each cluster;
until convergence criteria is met;

Global reduction for all cluster centers is performed at the end of each iteration in order to generate the new cluster centers.

Recompute centroids after MPI_Allreduce

Courtesy: https://github.com/tmscarla/k-means-parallel http://users.eecs.northwestern.edu/~wkliao/Kmeans/
Outline

• Introduction
• **Machine Learning**
 – Distributed K-Means
 – **ML Solutions**
• Deep Learning
 – Deep Neural Networks
 – Distributed Deep Learning
 – DL Solutions
• Data Science
• Conclusion
The cuML Library: Accelerating ML on GPUs

• The NVIDIA RAPIDS project aims to build end-to-end data science analytic pipelines on GPUs

• An important component is the cuML library:
 − GPU-accelerated ML library
 − GPU-counterpart of Scikit-learn
 − Supports the execution of ML workloads on Multi-Node Multi-GPUs (MNMG) systems

• Most existing ML libraries, including Scikit-learn and Apache Spark’s MLlib, only support CPU execution of ML algorithms
 − Conventional wisdom has been that only DNNs are a good match for GPUs because of high computational requirements
Main components of the cuML library

• Main components
 - Python layer
 • Provides a Scikit-learn like interface
 • Hides the complexities of the CUDA/C/C++ layer
 - Primitives and cuML algorithms built on top of CUDA
 • ML Algorithms
 • Primitives
 - Reusable building blocks for building machine learning algorithms
 - Common for different machine learning algorithms
 - Used to build different machine learning algorithms
 - Communication Support in cuML:
 • Point-to-point communication: Dask
 • Collective communication: NVIDIA Collective Communications Library (NCCL)
Accelerating cuML with MVAPICH2-GDR

- Utilize MVAPICH2-GDR (with mpi4py) as communication backend during the training phase (the `fit()` function) in the Multi-node Multi-GPU (MNMG) setting over cluster of GPUs

- Communication primitives:
 - Allreduce
 - Reduce
 - Broadcast

- Exploit optimized collectives

MPI4cuML 0.1 release
(http://hidl.cse.ohio-state.edu)
Outline

• Introduction
• Machine Learning
 – Distributed K-Means
 – ML Solutions
• Deep Learning
 – Deep Neural Networks
 – Distributed Deep Learning
 – DL Solutions
• Data Science
• Conclusion
Understanding the Deep Neural Network Concepts

- Example of a 3-layer Deep Neural Network (DNN) – (input layer is not counted)

![Diagram of a 3-layer DNN](http://cs231n.github.io/neural-networks-1/)

Essential Concepts: Learning Rate (α)

- **Too low**: A small learning rate requires many updates before reaching the minimum point.
- **Just right**: The optimal learning rate swiftly reaches the minimum point.
- **Too high**: Too large of a learning rate causes drastic updates which lead to divergent behaviors.

Courtesy: https://www.jeremyjordan.me/nn-learning-rate/
Essential Concepts: Batch Size

- Batched Gradient Descent
 - Batch Size = \(N \)

- Stochastic Gradient Descent
 - Batch Size = 1

- Mini-batch Gradient Descent
 - Somewhere in the middle
 - Common:
 * Batch Size = 64, 128, 256, etc.

- Finding the optimal batch size will yield the fastest learning.

One full pass over \(N \) is called an **epoch** of training.

Courtesy: https://www.jeremyjordan.me/gradient-descent/
Outline

• Introduction
• Machine Learning
 – Distributed K-Means
 – ML Solutions
• Deep Learning
 – Deep Neural Networks
 – Distributed Deep Learning
 – DL Solutions
• Data Science
• Conclusion
Why do we need Parallel Training?

