
High Performance Machine Learning, Deep Learning,
and Data Science with MVAPICH2

Tutorial at MUG ’22

by

Follow us on

https://twitter.com/mvapich

Arpan Jain

The Ohio State University

jain.575@osu.edu

http://u.osu.edu/jain.575

Aamir Shafi

The Ohio State University

shafi.16@osu.edu

https://cse.osu.edu/people/shafi.16

https://twitter.com/mvapich
https://twitter.com/mvapich
http://u.osu.edu/

MUG ‘22 2Network Based Computing Laboratory

• Introduction
• Machine Learning

–Distributed K-Means
–ML Solutions

• Deep Learning
–Deep Neural Networks
–Distributed Deep Learning
–DL Solutions

• Data Science
• Conclusion

Outline

MUG ‘22 3Network Based Computing Laboratory

What is Machine Learning and Deep Learning?

Courtesy:
https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-lear
ning-1pcv3zeg
, https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning,
https://en.wikipedia.org/wiki/Machine_learning

• Machine Learning (ML)
– “the study of computer algorithms to improve

automatically through experience and use of data”

• Deep Learning (DL) – a subset of ML
– Uses Deep Neural Networks (DNNs)
– Perhaps, the most revolutionary subset!

• Based on learning data representation
• DNN Examples: Convolutional Neural Networks, Recurrent

Neural Networks, Hybrid Networks

• Data Scientist or Developer Perspective for using DNNs
1. Identify DL as solution to a problem
2. Determine Data Set
3. Select Deep Learning Algorithm to Use
4. Use a large data set to train an algorithm

https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning
https://en.wikipedia.org/wiki/Machine_learning

MUG ‘22 4Network Based Computing Laboratory

History: Milestones in the Development of ML/DL

1940 1950 1960 1970 1980 1990 2000 2010 2020

Electronic
Brain

1943

Perceptron

1957

ADALINE

1960

XOR
Problem

Golden
Age

1969

Multi-layered
Perceptron

(Backpropagation)

1986

Dark Age
(“AI Winter”)

DBN

2006

AlexNet

2012

ResNet

2015

WGAN

2017

Transformers

K-Means

1965

Bayesian
Network

1985

Decision Trees

1979

SVM

1995

KNN

1967

1800 1900 ….

Linear
Regression

1805

Turing Machine

1936

Evolutionary
Algorithms

1954

Random Forest

2000

PCA

1901

XGBoost

2014

CatBoost

Deep
Forest

2017

S. McCulloch – W. Pitts F. Rosenblatt B. Widrow – M. Hoff M. Minsky – S. Papert D. Rumelhart – G. Hinton – R. WiliamsA. Legendre – J. Gauss A. TuringK. Pearson J. Pearl V. Vapnik– C. Cortes A. Ng Y. LeCunA. Krizhevsky Y. Bengio

MUG ‘22 5Network Based Computing Laboratory

• Introduction
• Machine Learning

–Distributed K-Means
–ML Solutions

• Deep Learning
–Deep Neural Networks
–Distributed Deep Learning
–DL Solutions

• Data Science
• Conclusion

Outline

MUG ‘22 6Network Based Computing Laboratory

Three Main Types of Machine Learning

Courtesy: https://bigdata-madesimple.com/machine-learning-explained-understanding-supervised-unsupervised-and-reinforcement-learning/

https://bigdata-madesimple.com/machine-learning-explained-understanding-supervised-unsupervised-and-reinforcement-learning/

MUG ‘22 7Network Based Computing Laboratory

• Scikit-learn:
– Supports execution via Joblib (https://joblib.readthedocs.io/en/latest/)
– Joblib supports multi-threaded and multi-process execution (on multiple

nodes)

• XGBoost:
– Multiple ways to run on cluster of nodes:

• Dask (http://dask.org)
• Ray (https://ray.io/)
• AWS YARN
• Apache Spark (https://spark.apache.org/) using XGBoost4J-Spark

• cuML:
– Execution is supposed on multiple nodes using Dask (http://dask.org) and

NVIDIA’s NCCL

Support for Parallel and Distributed Execution

https://joblib.readthedocs.io/en/latest/
http://dask.org/
https://ray.io/
https://spark.apache.org/
http://dask.org/

MUG ‘22 8Network Based Computing Laboratory

• Element-wise Sum data from all processes and sends to all processes

Allreduce Collective Communication Pattern

int MPI_Allreduce (const void *sendbuf, void * recvbuf, int count, MPI_Datatype datatype,
MPI_Op operation, MPI_Comm comm)

Input-only Parameters

Parameter Description

sendbuf Starting address of send buffer

recvbuf Starting address of recv buffer

type Data type of buffer elements

count Number of elements in the buffers

operation Reduction operation to be performed (e.g. sum)

comm Communicator handle

Input/Output Parameters

Parameter Description

recvbuf Starting address of receive buffer

T1 T2 T3 T4

Sendbuf (Before)

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

T1 T2 T3 T4

Recvbuf (After)

4
8

12
16

4
8
12
16

4
8

12
16

4
8

12
16

MUG ‘22 9Network Based Computing Laboratory

Overview of the MVAPICH2 Project
• High Performance open-source MPI Library

• Support for multiple interconnects
– InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE), AWS EFA,

Rockport Networks, and Slingshot10/11, Broadcom

• Support for multiple platforms
– x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)

• Started in 2001, first open-source version demonstrated at SC ‘02
• Supports the latest MPI-3.1 standard

• http://mvapich.cse.ohio-state.edu
• Additional optimized versions for different systems/environments:

– MVAPICH2-X (Advanced MPI + PGAS), since 2011

– MVAPICH2-GDR with support for NVIDIA (since 2014) and AMD (since 2020) GPUs
– MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014

