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What is Machine Learning and Deep Learning?

Courtesy: 
https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-lear
ning-1pcv3zeg
, https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning, 
https://en.wikipedia.org/wiki/Machine_learning 

• Machine Learning (ML)
– “the study of computer algorithms to improve 

automatically through experience and use of data”

• Deep Learning (DL) – a subset of ML
– Uses Deep Neural Networks (DNNs)
– Perhaps, the most revolutionary subset! 

• Based on learning data representation 
• DNN Examples: Convolutional Neural Networks, Recurrent 

Neural Networks, Hybrid Networks

• Data Scientist or Developer Perspective for using DNNs
1. Identify DL as solution to a problem
2. Determine Data Set
3. Select Deep Learning Algorithm to Use
4. Use a large data set to train an algorithm

https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning
https://en.wikipedia.org/wiki/Machine_learning
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History: Milestones in the Development of ML/DL
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S. McCulloch – W. Pitts F. Rosenblatt B. Widrow – M. Hoff M. Minsky – S. Papert D. Rumelhart – G. Hinton – R. WiliamsA. Legendre – J. Gauss A. TuringK. Pearson J. Pearl V. Vapnik– C. Cortes A. Ng Y. LeCunA. Krizhevsky Y. Bengio
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Three Main Types of Machine Learning

Courtesy: https://bigdata-madesimple.com/machine-learning-explained-understanding-supervised-unsupervised-and-reinforcement-learning/ 

https://bigdata-madesimple.com/machine-learning-explained-understanding-supervised-unsupervised-and-reinforcement-learning/
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• Scikit-learn: 
– Supports execution via Joblib (https://joblib.readthedocs.io/en/latest/)
– Joblib supports multi-threaded and multi-process execution (on multiple 

nodes)

• XGBoost: 
– Multiple ways to run on cluster of nodes: 

• Dask (http://dask.org)
• Ray (https://ray.io/) 
• AWS YARN 
• Apache Spark (https://spark.apache.org/) using XGBoost4J-Spark

• cuML: 
– Execution is supposed on multiple nodes using Dask (http://dask.org) and 

NVIDIA’s NCCL

Support for Parallel and Distributed Execution

https://joblib.readthedocs.io/en/latest/
http://dask.org/
https://ray.io/
https://spark.apache.org/
http://dask.org/
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• Element-wise Sum data from all processes and sends to all processes

Allreduce Collective Communication Pattern

int MPI_Allreduce (const void *sendbuf, void * recvbuf, int count, MPI_Datatype datatype, 
MPI_Op operation, MPI_Comm comm)

Input-only Parameters

Parameter Description

sendbuf Starting address of send buffer

recvbuf Starting address of recv buffer

type Data type of buffer elements

count Number of elements in the buffers

operation Reduction operation to be performed (e.g. sum)

comm Communicator handle

Input/Output Parameters

Parameter Description

recvbuf Starting address of receive buffer
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Overview of the MVAPICH2 Project
• High Performance open-source MPI Library 

• Support for multiple interconnects
– InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE),  AWS EFA, 

Rockport Networks, and Slingshot10/11, Broadcom

• Support for multiple platforms
– x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)

• Started in 2001, first open-source version demonstrated at SC ‘02
• Supports the latest MPI-3.1 standard

• http://mvapich.cse.ohio-state.edu 
• Additional optimized versions for different systems/environments:

– MVAPICH2-X (Advanced MPI + PGAS), since 2011

– MVAPICH2-GDR with support for NVIDIA (since 2014) and AMD (since 2020) GPUs
– MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014

– MVAPICH2-Virt with virtualization support, since 2015
– MVAPICH2-EA with support for Energy-Awareness, since 2015

– MVAPICH2-Azure for Azure HPC IB instances, since 2019

– MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019

• Tools:
– OSU MPI Micro-Benchmarks (OMB), since 2003

– OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

• Used by more than 3,275 organizations in 90 countries

• More than 1.61 Million downloads from the OSU site 
directly

• Empowering many TOP500 clusters (June ‘22 ranking)
– 6th, 10,649,600-core (Sunway TaihuLight) at NSC, China

– 16th, 448, 448 cores (Frontera) at TACC

– 30th, 288,288 cores (Lassen) at LLNL

– 42nd, 570,020 cores (Nurion) in South Korea and many more

• Available with software stacks of many vendors and Linux 
Distros (RedHat, SuSE, OpenHPC, and Spack)