Larger and Deeper models are being proposed

- AlexNet -> ResNet -> NASNet – AmoebaNet
- DNNs require a lot of memory and a lot of computation
- Larger models cannot fit a GPU’s memory

Single GPU training cannot keep up with ever-larger models

Community has moved to multi-GPU training

Multi-GPU in one node is good but there is a limit to Scale-up (8-16 GPUs)

Multi-node (Distributed or Parallel) Training is necessary!!
Parallelization Strategies

- Some parallelization strategies...
 - Data Parallelism or Model Parallelism
 - Hybrid Parallelism

Data Parallelism and MPI Collectives

- **Step 1: Data Propagation**
 - Distribute the Data among GPUs

- **Step 2: Forward Backward Pass**
 - Perform forward pass and calculate the prediction
 - Calculate Error by comparing prediction with actual output
 - Perform backward pass and calculate gradients

- **Step 3: Gradient Aggregation**
 - Call MPI_Allreduce to reduce the local gradients
 - Update parameters locally using global gradients
Outline

• Introduction
• Machine Learning
 – Distributed K-Means
 – ML Solutions
• Deep Learning
 – Deep Neural Networks
 – Distributed Deep Learning
 – DL Solutions
• Data Science
• Conclusion
Solutions and Case Studies: Exploiting HPC for DL

- Data Parallelism
- Model-Parallelism

Deep Learning and Machine Learning Frameworks

- CNTK
- LBANN
- FlexFlow
- TensorFlow
- PyTorch

Major Computation and Communication Phases in DL Frameworks

- Model Propagation
- Forward
- Backward
- Gradient Aggregation

Communication Runtimes (MPI/NCCL/Gloo/MLSL)

- Point-to-Point Operations
- CUDA-Awareness
- Large-message Collectives

Co-Design Opportunities

HPC Platforms

- CPU
- InfiniBand
- GPU
MVAPICH2 (MPI)-driven Infrastructure for ML/DL Training

ML/DL Applications

- TensorFlow
- PyTorch
- MXNet

Horovod

- MVAPICH2 or MVAPICH2-X for CPU Training
- MVAPICH2-GDR for GPU Training

ML/DL Applications

- PyTorch

- Torch.distributed
- DeepSpeed

- MVAPICH2 or MVAPICH2-X for CPU Training
- MVAPICH2-GDR for GPU Training

More details available from: http://hidl.cse.ohio-state.edu
Install Horovod with MVAPICH2-X and MVAPICH2-GDR

Command to install Horovod with MVAPICH2-X

```
$ HOROVOD_WITH_MPI=1 pip install --no-cache-dir horovod
```

Command to install Horovod with MVAPICH2-GDR

```
$ HOROVOD_GPU_ALLREDUCE=MPI HOROVOD_CUDA_HOME=/opt/cuda/11.3 HOROVOD_WITH_MPI=1 pip install --no-cache-dir horovod
```
Run PyTorch on a single GPU

```bash
+ python pytorch_synthetic_benchmark.py --batch-size 64 --num-its=5
```

Model: resnet50
Batch size: 64
Number of GPUs: 1
Running warmup...
Running benchmark...
Iter #0: 333.9 img/sec per GPU
Iter #1: 334.2 img/sec per GPU
Iter #2: 333.9 img/sec per GPU
Iter #3: 333.8 img/sec per GPU
Iter #4: 333.9 img/sec per GPU
Img/sec per GPU: 334.0 +0.2

Total img/sec on 1 GPU(s): 334.0 +0.2

Run PyTorch on two nodes with 1 GPU/node (using MVAPICH2-GDR)

```
+ mpirun_rsh -np 2 gpu11 gpu12 MV2_USE_CUDA=1 MV2_CPU_BINDING_POLICY=hybrid
MV2_HYBRID_BINDING_POLICY=spread MV2_USE_RDMA_CM=0
MV2_GPUDIRECT_GDRCOPY_LIB=/opt/gdrcopy2.0/lib64/libgdrapi.so LD_PRELOAD=mv2-gdr/lib/libmpi.so
python pytorch_synthetic_benchmark.py --batch-size 64 --num-iters=5
```