– MVAPICH2-Virt with virtualization support, since 2015
– MVAPICH2-EA with support for Energy-Awareness, since 2015

– MVAPICH2-Azure for Azure HPC IB instances, since 2019

– MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019

• Tools:
– OSU MPI Micro-Benchmarks (OMB), since 2003

– OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

• Used by more than 3,275 organizations in 90 countries

• More than 1.61 Million downloads from the OSU site
directly

• Empowering many TOP500 clusters (June ‘22 ranking)
– 6th, 10,649,600-core (Sunway TaihuLight) at NSC, China

– 16th, 448, 448 cores (Frontera) at TACC

– 30th, 288,288 cores (Lassen) at LLNL

– 42nd, 570,020 cores (Nurion) in South Korea and many more

• Available with software stacks of many vendors and Linux
Distros (RedHat, SuSE, OpenHPC, and Spack)

• Partner in the 16th ranked TACC Frontera system

• Empowering Top500 systems for more than 20 years

http://mvapich.cse.ohio-state.edu/

MUG ‘22 10Network Based Computing Laboratory

Parallelizing K-Means
• Step 0: Initialize centroids

– Assign initial cluster means randomly

• Step 1: Data Division
– Distribute elements among GPUs

• Step 2: Assign elements (colors)
– Assign each element to the cluster with the

closest mean

• Step 3: Update local cluster mean
– Calculate local cluster means for all local points

• Step 4: Update global cluster mean*
– Calculate global cluster means by calling

Allreduce()

• Step 5: Repeat steps 2-4 until convergence

MUG ‘22 11Network Based Computing Laboratory

Parallelizing the K-means Algorithm
• Step 0: Initialize centroids

– Assign initial cluster means randomly

• Step 1: Data Division
– Distribute elements among GPUs

• Step 2: Assign elements (color)
– Assign each element to the cluster with the

closest mean

• Step 3: Update local cluster mean
– Calculate local cluster means for all local points

• Step 4: Update global cluster mean*
– Calculate global cluster means by calling

Allreduce()

• Step 5: Repeat steps 2-4 until convergence

Set of input elements

GPU 0 GPU 1 GPU 2 GPU 3

St
ep

 1
St

ep
 2

∑
𝒍𝒐𝒄𝒂𝒍

❑

𝒌

St
ep

 3 ∑
𝒍𝒐𝒄𝒂𝒍

❑

𝒌 ∑
𝒍𝒐𝒄𝒂𝒍

❑

𝒌 ∑
𝒍𝒐𝒄𝒂𝒍

❑

𝒌

St
ep

 4

Allreduce()

∑
𝒈𝒍𝒐𝒃𝒂𝒍

❑

𝒌 ∑
𝒈𝒍𝒐𝒃𝒂𝒍

❑

𝒌 ∑
𝒈𝒍𝒐𝒃𝒂𝒍

❑

𝒌 ∑
𝒈𝒍𝒐𝒃𝒂𝒍

❑

𝒌

Step 5: Repeat 2-4 until convergence

Assign all local elements to the cluster with closest mean

MUG ‘22 12Network Based Computing Laboratory

Parallelizing K-Means Clustering

Courtesy: https://github.com/tmscarla/k-means-parallel http://users.eecs.northwestern.edu/~wkliao/Kmeans/
Recompute centroids after MPI_Allreduce

Node 0

Node 1

Domain Decomposition

Global reduction for all cluster centers is performed at the end of each iteration in order to generate the new cluster centers.

https://github.com/tmscarla/k-means-parallel
http://users.eecs.northwestern.edu/~wkliao/Kmeans/

MUG ‘22 13Network Based Computing Laboratory

• Introduction
• Machine Learning

–Distributed K-Means
–ML Solutions

• Deep Learning
–Deep Neural Networks
–Distributed Deep Learning
–DL Solutions

• Data Science
• Conclusion

Outline

MUG ‘22 14Network Based Computing Laboratory

• The NVIDIA RAPIDS project aims to build end-to-end data science
analytic pipelines on GPUs

• An important component is the cuML library:
– GPU-accelerated ML library
– GPU-counterpart of Scikit-learn
– Supports the execution of ML workloads on Multi-Node Multi-GPUs (MNMG)

systems

• Most existing ML libraries, including Scikit-learn and Apache Spark’s
MLlib, only support CPU execution of ML algorithms
– Conventional wisdom has been that only DNNs are a good match for GPUs

because of high computational requirements

The cuML Library: Accelerating ML on GPUs

MUG ‘22 15Network Based Computing Laboratory

• Main components
– Python layer

• Provides a Scikit-learn like interface
• Hides the complexities of the CUDA/C/C++ layer

– Primitives and cuML algorithms built on top of CUDA
• ML Algorithms
• Primitives

– Reusable building blocks for building machine learning
algorithms

– Common for different machine learning algorithms
– Used to build different machine learning algorithms

– Communication Support in cuML:
• Point-to-point communication: Dask
• Collective communication: NVIDIA Collective

Communications Library (NCCL)

Main components of the cuML library

MUG ‘22 16Network Based Computing Laboratory

• Utilize MVAPICH2-GDR (with mpi4py) as communication backend during the
training phase (the fit() function) in the Multi-node Multi-GPU (MNMG) setting
over cluster of GPUs

• Communication primitives:
– Allreduce
– Reduce
– Broadcast

• Exploit optimized collectives

Accelerating cuML with MVAPICH2-GDR

Python

Cython

cuML Primitives

CUDA Libraries

CUDA

cuML Algorithms

CUDA/C/C++

UCX-Py

Dask

NCCL MVAPICH2-
GDR

mpi4py

UCX

MPI4cuML 0.1 release

(http://hidl.cse.ohio-state.edu)