• Partner in the 16th ranked TACC Frontera system

• Empowering Top500 systems for more than 20 years

http://mvapich.cse.ohio-state.edu/
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Parallelizing K-Means
• Step 0: Initialize centroids

– Assign initial cluster means randomly

• Step 1: Data Division
– Distribute elements among GPUs

• Step 2: Assign elements (colors)
– Assign each element to the cluster with the 

closest mean

• Step 3: Update local cluster mean
– Calculate local cluster means for all local points

• Step 4: Update global cluster mean*
– Calculate global cluster means by calling 

Allreduce()

• Step 5: Repeat steps 2-4 until convergence
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Parallelizing the K-means Algorithm
• Step 0: Initialize centroids

– Assign initial cluster means randomly

• Step 1: Data Division
– Distribute elements among GPUs

• Step 2: Assign elements (color)
– Assign each element to the cluster with the 

closest mean

• Step 3: Update local cluster mean
– Calculate local cluster means for all local points

• Step 4: Update global cluster mean*
– Calculate global cluster means by calling 

Allreduce()

• Step 5: Repeat steps 2-4 until convergence
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Step 5: Repeat 2-4  until convergence

Assign all local elements to the cluster with closest mean
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Parallelizing K-Means Clustering

Courtesy: https://github.com/tmscarla/k-means-parallel http://users.eecs.northwestern.edu/~wkliao/Kmeans/  
Recompute centroids after MPI_Allreduce 

Node 0

Node 1

Domain Decomposition

Global reduction for all cluster centers is performed at the end of each iteration in order to generate the new cluster centers.

https://github.com/tmscarla/k-means-parallel
http://users.eecs.northwestern.edu/~wkliao/Kmeans/
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• The NVIDIA RAPIDS project aims to build end-to-end data science 
analytic pipelines on GPUs

• An important component is the cuML library:
– GPU-accelerated ML library
– GPU-counterpart of Scikit-learn
– Supports the execution of ML workloads on Multi-Node Multi-GPUs (MNMG) 

systems

• Most existing ML libraries, including Scikit-learn and Apache Spark’s 
MLlib, only support CPU execution of ML algorithms
– Conventional wisdom has been that only DNNs are a good match for GPUs 

because of high computational requirements

The cuML Library: Accelerating ML on GPUs
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• Main components
– Python layer

• Provides a Scikit-learn like interface
• Hides the complexities of the CUDA/C/C++ layer

– Primitives and cuML algorithms built on top of CUDA
• ML Algorithms
• Primitives

– Reusable building blocks for building machine learning 
algorithms

– Common for different machine learning algorithms
– Used to build different machine learning algorithms

– Communication Support in cuML:
• Point-to-point communication: Dask
• Collective communication: NVIDIA Collective 

Communications Library (NCCL)

Main components of the cuML library
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• Utilize MVAPICH2-GDR (with mpi4py) as communication backend during the 
training phase (the fit() function) in the Multi-node Multi-GPU (MNMG) setting 
over cluster of GPUs

• Communication primitives:
– Allreduce
– Reduce
– Broadcast

• Exploit optimized collectives

Accelerating cuML with MVAPICH2-GDR

Python

Cython

cuML Primitives

CUDA Libraries

CUDA

cuML Algorithms

CUDA/C/C++

UCX-Py

Dask

NCCL MVAPICH2-
GDR

mpi4py

UCX

MPI4cuML 0.1 release

(http://hidl.cse.ohio-state.edu)
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M. Ghazimirsaeed , Q. Anthony , A. Shafi , H. Subramoni , and D. K. Panda, Accelerating GPU-based Machine Learning in Python 
using MPI Library: A Case Study with MVAPICH2-GDR, MLHPC Workshop, Nov 2020
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• Example of a 3-layer Deep Neural Network (DNN) – (input layer is not counted) 

Understanding the Deep Neural Network Concepts

Courtesy: http://cs231n.github.io/neural-networks-1/ 

http://cs231n.github.io/neural-networks-1/
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Essential Concepts: Learning Rate (α)

Courtesy: https://www.jeremyjordan.me/nn-learning-rate/ 

https://www.jeremyjordan.me/nn-learning-rate/
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• Batched Gradient Descent
– Batch Size = N

• Stochastic Gradient Descent
– Batch Size = 1

• Mini-batch Gradient Descent
– Somewhere in the middle 
– Common:

• Batch Size = 64, 128, 256, etc.

• Finding the optimal batch 
size will yield the fastest 
learning.