Model: resnet50
Batch size: 64
Number of GPUs: 2
Running warmup...
Running benchmark...
Iter #0: 317.0 img/sec per GPU
Iter #1: 314.9 img/sec per GPU
Iter #2: 315.4 img/sec per GPU
Iter #3: 318.0 img/sec per GPU
Iter #4: 316.7 img/sec per GPU
Img/sec per GPU: 316.4 +-2.2

Total img/sec on 2 GPU(s): 632.8 +-4.3

~1.89X on 2 GPUs
MVAPICH2-GDR vs. NCCL2 – Allreduce Operation (OSC Pitzer)

- Optimized designs in MVAPICH2-GDR offer better/comparable performance for most cases
- MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on OSC Pitzer system

Platform: OSC Pitzer system (8 nodes with 2 Nvidia Volta GPUs), CUDA 11.6
Distributed TensorFlow on ORNL Summit (1,536 GPUs)

- ResNet-50 Training using TensorFlow benchmark on SUMMIT -- 1536 Volta GPUs!

- 1,281,167 (1.2 mil.) images

- Time/epoch = 3 seconds

- Total Time (90 epochs) = 3 x 90 = 270 seconds = 4.5 minutes!

MVAPICH2-GDR 2.3.4 reaching ~0.42 million images per second for ImageNet-1k!

ImageNet-1k has 1.2 million images

We observed issues for NCCL2 beyond 384 GPUs

Platform: The Summit Supercomputer (#2 on Top500.org) - 6 NVIDIA Volta GPUs per node connected with NVLink, CUDA 10.1
Distributed TensorFlow on TACC Frontera (2048 CPU nodes)

- Scaled TensorFlow to 2048 nodes on Frontera using MVAPICH2 and IntelMPI

- MVAPICH2 delivers close to the ideal performance for DNN training

- Report a peak of 260,000 images/sec on 2048 nodes

- On 2048 nodes, ResNet-50 can be trained in 7 minutes!

Solutions and Case Studies: Exploiting HPC for DL

- **Data Parallelism**
- **Model-Parallelism**
HyPar-Flow: Hybrid Parallelism for TensorFlow

• Why Hybrid parallelism?
 - Data Parallel training has limits! □

• We propose HyPar-Flow
 - An easy to use Hybrid parallel training framework
 • Hybrid = Data + Model
 - Supports Keras models and exploits TF 2.0 Eager Execution
 - Exploits MPI for Point-to-point and Collectives

Benchmarking large-models lead to better insights and ability to develop new approaches!

Model/Hybrid Parallelism and MPI Collectives

- HyPar-Flow is practical (easy-to-use) and high-performance (uses MPI)
 - Based on Keras models and exploits TF 2.0 Eager Execution
 - Leverages MPI Pt-to-pt. and Collectives for communication

HyPar-Flow at Scale (512 nodes on TACC Frontera)

- ResNet-1001 with variable batch size
- Approach:
 - 48 model-partitions for 56 cores
 - 512 model-replicas for 512 nodes
 - Total cores: $48 \times 512 = 24,576$
- Speedup
 - $253X$ on 256 nodes
 - $481X$ on 512 nodes
- Scaling Efficiency
 - 98% up to 256 nodes
 - 93.9% for 512 nodes

GEMS: GPU Enabled Memory Aware Model Parallelism Systems

Why do we need Memory aware designs?

- Data and Model Parallel training has limitation!

- Maximum Batch Size depends on the memory.

- Basic Model Parallelism suffers from underutilization of memory and compute

Memory requirement increases with the increase in image size!