MUG ‘22 17Network Based Computing Laboratory

1 2 4 8 16 32
0

500

1000

1500

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
NCCL
MVAPICH2-GDR
Speedup

Number of GPUs

Tr
ai

ni
ng

 T
im

e
(s

)

Sp
ee

du
p

1 2 4 8 16 32
0

500

1000

1500

2000

2500

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

NCCL MVAPICH2-GDR

Speedup

Number of GPUs

Tr
ai

ni
ng

 T
im

e
(s

)

Sp
ee

du
p

K-Means Linear Regression

Nearest Neighbors Truncated SVD

1 2 4 8 16 32
0

500

1000

1500

2000

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

NCCL MVAPICH2-GDR

Speedup

Number of GPUs

Tr
ai

ni
ng

 T
im

e
(s

)

Sp
ee

du
p

1 2 4 8 16 32
0

500

1000

1500

2000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
NCCL
MVAPICH2-GDR
Speedup

Number of GPUs

Tr
ai

ni
ng

 T
im

e
(s

)

Sp
ee

du
p

M. Ghazimirsaeed , Q. Anthony , A. Shafi , H. Subramoni , and D. K. Panda, Accelerating GPU-based Machine Learning in Python
using MPI Library: A Case Study with MVAPICH2-GDR, MLHPC Workshop, Nov 2020

MUG ‘22 18Network Based Computing Laboratory

• Introduction
• Machine Learning

–Distributed K-Means
–ML Solutions

• Deep Learning
–Deep Neural Networks
–Distributed Deep Learning
–DL Solutions

• Data Science
• Conclusion

Outline

MUG ‘22 19Network Based Computing Laboratory

• Example of a 3-layer Deep Neural Network (DNN) – (input layer is not counted)

Understanding the Deep Neural Network Concepts

Courtesy: http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/

MUG ‘22 20Network Based Computing Laboratory

Essential Concepts: Learning Rate (α)

Courtesy: https://www.jeremyjordan.me/nn-learning-rate/

https://www.jeremyjordan.me/nn-learning-rate/

MUG ‘22 21Network Based Computing Laboratory

• Batched Gradient Descent
– Batch Size = N

• Stochastic Gradient Descent
– Batch Size = 1

• Mini-batch Gradient Descent
– Somewhere in the middle
– Common:

• Batch Size = 64, 128, 256, etc.

• Finding the optimal batch
size will yield the fastest
learning.

Essential Concepts: Batch Size

Courtesy: https://www.jeremyjordan.me/gradient-descent/

N

Batch Size One full pass over N is called an epoch of training

https://www.jeremyjordan.me/gradient-descent/

MUG ‘22 22Network Based Computing Laboratory

• Introduction
• Machine Learning

–Distributed K-Means
–ML Solutions

• Deep Learning
–Deep Neural Networks
–Distributed Deep Learning
–DL Solutions

• Data Science
• Conclusion

Outline

MUG ‘22 23Network Based Computing Laboratory

• Why do we need Parallel Training?
• Larger and Deeper models are being proposed

– AlexNet -> ResNet -> NASNet – AmoebaNet
– DNNs require a lot of memory and a lot of computation
– Larger models cannot fit a GPU’s memory

• Single GPU training cannot keep up with ever-larger models
• Community has moved to multi-GPU training
• Multi-GPU in one node is good but there is a limit to Scale-up (8-16 GPUs)
• Multi-node (Distributed or Parallel) Training is necessary!!

The Need for Parallel and Distributed Training

MUG ‘22 24Network Based Computing Laboratory

• Some parallelization strategies..
– Data Parallelism or Model Parallelism
– Hybrid Parallelism

Parallelization Strategies

Model Parallelism

Data Parallelism
Hybrid (Model and Data) Parallelism

Courtesy: http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks

http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks

MUG ‘22 25Network Based Computing Laboratory

Data Parallelism and MPI Collectives
• Step1: Data Propagation

– Distribute the Data among GPUs

• Step2: Forward Backward Pass
– Perform forward pass and

calculate the prediction
– Calculate Error by comparing

prediction with actual output
– Perform backward pass and

calculate gradients

• Step3: Gradient Aggregation
– Call MPI_Allreduce to reduce the

local gradients
– Update parameters locally using

global gradients

Batch

MUG ‘22 26Network Based Computing Laboratory

• Introduction
• Machine Learning

–Distributed K-Means
–ML Solutions

• Deep Learning
–Deep Neural Networks
–Distributed Deep Learning
–DL Solutions

• Data Science
• Conclusion

Outline

MUG ‘22 27Network Based Computing Laboratory

• Data Parallelism
• Model-Parallelism

Solutions and Case Studies: Exploiting HPC for DL

CUDA-Awareness

InfiniBand GPUCPU

Large-message
Collectives

CNTK

Point-to-
Point

Operations

Gradient
AggregationModel Propagation Forward

Backward

Deep Learning and Machine Learning Frameworks

LBANN FlexFlow TensorFlow PyTorch

Communication Runtimes (MPI/NCCL/Gloo/MLSL)

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

Co-Design
Opportunities

MUG ‘22 28Network Based Computing Laboratory

MVAPICH2 (MPI)-driven Infrastructure for ML/DL Training

MVAPICH2 or MVAPICH2-X
for CPU Training

MVAPICH2-GDR for
GPU Training

Horovod

TensorFlow PyTorch MXNet

ML/DL Applications

MVAPICH2 or MVAPICH2-X
for CPU Training

MVAPICH2-GDR for
GPU Training

Torch.distributed

PyTorch

ML/DL Applications

DeepSpeed

More details available from: http://hidl.cse.ohio-state.edu

http://hidl.cse.ohio-state.edu/

MUG ‘22 29Network Based Computing Laboratory

Install Horovod with MVAPICH2-X and MVAPICH2-GDR

Command to install Horovod with MVAPICH2-X

$ HOROVOD_WITH_MPI=1 pip install --no-cache-dir horovod

Command to install Horovod with MVAPICH2-GDR

$ HOROVOD_GPU_ALLREDUCE=MPI HOROVOD_CUDA_HOME=/opt/cuda/11.3 HOROVOD_WITH_MPI=1 pip
install --no-cache-dir horovod