Essential Concepts: Batch Size

Courtesy: https://www.jeremyjordan.me/gradient-descent/ 

N

Batch Size One full pass over N is called an epoch of training

https://www.jeremyjordan.me/gradient-descent/
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• Why do we need Parallel Training?
• Larger and Deeper models are being proposed

– AlexNet -> ResNet -> NASNet – AmoebaNet
– DNNs require a lot of memory and a lot of computation
– Larger models cannot fit a GPU’s memory

• Single GPU training cannot keep up with ever-larger models
• Community has moved to multi-GPU training
• Multi-GPU in one node is good but there is a limit to Scale-up (8-16 GPUs)
• Multi-node (Distributed or Parallel) Training is necessary!!

The Need for Parallel and Distributed Training
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• Some parallelization strategies..
– Data Parallelism or Model Parallelism
– Hybrid Parallelism

Parallelization Strategies

Model Parallelism

Data Parallelism
Hybrid (Model and Data) Parallelism

Courtesy: http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks 

http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
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Data Parallelism and MPI Collectives
• Step1: Data Propagation

– Distribute the Data among GPUs

• Step2: Forward Backward Pass
– Perform forward pass and 

calculate the prediction
– Calculate Error by comparing 

prediction with actual output 
– Perform backward pass and 

calculate gradients 

• Step3: Gradient Aggregation
– Call MPI_Allreduce to reduce the 

local gradients 
– Update parameters locally using 

global gradients

Batch
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• Data Parallelism
• Model-Parallelism

Solutions and Case Studies: Exploiting HPC for DL

CUDA-Awareness

InfiniBand GPUCPU

Large-message 
Collectives

CNTK

Point-to-
Point

Operations

Gradient 
AggregationModel Propagation Forward

Backward

Deep Learning and Machine Learning Frameworks

LBANN FlexFlow TensorFlow PyTorch

Communication Runtimes (MPI/NCCL/Gloo/MLSL)

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

Co-Design 
Opportunities
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MVAPICH2 (MPI)-driven Infrastructure for ML/DL Training

MVAPICH2 or MVAPICH2-X 
for CPU Training

MVAPICH2-GDR for 
GPU Training

Horovod

TensorFlow PyTorch MXNet

ML/DL Applications

MVAPICH2 or MVAPICH2-X 
for CPU Training

MVAPICH2-GDR for 
GPU Training

Torch.distributed

PyTorch

ML/DL Applications

DeepSpeed

More details available from: http://hidl.cse.ohio-state.edu 

http://hidl.cse.ohio-state.edu/
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Install Horovod with MVAPICH2-X and MVAPICH2-GDR

Command to install Horovod with MVAPICH2-X

$ HOROVOD_WITH_MPI=1 pip install --no-cache-dir horovod

Command to install Horovod with MVAPICH2-GDR

$ HOROVOD_GPU_ALLREDUCE=MPI HOROVOD_CUDA_HOME=/opt/cuda/11.3 HOROVOD_WITH_MPI=1 pip 
install --no-cache-dir horovod
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+ python pytorch_synthetic_benchmark.py --batch-size 64 --num-iters=5
.
.
Model: resnet50
Batch size: 64
Number of GPUs: 1
Running warmup...
Running benchmark...
Iter #0: 333.9 img/sec per GPU
Iter #1: 334.2 img/sec per GPU
Iter #2: 333.9 img/sec per GPU
Iter #3: 333.8 img/sec per GPU
Iter #4: 333.9 img/sec per GPU
Img/sec per GPU: 334.0 +-0.2
-----------------------------------------
Total img/sec on 1 GPU(s): 334.0 +-0.2
-----------------------------------------

Run PyTorch on a single GPU

V100
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+ mpirun_rsh -np 2 gpu11 gpu12 MV2_USE_CUDA=1 MV2_CPU_BINDING_POLICY=hybrid 
MV2_HYBRID_BINDING_POLICY=spread MV2_USE_RDMA_CM=0 
MV2_GPUDIRECT_GDRCOPY_LIB=/opt/gdrcopy2.0/lib64/libgdrapi.so LD_PRELOAD=mv2-gdr/lib/libmpi.so 

python pytorch_synthetic_benchmark.py --batch-size 64 --num-iters=5
.
.
Model: resnet50
Batch size: 64
Number of GPUs: 2
Running warmup...
Running benchmark...
Iter #0: 317.0 img/sec per GPU
Iter #1: 314.9 img/sec per GPU
Iter #2: 315.4 img/sec per GPU
Iter #3: 318.0 img/sec per GPU
Iter #4: 316.7 img/sec per GPU
Img/sec per GPU: 316.4 +-2.2
-----------------------------------------
Total img/sec on 2 GPU(s): 632.8 +-4.3
-----------------------------------------