Exploiting Model Parallelism in AI-Driven Digital Pathology

- Pathology whole slide image (WSI)
 - Each WSI = 100,000 x 100,000 pixels
 - Can not fit in a single GPU memory
 - Tiles are extracted to make training possible

- Two main problems with tiles
 - Restricted tile size because of GPU memory limitation
 - Smaller tiles loose structural information

- Reduced training time significantly
 - GEMS-Basic: 7.25 hours (1 node, 4 GPUs)
 - GEMS-MAST: 6.28 hours (1 node, 4 GPUs)
 - GEMS-MASTER: 4.21 hours (1 node, 4 GPUs)
 - GEMS-Hybrid: 27 mins (32 nodes, 128 GPUs)
 - Overall 15x reduction in training time!!!!

![Graph showing throughput speedup with increasing number of GPUs](https://blog.kitware.com/digital-slide-archive-large-image-and-histomicstk-open-source-informatics-tools-for-management-visualization-and-analysis-of-digital-histopathology-data/)

Scaling ResNet110v2 on 1024x1024 image tiles using histopathology data
Outline

• Introduction
• Machine Learning
 – Distributed K-Means
 – ML Solutions
• Deep Learning
 – Deep Neural Networks
 – Distributed Deep Learning
 – DL Solutions
• Data Science
• Conclusion
Introduction to Dask

• Dask is a popular task-based distributed computing framework:
 − Scales Python applications from laptops to high-end systems
 − Builds a task-graph that is executed lazily on parallel hardware
 − Natively extends popular data processing libraries like numPy, Pandas

• Dask Distributed library supports parallel and distributed execution:
 − Built using the asyncio package that allows execution of asynchronous/non-blocking/concurrent operations called coroutines:
 • These are defined using async and invoked using await
 − Dask Distributed library provide support for communication:
 • TCP: Tornado-based
 • UCX: Built using a Cython wrapper called UCX-Py

• Other Data Science frameworks include Apache Spark and Ray
Dask Distributed Execution Model

- Client
- Scheduler
- Worker

Cluster
MPI4Dask: MPI-based Communication Backend for Dask

• Dask originally had two communication backends:
 • TCP: Tornado-based
 • UCX: Built using a GPU-aware Cython wrapper called UCX-Py

• MPI4Dask is an MVAPICH2-based communication backend for Dask:
 – First MPI-based communication device for Dask
 – Optimizes CPU and GPU communication in the Dask framework on modern HPC clusters
Dask Architecture

- Dask Bag
- Dask Array
- Dask DataFrame
- Delayed
- Future

Task Graph

- Dask-MPI
- Dask-CUDA
- Dask-Jobqueue

Distributed

- Scheduler
- Worker
- Client

Comm Layer

- tcp.py
- ucx.py
- MPI4Dask

High Performance Computing Hardware

- TCP
- UCX
- MVAPICH2-GDR

UCX-Py (Cython wrappers)

mpi4py

Laptops/
Desktops

Network Based Computing Laboratory

MUG '22
MPI4Dask: Bootstrapping and Dynamic Connectivity

• Several ways to start Dask programs:
 – Manual
 – Utility classes:
 • LocalCUDACluster, SLURMCluster, SGECluster, PBCCluster, and others

• MPI4Dask uses the Dask-MPI to bootstrap execution of Dask programs

• Dynamic connectivity is established using the asyncio package in MPI4Dask:
 – Scheduler and workers listen for incoming connections by calling asyncio.start_server()
 – Workers and client connect using asyncio.open_connection()
MPI4Dask: Point-to-point Communication Coroutines

• Implements communication coroutines for point-to-point MPI functions:
 – Using mpi4py (Cython wrappers) and MVAPICH2-GDR

• mpi4py provides two flavors of point-to-point communication functions:
 – Send()/Recv() – for exchanging data in buffers (faster and used in MPI4Dask)
 – send()/recv() – for communicating Python objects (pickle/unpickle)
 – GPU buffers implement the __cuda_array_interface__