MUG ‘22 30Network Based Computing Laboratory

+ python pytorch_synthetic_benchmark.py --batch-size 64 --num-iters=5
.
.
Model: resnet50
Batch size: 64
Number of GPUs: 1
Running warmup...
Running benchmark...
Iter #0: 333.9 img/sec per GPU
Iter #1: 334.2 img/sec per GPU
Iter #2: 333.9 img/sec per GPU
Iter #3: 333.8 img/sec per GPU
Iter #4: 333.9 img/sec per GPU
Img/sec per GPU: 334.0 +-0.2

Total img/sec on 1 GPU(s): 334.0 +-0.2

Run PyTorch on a single GPU

V100

MUG ‘22 31Network Based Computing Laboratory

+ mpirun_rsh -np 2 gpu11 gpu12 MV2_USE_CUDA=1 MV2_CPU_BINDING_POLICY=hybrid
MV2_HYBRID_BINDING_POLICY=spread MV2_USE_RDMA_CM=0
MV2_GPUDIRECT_GDRCOPY_LIB=/opt/gdrcopy2.0/lib64/libgdrapi.so LD_PRELOAD=mv2-gdr/lib/libmpi.so

python pytorch_synthetic_benchmark.py --batch-size 64 --num-iters=5
.
.
Model: resnet50
Batch size: 64
Number of GPUs: 2
Running warmup...
Running benchmark...
Iter #0: 317.0 img/sec per GPU
Iter #1: 314.9 img/sec per GPU
Iter #2: 315.4 img/sec per GPU
Iter #3: 318.0 img/sec per GPU
Iter #4: 316.7 img/sec per GPU
Img/sec per GPU: 316.4 +-2.2

Total img/sec on 2 GPU(s): 632.8 +-4.3

Run PyTorch on two nodes with 1 GPU/node (using MVAPICH2-
GDR)

V100

~1.89X on
2 GPUs

MUG ‘22 32Network Based Computing Laboratory

MVAPICH2-GDR vs. NCCL2 – Allreduce Operation (OSC Pitzer)
• Optimized designs in MVAPICH2-GDR offer better/comparable performance for most cases
• MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on OSC Pitzer system

256K 512K 1M 2M 4M 8M 16M 32M 64M 128M
100

1000

10000

100000

MVAPICH2-GDR-2.3.7 NCCL-2.12.10

Message Size (Bytes)

La
te

nc
y

(u
s)

Platform: OSC Pitzer system (8 nodes with 2 Nvidia Volta GPUs), CUDA 11.6

8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K
0

20

40

60

80

100

120

140

160

180

MVAPICH2-GDR-2.3.7 NCCL-2.12.10

Message Size (Bytes)

La
te

nc
y

(u
s)

MUG ‘22 33Network Based Computing Laboratory

Distributed TensorFlow on ORNL Summit (1,536 GPUs)
• ResNet-50 Training using

TensorFlow benchmark on
SUMMIT -- 1536 Volta
GPUs!

• 1,281,167 (1.2 mil.) images

• Time/epoch = 3 seconds

• Total Time (90 epochs)
= 3 x 90 = 270 seconds =
4.5 minutes!

1 2 4 6 12 24 48 96 192 384 768 1536
0

50000
100000
150000
200000
250000
300000
350000
400000
450000

MVAPICH2-GDR 2.3.4

MVAPICH2-GDR 2.3.4

Number of GPUs

Im
ag

e
pe

r s
ec

on
d

Platform: The Summit Supercomputer (#2 on Top500.org) – 6 NVIDIA Volta GPUs per node connected with NVLink, CUDA 10.1

*We observed issues for NCCL2 beyond 384 GPUs

MVAPICH2-GDR reaching ~0.42 million
images per second for ImageNet-1k!

ImageNet-1k has 1.2 million images

MUG ‘22 34Network Based Computing Laboratory

Distributed TensorFlow on TACC Frontera (2048 CPU nodes)
• Scaled TensorFlow to 2048 nodes on

Frontera using MVAPICH2 and IntelMPI

• MVAPICH2 delivers close to the ideal
performance for DNN training

• Report a peak of 260,000 images/sec on
2048 nodes

• On 2048 nodes, ResNet-50 can be trained
in 7 minutes!

A. Jain, A. A. Awan, H. Subramoni, DK Panda, “Scaling TensorFlow, PyTorch, and MXNet using MVAPICH2 for High-Performance Deep
Learning on Frontera”, DLS ’19 (SC ’19 Workshop).