• Implemented chunking mechanism for large messages

• The send and receive communication coroutines are as follows:

```python
request = comm.Isend([buf, size], dest, tag)
status = request.Test()

while status is False:
    await asyncio.sleep(0)
    status = request.Test()
```

```python
request = comm.Irecv([buf, size], src, tag)
status = request.Test()

while status is False:
    await asyncio.sleep(0)
    status = request.Test()
```
MPI4Dask Installation

• MPI4Dask is available to download from: http://hibd.cse.ohio-state.edu/
 – The userguide is available at: http://hibd.cse.ohio-state.edu/static/media/hibd/dask/mpi4dask-0.2-userguide.pdf

• Section 3: Setup Instructions
 – 3.1 Installation Pre-requisites:
 • 3.1.1 Install Miniconda
 • 3.1.2 Modules/Libraries for GPU-based Dask Applications:
 • 3.1.3 Modules/Libraries for CPU-based Dask Applications:
 • 3.1.4 Install the MVAPICH2 Library (MVAPICH2-X, MVAPICH2, or MVAPICH2-GDR)
 • 3.1.5 Install the mpi4py Library
 • 3.1.6 Install Dask-MPI package
 – 3.2 Install MPI4Dask

• Section 4. Running GPU-based Dask Applications
 – 4.1 Writing the host file
 – 4.2 Sum of cuPy Array and its Transpose
 – 4.3 cuDF Merge

• Section 5. Running GPU-based Dask Applications
 – 5.1 Writing the host file
 – 5.2 Sum of numPy Array and its Transpose
 – 5.3 Sum of Pandas Data Frame
 – 5.4 SVD
Installation Pre-requisites

Modules/Libraries for GPU-based Dask Applications:

$ conda install -c conda-forge -c rapidsai -c nvidia automake make libtool pkg-config libhwloc psutil python=3.8 setuptools cython cudatoolkit=10.2 cupy
dask-cudf dask==2021.1.1 distributed numpypirm

Modules/Libraries for CPU-based Dask Applications:

$ conda install -c conda-forge -c rapidsai -c nvidia automake make libtool pkg-config libhwloc psutil python=3.8 setuptools cython dask==2021.1.1
distributed=2021.1.1 numpypirm

Install the MVAPICH2 Library (MVAPICH2-X, MVAPICH2, or MVAPICH2-GDR)

Install the mpi4py Library

$ git clone https://github.com/mpi4py/mpi4py.git
$ edit mpi.cfg file

[MVAPICH2]
mpi_dir = /path/to/MVAPICH2-GDR/install/directory
mpicc = %(mpi_dir)s/bin/mpicc
mpicxx = %(mpi_dir)s/bin/mpicxx
include_dirs = %(mpi_dir)s/include
library_dirs = %(mpi_dir)s/lib64
runtime_library_dirs = %(library_dirs)s

$ python setup.py build --mpi=MVAPICH2-GDR; $ pip install .
Install Dask-MPI and MPI4Dask

Install Dask-MPI package

$ git clone https://github.com/dask/dask-mpi.git
$ cd dask-mpi
$ python setup.py build
$ pip install .

Install MPI4Dask

$ wget http://hibd.cse.ohio-state.edu/download/hibd/dask/mpi4dask-0.2.tar.gz
$ tar -xzvf mpi4dask-0.2.tar.gz
$ cd mpi4dask-0.2/distributed
$ python setup.py build
$ pip install .

$ conda list
$ conda list | grep distributed
$ conda list | grep dask
Running GPU and CPU Dask Applications

Sum of cuPy Array and its Transpose [GPU]

```bash
$ cd mpi4dask-0.2/dask-apps/gpu
$ LD_PRELOAD=$MPILIB/lib64/libmpi.so $MPILIB/bin/mpirun_rsh -export-all -np 4 -hostfile hosts  MV2_USE_CUDA=1 MV2_USE_GDRCOPY=1 MV2_GPUDIRECT_GDRCOPY_LIB=/opt/gdrcopy2.0/lib64/libgdrapi.so MV2_CPU_BINDING_LEVEL=SOCKET MV2_CPU_BINDING_POLICY=SCATTER python cupy_sum_mpi.py
```

cuDF Merge [GPU]

```bash
$ cd mpi4dask-0.2/dask-apps/gpu
$ LD_PRELOAD=$MPILIB/lib/libmpi.so $MPILIB/bin/mpirun_rsh -export-all -np 4 -hostfile hosts  MV2_USE_CUDA=1 MV2_USE_GDRCOPY=1 MV2_GPUDIRECT_GDRCOPY_LIB=/opt/gdrcopy2.0/lib64/libgdrapi.so MV2_CPU_BINDING_LEVEL=SOCKET MV2_CPU_BINDING_POLICY=SCATTER python cudf_merge_mpi.py --type gpu --protocol mpi --runs 20 --chunk-size 1_000_000_00
```

Sum of numPy Array and its Transpose [CPU]

```bash
$ cd mpi4dask-0.2/dask-apps/cpu
$ LD_PRELOAD=$MPILIB/lib/libmpi.so $MPILIB/bin/mpirun_rsh -export-all -np 4 -hostfile hosts MV2_CPU_BINDING_LEVEL=SOCKET MV2_CPU_BINDING_POLICY=SCATTER python numpy_sum_mpi.py
```

Sum of Pandas DataFrame [CPU]

```bash
$ cd mpi4dask-0.2/dask-apps/cpu
$ LD_PRELOAD=$MPILIB/lib/libmpi.so $MPILIB/bin/mpirun_rsh -export-all -np 4 -hostfile hosts MV2_CPU_BINDING_LEVEL=SOCKET MV2_CPU_BINDING_POLICY=SCATTER python dask-cudf_sum_mpi.py
```
Benchmark: Sum of cuPy Array and its Transpose (TACC Frontera GPU Subsystem)

A. Shafi, J. Hashmi, H. Subramoni, and D. K. Panda, Efficient MPI-based Communication for GPU-Accelerated Dask Applications, CCGrid '21
https://arxiv.org/abs/2101.08878

MPI4Dask 0.2 release
(http://hibd.cse.ohio-state.edu)
Outline

• Introduction
• Machine Learning
 – Distributed K-Means
 – ML Solutions
• Deep Learning
 – Deep Neural Networks
 – Distributed Deep Learning
 – DL Solutions
• Open Issues and Challenges
• Conclusion
Conclusion

• Exponential growth in Machine Learning/Deep Learning/Data Science frameworks

• Provided an overview of issues, challenges, and opportunities for designing efficient communication runtimes
 − Efficient, scalable, and hierarchical designs are crucial for ML/DL/Data Science frameworks
 − Co-design of communication runtimes and ML/DL/Data Science frameworks will be essential

• Presented use-cases to demonstrate the complex interaction between DL/ML/Dask middleware with the underlying HPC technologies and middleware

• Need collaborative efforts to achieve the full potential
Funding Acknowledgments

Funding Support by

Equipment Support by
Acknowledgments to all the Heroes (Past/Current Students and Staffs)

Current Students (Graduate)
- N. Alnaasan (Ph.D.)
- Q. Anthony (Ph.D.)
- C.-C. Chun (Ph.D.)
- N. Contini (Ph.D.)
- A. Jain (Ph.D.)
- K. S. Khorassani (Ph.D.)
- A. H. Tu (Ph.D.)
- H. Ahn (Ph.D.)