1 2 4 8 16 32 64 128 256 512 10242048
100

1000

10000

100000

1000000

MVAPICH2-X Ideal

Nodes

Im
ag

es
 p

er
 se

c

MUG ‘22 35Network Based Computing Laboratory

• Data Parallelism
• Model-Parallelism

Solutions and Case Studies: Exploiting HPC for DL

CUDA-Awareness

InfiniBand GPUCPU

Large-message
Collectives

CNTK

Point-to-
Point

Operations

Gradient
AggregationModel Propagation Forward

Backward

Deep Learning and Machine Learning Frameworks

LBANN FlexFlow TensorFlow PyTorch

Communication Runtimes (MPI/NCCL/Gloo/MLSL)

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

Co-Design
Opportunities

MUG ‘22 36Network Based Computing Laboratory

• Why Hybrid parallelism?
– Data Parallel training has

limits! 
• We propose HyPar-Flow

– An easy to use Hybrid
parallel training framework
• Hybrid = Data + Model

– Supports Keras models and
exploits TF 2.0 Eager
Execution

– Exploits MPI for Point-to-
point and Collectives

HyPar-Flow: Hybrid Parallelism for TensorFlow

Benchmarking large-models lead to better insights and ability to develop new approaches!
A. A. Awan, A. Jain, Q. Anthony, H. Subramoni, and DK Panda, “HyPar-Flow: Exploiting MPI and Keras for Hybrid
Parallel Training of TensorFlow models”, ISC ’20, https://arxiv.org/pdf/1911.05146.pdf

https://arxiv.org/pdf/1911.05146.pdf
https://arxiv.org/pdf/1911.05146.pdf

MUG ‘22 37Network Based Computing Laboratory

• HyPar-Flow is practical (easy-to-use) and high-performance (uses MPI)
– Based on Keras models and exploits TF 2.0 Eager Execution
– Leverages MPI Pt-to-pt. and Collectives for communication

Model/Hybrid Parallelism and MPI Collectives

A. A. Awan, A. Jain, Q. Anthony, H. Subramoni, and DK
Panda, “HyPar-Flow: Exploiting MPI and Keras for Hybrid
Parallel Training of TensorFlow models”, ISC ’20,
https://arxiv.org/pdf/1911.05146.pdf

https://arxiv.org/pdf/1911.05146.pdf
https://arxiv.org/pdf/1911.05146.pdf

MUG ‘22 38Network Based Computing Laboratory

• ResNet-1001 with variable batch
size

• Approach:
– 48 model-partitions for 56 cores
– 512 model-replicas for 512 nodes
– Total cores: 48 x 512 = 24,576

• Speedup
– 253X on 256 nodes
– 481X on 512 nodes

• Scaling Efficiency
– 98% up to 256 nodes
– 93.9% for 512 nodes

HyPar-Flow at Scale (512 nodes on TACC Frontera)

481x speedup on 512 Intel Xeon Cascade Lake nodes (TACC Frontera)

A. A. Awan, A. Jain, Q. Anthony, H. Subramoni, and DK Panda, “HyPar-Flow: Exploiting MPI and Keras for Hybrid
Parallel Training of TensorFlow models”, ISC ‘20, https://arxiv.org/pdf/1911.05146.pdf

https://arxiv.org/pdf/1911.05146.pdf

MUG ‘22 39Network Based Computing Laboratory

Why do we need Memory aware
designs?

– Data and Model Parallel
training has limitation!

– Maximum Batch Size
depends on the memory.

– Basic Model Parallelism
suffers from underutilization
of memory and compute 

GEMS: GPU Enabled Memory Aware Model Parallelism Systems

Memory requirement increases with the increase in image size!

A. Jain, A. Awan, A. Aljuhani, J. Hashmi, Q. Anthony, H. Subramoni, D. Panda, R. Machiraju, A. Parwani, “GEMS: GPU Enabled Memory Aware Model Parallelism System for
Distributed DNN”, SC ’20.

MUG ‘22 40Network Based Computing Laboratory

• Pathology whole slide image (WSI)
– Each WSI = 100,000 x 100,000 pixels
– Can not fit in a single GPU memory
– Tiles are extracted to make training possible

• Two main problems with tiles
– Restricted tile size because of GPU memory limitation
– Smaller tiles loose structural information

• Reduced training time significantly
– GEMS-Basic: 7.25 hours (1 node, 4 GPUs)
– GEMS-MAST: 6.28 hours (1 node, 4 GPUs)
– GEMS-MASTER: 4.21 hours (1 node, 4 GPUs)
– GEMS-Hybrid: 27 mins (32 nodes, 128 GPUs)
– Overall 15x reduction in training time!!!!

Exploiting Model Parallelism in AI-Driven Digital Pathology

Courtesy:
https://blog.kitware.com/digital-slide-archive-large-i
mage-and-histomicstk-open-source-informatics-tools-f
or-management-visualization-and-analysis-of-digital-hi
stopathology-data/

Scaling ResNet 110 v2 on 1024×1024 image tiles
us ing histopathology data

A. Jain, A. Awan, A. Aljuhani, J. Hashmi, Q. Anthony, H. Subramoni, D. K. Panda, R. Machiraju, and A. Parwani, “GEMS:
GPU Enabled Memory Aware Model Parallelism System for Distributed DNN Training”, Supercomputing (SC ‘20).

4 8 16 32 64 128
0

5

10

15

20

25

Number of GPUs

Th
ro

ug
hp

ut
 S

pe
ed

up
 (i

m
ag

es

pe
r s

ec
)

1x 1.9x
3.6x

7x

12x

22x

https://blog.kitware.com/digital-slide-archive-large-image-and-histomicstk-open-source-informatics-tools-for-management-visualization-and-analysis-of-digital-histopathology-data/
https://blog.kitware.com/digital-slide-archive-large-image-and-histomicstk-open-source-informatics-tools-for-management-visualization-and-analysis-of-digital-histopathology-data/
https://blog.kitware.com/digital-slide-archive-large-image-and-histomicstk-open-source-informatics-tools-for-management-visualization-and-analysis-of-digital-histopathology-data/
https://blog.kitware.com/digital-slide-archive-large-image-and-histomicstk-open-source-informatics-tools-for-management-visualization-and-analysis-of-digital-histopathology-data/