Past Students
- A. Awan (Ph.D.)
- A. Augustine (M.S.)
- P. Balaji (Ph.D.)
- M. Bayatpour (Ph.D.)
- R. Biswas (M.S.)
- S. Bhagvat (M.S.)
- A. Bhat (M.S.)
- D. Buntinas (Ph.D.)
- L. Chai (Ph.D.)
- B. Chandrasekharan (M.S.)
- S. Bhagvat (M.S.)
- V. Dhanapathula (M.S.)
- C.-H. Chu (Ph.D.)
- T. Gangadharapappa (M.S.)
- K. Gopalakrishnan (M.S.)
- J. Hashmi (Ph.D.)
- W. Huang (Ph.D.)
- W. Jiang (M.S.)
- J. Jose (Ph.D.)
- M. Kedia (M.S.)
- S. Kini (M.S.)
- M. Koop (Ph.D.)
- K. Kulkarni (M.S.)
- R. Kumar (M.S.)
- S. Krishnamoorthi (M.S.)
- M. Li (Ph.D.)

Past Post-Docs
- D. Banerjee
- X. Besseron
- M. S. Ghazimeersaeed
- H.-W. Jin
- E. Mancini
- A. Ruhela

Current Research Scientists
- M. Abduljabbar
- A. Shafi
- P. Lai (M.S.)
- J. Liu (Ph.D.)
- M. Luo (Ph.D.)
- A. Mamidala (Ph.D.)
- G. Marsh (M.S.)
- V. Meshram (M.S.)
- A. Moody (M.S.)
- S. Naravula (Ph.D.)
- R. Noronha (Ph.D.)
- X. Ouyang (Ph.D.)
- K. Raj (M.S.)
- R. Rajachandrasekar (Ph.D.)

Past Senior Research Associate
- J. Hashmi

Past Research Scientists
- K. Hamidouche
- S. Sur
- X. Lu

Past Programmers
- A. Reifsteck
- D. Bureddy
- J. Perkins

Past Research Specialist
- R. Motlagh

Past Research Scientists
- K. Hamidouche
- S. Sur
- X. Lu

Past Programmers
- A. Reifsteck
- D. Bureddy
- J. Perkins

Past Research Specialist
- R. Motlagh

Current Students (Undergrads)
- V. Shah
- T. Chen
- D. Shankar (Ph.D.)
- G. Santhanararman (Ph.D.)
- N. Sarkauskas (B.S. and M.S)
- N. Senthil Kumar (M.S.)
- A. Singh (Ph.D.)
- J. Sridhar (M.S.)
- S. Srivastava (M.S.)
- S. Sur (Ph.D.)
- H. Subramoni (Ph.D.)
- K. Vaidyanathan (Ph.D.)
- A. Vishnu (Ph.D.)
- J. Wu (Ph.D.)
- W. Yu (Ph.D.)
- J. Zhang (Ph.D.)

Current Research Scientists
- M. Abduljabbar
- A. Shafi
- P. Lai (M.S.)
- J. Liu (Ph.D.)
- M. Luo (Ph.D.)
- A. Mamidala (Ph.D.)
- G. Marsh (M.S.)
- V. Meshram (M.S.)
- A. Moody (M.S.)
- S. Naravula (Ph.D.)
- R. Noronha (Ph.D.)
- X. Ouyang (Ph.D.)
- K. Raj (M.S.)
- R. Rajachandrasekar (Ph.D.)

Current Faculty
- H. Subramoni

Current Software Engineers
- B. Seeds
- N. Pavuk
- N. Shineman
- M. Lieber

Current Research Scientists
- M. Abduljabbar
- A. Shafi
- P. Lai (M.S.)
- J. Liu (Ph.D.)
- M. Luo (Ph.D.)
- A. Mamidala (Ph.D.)
- G. Marsh (M.S.)
- V. Meshram (M.S.)
- A. Moody (M.S.)
- S. Naravula (Ph.D.)
- R. Noronha (Ph.D.)
- X. Ouyang (Ph.D.)
- K. Raj (M.S.)
- R. Rajachandrasekar (Ph.D.)