MUG ‘22 41Network Based Computing Laboratory

• Introduction
• Machine Learning

–Distributed K-Means
–ML Solutions

• Deep Learning
–Deep Neural Networks
–Distributed Deep Learning
–DL Solutions

• Data Science
• Conclusion

Outline

MUG ‘22 42Network Based Computing Laboratory

• Dask is a popular task-based distributed computing framework:
– Scales Python applications from laptops to high-end systems
– Builds a task-graph that is executed lazily on parallel hardware
– Natively extends popular data processing libraries like numPy, Pandas

• Dask Distributed library supports parallel and distributed execution:
– Built using the asyncio package that allows execution of asynchronous/non-blocking/concurrent

operations called coroutines:
• These are defined using async and invoked using await

– Dask Distributed library provide support for communication:
• TCP: Tornado-based
• UCX: Built using a Cython wrapper called UCX-Py

• Other Data Science frameworks include Apache Spark and Ray

Introduction to Dask

MUG ‘22 43Network Based Computing Laboratory

Dask Distributed Execution Model

Cluster

Client

Scheduler

Worker Worker Worker

MUG ‘22 44Network Based Computing Laboratory

• Dask originally had two communication backends:
• TCP: Tornado-based
• UCX: Built using a GPU-aware Cython wrapper called UCX-Py

• MPI4Dask is an MVAPICH2-based communication backend for Dask:
– First MPI-based communication device for Dask
– Optimizes CPU and GPU communication in the Dask framework on modern HPC clusters

MPI4Dask: MPI-based Communication Backend for
Dask

MUG ‘22 45Network Based Computing Laboratory

Dask Architecture

Distributed

Scheduler Worker Client

Comm Layer
tcp.py ucx.py

Laptops/
Desktops

Dask-MPI Dask-CUDA Dask-Jobqueue

Dask
Dask Bag Dask Array Dask DataFrame Delayed Future

Task Graph

High Performance Computing Hardware

UCX-Py
(Cython wrappers)

TCP UCX

MPI4Dask

mpi4py

MVAPICH2-GDR

MUG ‘22 46Network Based Computing Laboratory

• Several ways to start Dask programs:
– Manual
– Utility classes:

• LocalCUDACluster, SLURMCluster, SGECluster, PBCCluster, and others

• MPI4Dask uses the Dask-MPI to bootstrap execution of Dask
programs

• Dynamic connectivity is established using the asyncio
package in MPI4Dask:
– Scheduler and workers listen for incoming connections by calling

asyncio.start_server()
– Workers and client connect using asyncio.open_connection()

MPI4Dask: Bootstrapping and Dynamic Connectivity

MUG ‘22 47Network Based Computing Laboratory

• Implements communication coroutines for point-to-point MPI functions:
– Using mpi4py (Cython wrappers) and MVAPICH2-GDR

• mpi4py provides two flavors of point-to-point communication functions:
– Send()/Recv() – for exchanging data in buffers (faster and used in MPI4Dask)
– send()/recv() – for communicating Python objects (pickle/unpickle)
– GPU buffers implement the __cuda_array_interface__

• Implemented chunking mechanism for large messages
• The send and receive communication coroutines are as follows:

MPI4Dask: Point-to-point Communication
Coroutines

MUG ‘22 48Network Based Computing Laboratory

• MPI4Dask is available to download from: http://hibd.cse.ohio-state.edu/
– The userguide is available at: http://hibd.cse.ohio-state.edu/static/media/hibd/dask/mpi4dask-0.2-userguide.pdf

• Section 3: Setup Instructions
– 3.1 Installation Pre-requisites:

• 3.1.1 Install Miniconda
• 3.1.2 Modules/Libraries for GPU-based Dask Applications:
• 3.1.3 Modules/Libraries for CPU-based Dask Applications:
• 3.1.4 Install the MVAPICH2 Library (MVAPICH2-X, MVAPICH2, or MVAPICH2-GDR)
• 3.1.5 Install the mpi4py Library
• 3.1.6 Install Dask-MPI package

– 3.2 Install MPI4Dask
• Section 4. Running GPU-based Dask Applications

– 4.1 Writing the host file
– 4.2 Sum of cuPy Array and its Transpose
– 4.3 cuDF Merge

• Section 5. Running GPU-based Dask Applications
– 5.1 Writing the host file
– 5.2 Sum of numPy Array and its Transpose
– 5.3 Sum of Pandas Data Frame
– 5.4 SVD

MPI4Dask Installation

http://hibd.cse.ohio-state.edu/
http://hibd.cse.ohio-state.edu/static/media/hibd/dask/mpi4dask-0.2-userguide.pdf

MUG ‘22 49Network Based Computing Laboratory

Modules/Libraries for GPU-based Dask Applications:
$ conda install -c conda-forge -c rapidsai -c nvidia automake make libtool pkg-config libhwloc psutil python=3.8 setuptools cython cudatoolkit=10.2 cupy
dask-cudf dask==2021.1.1 distributed numpy rmm

Modules/Libraries for CPU-based Dask Applications:
$ conda install -c conda-forge -c rapidsai -c nvidia automake make libtool pkg-config libhwloc psutil python=3.8 setuptools cython dask==2021.1.1
distributed=2021.1.1 numpy

Install the MVAPICH2 Library (MVAPICH2-X, MVAPICH2, or MVAPICH2-GDR)

Install the mpi4py Library
$ git clone https://github.com/mpi4py/mpi4py.git
$ edit mpi.cfg file
[MVAPICH2]
mpi_dir = /path/to/MVAPICH2-GDR/install/directory
mpicc = %(mpi_dir)s/bin/mpicc
mpicxx = %(mpi_dir)s/bin/mpicxx
include_dirs = %(mpi_dir)s/include
library_dirs = %(mpi_dir)s/lib64
runtime_library_dirs = %(library_dirs)s

$ python setup.py build --mpi=MVAPICH2-GDR; $ pip install .

Installation Pre-requisites

MUG ‘22 50Network Based Computing Laboratory

Install Dask-MPI package

$ git clone https://github.com/dask/dask-mpi.git
$ cd dask-mpi
$ python setup.py build
$ pip install .

Install MPI4Dask

$ wget http://hibd.cse.ohio-state.edu/download/hibd/dask/mpi4dask-0.2.tar.gz
$ tar -xzvf mpi4dask-0.2.tar.gz
$ cd mpi4dask-0.2/distributed
$ python setup.py build
$ pip install .

$ conda list
$ conda list | grep distributed
$ conda list |grep dask

Install Dask-MPI and MPI4Dask

MUG ‘22 51Network Based Computing Laboratory

Sum of cuPy Array and its Transpose [GPU]
$ cd mpi4dask-0.2/dask-apps/gpu
$ LD_PRELOAD=$MPILIB/lib64/libmpi.so $MPILIB/bin/mpirun_rsh -export-all -np 4 -hostfile hosts MV2_USE_CUDA=1
MV2_USE_GDRCOPY=1 MV2_GPUDIRECT_GDRCOPY_LIB=/opt/gdrcopy2.0/lib64/libgdrapi.so MV2_CPU_BINDING_LEVEL=SOCKET
MV2_CPU_BINDING_POLICY=SCATTER python cupy_sum_mpi.py

cuDF Merge [GPU]
$ cd mpi4dask-0.2/dask-apps/gpu
$ LD_PRELOAD=$MPILIB/lib/libmpi.so $MPILIB/bin/mpirun_rsh -export-all -np 4 -hostfile hosts MV2_USE_CUDA=1 MV2_USE_GDRCOPY=1
MV2_GPUDIRECT_GDRCOPY_LIB=/opt/gdrcopy2.0/lib64/libgdrapi.so MV2_CPU_BINDING_LEVEL=SOCKET
MV2_CPU_BINDING_POLICY=SCATTER python cudf_merge_mpi.py --type gpu --protocol mpi --runs 20 --chunk-size 1_000_000_00

Sum of numPy Array and its Transpose [CPU]
$ cd mpi4dask-0.2/dask-apps/cpu
$ LD_PRELOAD=$MPILIB/lib/libmpi.so $MPILIB/bin/mpirun_rsh -export-all -np 4 -hostfile hosts MV2_CPU_BINDING_LEVEL=SOCKET
MV2_CPU_BINDING_POLICY=SCATTER python numpy_sum_mpi.py

Sum of Pandas DataFrame [CPU]
$ cd mpi4dask-0.2/dask-apps/cpu
$ LD_PRELOAD=$MPILIB/lib/libmpi.so $MPILIB/bin/mpirun_rsh -export-all -np 4 -hostfile hosts MV2_CPU_BINDING_LEVEL=SOCKET
MV2_CPU_BINDING_POLICY=SCATTER python dask-cudf_sum_mpi.py

Running GPU and CPU Dask Applications

MUG ‘22 52Network Based Computing Laboratory

Benchmark: Sum of cuPy Array and its Transpose (TACC
Frontera GPU Subsystem)

A. Shafi , J. Hashmi , H. Subramoni , and D. K. Panda, Efficient MPI-based
Communication for GPU-Accelerated Dask Applications, CCGrid ‘21
https://arxiv.org/abs/2101.08878

MPI4Dask 0.2 release

(http://hibd.cse.ohio-state.edu)

1.71x better on average

MUG ‘22 53Network Based Computing Laboratory

• Introduction
• Machine Learning

–Distributed K-Means
–ML Solutions

• Deep Learning
–Deep Neural Networks
–Distributed Deep Learning
–DL Solutions

• Open Issues and Challenges
• Conclusion

Outline

MUG ‘22 54Network Based Computing Laboratory

• Exponential growth in Machine Learning/Deep Learning/Data Science
frameworks

• Provided an overview of issues, challenges, and opportunities for
designing efficient communication runtimes
– Efficient, scalable, and hierarchical designs are crucial for ML/DL/Data Science frameworks
– Co-design of communication runtimes and ML/DL/Data Science frameworks will be essential

• Presented use-cases to demonstrate the complex interaction between DL/ML/Dask
middleware with the underling HPC technologies and middleware

• Need collaborative efforts to achieve the full potential

Conclusion

MUG ‘22 55Network Based Computing Laboratory

Funding Acknowledgments
Funding Support by

Equipment Support by

MUG ‘22 56Network Based Computing Laboratory

Acknowledgments to all the Heroes (Past/Current Students and Staffs)
Current Students (Graduate)

– N. Alnaasan (Ph.D.)
– Q. Anthony (Ph.D.)
– C.-C. Chun (Ph.D.)
– N. Contini (Ph.D.)
– A. Jain (Ph.D.)

Past Students
– A. Awan (Ph.D.)
– A. Augustine (M.S.)
– P. Balaji (Ph.D.)
– M. Bayatpour (Ph.D.)
– R. Biswas (M.S.)
– S. Bhagvat (M.S.)
– A. Bhat (M.S.)
– D. Buntinas (Ph.D.)
– L. Chai (Ph.D.)
– B. Chandrasekharan (M.S.)
– S. Chakraborthy (Ph.D.)
– N. Dandapanthula (M.S.)
– V. Dhanraj (M.S.)
– C.-H. Chu (Ph.D.)

– D. Shankar (Ph.D.)
– G. Santhanaraman (Ph.D.)
– N. Sarkauskas (B.S. and M.S)
– N. Senthil Kumar (M.S.)
– A. Singh (Ph.D.)
– J. Sridhar (M.S.)
– S. Srivastava (M.S.)
– S. Sur (Ph.D.)
– H. Subramoni (Ph.D.)
– K. Vaidyanathan (Ph.D.)
– A. Vishnu (Ph.D.)
– J. Wu (Ph.D.)
– W. Yu (Ph.D.)
– J. Zhang (Ph.D.)