Current Faculty
- H. Subramoni

Current Students (Undergrads)
- V. Shah
- T. Chen
- D. Shankar (Ph.D.)
- G. Santhanararman (Ph.D.)
- N. Sarkauskas (B.S. and M.S)
- N. Senthil Kumar (M.S.)
- A. Singh (Ph.D.)
- J. Sridhar (M.S.)
- S. Srivastava (M.S.)
- S. Sur (Ph.D.)
- H. Subramoni (Ph.D.)
- K. Vaidyanathan (Ph.D.)
- A. Vishnu (Ph.D.)
- J. Wu (Ph.D.)
- W. Yu (Ph.D.)
- J. Zhang (Ph.D.)

Current Research Scientists
- M. Abduljabbar
- A. Shafi
- P. Lai (M.S.)
- J. Liu (Ph.D.)
- M. Luo (Ph.D.)
- A. Mamidala (Ph.D.)
- G. Marsh (M.S.)
- V. Meshram (M.S.)
- A. Moody (M.S.)
- S. Naravula (Ph.D.)
- R. Noronha (Ph.D.)
- X. Ouyang (Ph.D.)
- K. Raj (M.S.)
- R. Rajachandrasekar (Ph.D.)

Current Faculty
- H. Subramoni

Current Software Engineers
- B. Seeds
- N. Pavuk
- N. Shineman
- M. Lieber

Current Research Scientists
- M. Abduljabbar
- A. Shafi
- P. Lai (M.S.)
- J. Liu (Ph.D.)
- M. Luo (Ph.D.)
- A. Mamidala (Ph.D.)
- G. Marsh (M.S.)
- V. Meshram (M.S.)
- A. Moody (M.S.)
- S. Naravula (Ph.D.)
- R. Noronha (Ph.D.)
- X. Ouyang (Ph.D.)
- K. Raj (M.S.)
- R. Rajachandrasekar (Ph.D.)

Current Faculty
- H. Subramoni

Current Students (Undergrads)
- V. Shah
- T. Chen
- D. Shankar (Ph.D.)
- G. Santhanararman (Ph.D.)
- N. Sarkauskas (B.S. and M.S)
- N. Senthil Kumar (M.S.)
- A. Singh (Ph.D.)
- J. Sridhar (M.S.)
- S. Srivastava (M.S.)
- S. Sur (Ph.D.)
- H. Subramoni (Ph.D.)
- K. Vaidyanathan (Ph.D.)
- A. Vishnu (Ph.D.)
- J. Wu (Ph.D.)
- W. Yu (Ph.D.)
- J. Zhang (Ph.D.)

Current Research Scientists
- M. Abduljabbar
- A. Shafi
- P. Lai (M.S.)
- J. Liu (Ph.D.)
- M. Luo (Ph.D.)
- A. Mamidala (Ph.D.)
- G. Marsh (M.S.)
- V. Meshram (M.S.)
- A. Moody (M.S.)
- S. Naravula (Ph.D.)
- R. Noronha (Ph.D.)
- X. Ouyang (Ph.D.)
- K. Raj (M.S.)
- R. Rajachandrasekar (Ph.D.)

Current Faculty
- H. Subramoni

Current Students (Undergrads)
- V. Shah
- T. Chen
- D. Shankar (Ph.D.)
- G. Santhanararman (Ph.D.)
- N. Sarkauskas (B.S. and M.S)
- N. Senthil Kumar (M.S.)
- A. Singh (Ph.D.)
- J. Sridhar (M.S.)
- S. Srivastava (M.S.)
- S. Sur (Ph.D.)
- H. Subramoni (Ph.D.)
- K. Vaidyanathan (Ph.D.)
- A. Vishnu (Ph.D.)
- J. Wu (Ph.D.)
- W. Yu (Ph.D.)
- J. Zhang (Ph.D.)

Current Research Scientists
- M. Abduljabbar
- A. Shafi
Thank You!

{shafi.16, jain.575}@osu.edu

Follow us on https://twitter.com/mvapich

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The MVAPICH2 Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/