Past Research Scientists
– K. Hamidouche
– S. Sur
– X. Lu

Past Post-Docs
– D. Banerjee
– X. Besseron
– M. S. Ghazimeersaeed

– T. Gangadharappa (M.S.)
– K. Gopalakrishnan (M.S.)
– J. Hashmi (Ph.D.)
– W. Huang (Ph.D.)
– W. Jiang (M.S.)
– J. Jose (Ph.D.)
– M. Kedia (M.S.)
– S. Kini (M.S.)
– M. Koop (Ph.D.)
– K. Kulkarni (M.S.)
– R. Kumar (M.S.)
– S. Krishnamoorthy (M.S.)
– K. Kandalla (Ph.D.)
– M. Li (Ph.D.)

– P. Lai (M.S.)
– J. Liu (Ph.D.)
– M. Luo (Ph.D.)
– A. Mamidala (Ph.D.)
– G. Marsh (M.S.)
– V. Meshram (M.S.)
– A. Moody (M.S.)
– S. Naravula (Ph.D.)
– R. Noronha (Ph.D.)
– X. Ouyang (Ph.D.)
– S. Pai (M.S.)
– S. Potluri (Ph.D.)
– K. Raj (M.S.)
– R. Rajachandrasekar (Ph.D.)

– K. S. Khorassani (Ph.D.)
– P. Kousha (Ph.D.)
– B. Michalowicz (Ph.D.)
– B. Ramesh (Ph.D.)
– K. K. Suresh (Ph.D.)

– H.-W. Jin
– J. Lin
– M. Luo

Past Senior Research Associate
– J. Hashmi

Past Programmers
– A. Reifsteck
– D. Bureddy
– J. Perkins

– E. Mancini
– K. Manian
– S. Marcarelli

Current Software Engineers
– B. Seeds
– N. Pavuk
– N. Shineman
– M. Lieber

Past Research Specialist
– M. Arnold
– J. Smith

Current Research Scientists
– M. Abduljabbar
– A. Shafi

– A. H. Tu (Ph.D.)
– S. Xu (Ph.D.)
– Q. Zhou (Ph.D.)
– K. Al Attar (M.S.)
– L. Xu (Ph.D.)

– A. Ruhela
– J. Vienne
– H. Wang

Current Students (Undergrads)
– V. Shah
– T. Chen

Current Research Specialist
– R. Motlagh

Current Faculty
– H. Subramoni– H. Ahn (Ph.D.)

– G. Kuncham (Ph.D.)
– R. Vaidya (Ph.D.)
– J. Yao (P.hD.)
– M. Han (M.S.)
– A. Guptha (M.S.)

MUG ‘22 57Network Based Computing Laboratory

Thank You!

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The MVAPICH2 Project
http://mvapich.cse.ohio-state.edu/

Follow us on

https://twitter.com/mvapich

{shafi.16, jain.575}@osu.edu

http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
https://twitter.com/mvapich
https://twitter.com/mvapich

	Slide 1
	Outline
	What is Machine Learning and Deep Learning?
	History: Milestones in the Development of ML/DL
	Outline (2)
	Three Main Types of Machine Learning
	Support for Parallel and Distributed Execution
	Allreduce Collective Communication Pattern
	Overview of the MVAPICH2 Project
	Parallelizing K-Means
	Parallelizing the K-means Algorithm
	Parallelizing K-Means Clustering
	Outline (3)
	The cuML Library: Accelerating ML on GPUs
	Main components of the cuML library
	Accelerating cuML with MVAPICH2-GDR
	K-Means
	Outline (4)
	Understanding the Deep Neural Network Concepts
	Essential Concepts: Learning Rate (α)
	Essential Concepts: Batch Size
	Outline (5)
	The Need for Parallel and Distributed Training
	Parallelization Strategies
	Data Parallelism and MPI Collectives
	Outline (6)
	Solutions and Case Studies: Exploiting HPC for DL
	MVAPICH2 (MPI)-driven Infrastructure for ML/DL Training
	Install Horovod with MVAPICH2-X and MVAPICH2-GDR
	Run PyTorch on a single GPU
	Run PyTorch on two nodes with 1 GPU/node (using MVAPICH2-GDR)
	MVAPICH2-GDR vs. NCCL2 – Allreduce Operation (OSC Pitzer)
	Distributed TensorFlow on ORNL Summit (1,536 GPUs)
	Distributed TensorFlow on TACC Frontera (2048 CPU nodes)
	Solutions and Case Studies: Exploiting HPC for DL (2)
	HyPar-Flow: Hybrid Parallelism for TensorFlow
	Model/Hybrid Parallelism and MPI Collectives
	HyPar-Flow at Scale (512 nodes on TACC Frontera)
	GEMS: GPU Enabled Memory Aware Model Parallelism Systems
	Exploiting Model Parallelism in AI-Driven Digital Pathology
	Outline (7)
	Introduction to Dask
	Dask Distributed Execution Model
	MPI4Dask: MPI-based Communication Backend for Dask
	Dask Architecture
	MPI4Dask: Bootstrapping and Dynamic Connectivity
	MPI4Dask: Point-to-point Communication Coroutines
	MPI4Dask Installation
	Installation Pre-requisites
	Install Dask-MPI and MPI4Dask
	Running GPU and CPU Dask Applications
	Benchmark: Sum of cuPy Array and its Transpose (TACC Frontera G
	Outline (8)
	Conclusion
	Funding Acknowledgments
	Acknowledgments to all the Heroes (Past/Current Students and St
	Thank You!