Run PyTorch on two nodes with 1 GPU/node (using MVAPICH2-
GDR)

V100

~1.89X on 
2 GPUs
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MVAPICH2-GDR vs. NCCL2 – Allreduce Operation (OSC Pitzer)
• Optimized designs in MVAPICH2-GDR offer better/comparable performance for most cases 
• MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on OSC Pitzer system
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Platform: OSC Pitzer system (8 nodes with 2 Nvidia Volta GPUs), CUDA 11.6
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Distributed TensorFlow on ORNL Summit (1,536 GPUs)
• ResNet-50 Training using 

TensorFlow benchmark on 
SUMMIT -- 1536 Volta 
GPUs!

• 1,281,167 (1.2 mil.) images

• Time/epoch = 3 seconds

• Total Time (90 epochs)        
= 3 x 90 = 270 seconds = 
4.5 minutes!

1 2 4 6 12 24 48 96 192 384 768 1536
0
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450000

MVAPICH2-GDR 2.3.4

MVAPICH2-GDR 2.3.4
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d

Platform: The Summit Supercomputer (#2 on Top500.org) – 6 NVIDIA Volta GPUs per node connected with NVLink, CUDA 10.1

*We observed issues for NCCL2 beyond 384 GPUs 

MVAPICH2-GDR reaching ~0.42 million 
images per second for ImageNet-1k!

ImageNet-1k has 1.2 million images
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Distributed TensorFlow on TACC Frontera (2048 CPU nodes)
• Scaled TensorFlow to 2048 nodes on 

Frontera using MVAPICH2 and IntelMPI

• MVAPICH2 delivers close to the ideal 
performance for DNN training

• Report a peak of 260,000 images/sec on 
2048 nodes

• On 2048 nodes, ResNet-50 can be trained 
in 7 minutes! 

A. Jain, A. A. Awan, H. Subramoni, DK Panda, “Scaling TensorFlow, PyTorch, and MXNet using MVAPICH2 for High-Performance Deep 
Learning on Frontera”, DLS ’19 (SC ’19 Workshop). 
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• Data Parallelism
• Model-Parallelism

Solutions and Case Studies: Exploiting HPC for DL

CUDA-Awareness

InfiniBand GPUCPU

Large-message 
Collectives

CNTK

Point-to-
Point

Operations

Gradient 
AggregationModel Propagation Forward

Backward

Deep Learning and Machine Learning Frameworks

LBANN FlexFlow TensorFlow PyTorch
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Major Computation and Communication Phases in DL Frameworks
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Opportunities
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• Why Hybrid parallelism?
– Data Parallel training has 

limits! 
• We propose HyPar-Flow

– An easy to use Hybrid 
parallel training framework
• Hybrid = Data + Model

– Supports Keras models and 
exploits TF 2.0 Eager 
Execution

– Exploits MPI for Point-to-
point and Collectives 

HyPar-Flow: Hybrid Parallelism for TensorFlow

Benchmarking large-models lead to better insights and ability to develop new approaches!
A. A. Awan, A. Jain, Q. Anthony, H. Subramoni, and DK Panda, “HyPar-Flow: Exploiting MPI and Keras for Hybrid 
Parallel Training of TensorFlow models”, ISC ’20, https://arxiv.org/pdf/1911.05146.pdf 

https://arxiv.org/pdf/1911.05146.pdf
https://arxiv.org/pdf/1911.05146.pdf
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• HyPar-Flow is practical (easy-to-use) and high-performance (uses MPI)
– Based on Keras models and exploits TF 2.0 Eager Execution
– Leverages MPI Pt-to-pt. and Collectives for communication

Model/Hybrid Parallelism and MPI Collectives

A. A. Awan, A. Jain, Q. Anthony, H. Subramoni, and DK 
Panda, “HyPar-Flow: Exploiting MPI and Keras for Hybrid 
Parallel Training of TensorFlow models”, ISC ’20, 
https://arxiv.org/pdf/1911.05146.pdf 

https://arxiv.org/pdf/1911.05146.pdf
https://arxiv.org/pdf/1911.05146.pdf
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• ResNet-1001 with variable batch 
size

• Approach: 
– 48 model-partitions for 56 cores
– 512 model-replicas for 512 nodes
– Total cores: 48 x 512 = 24,576 

• Speedup
– 253X on 256 nodes
– 481X on 512 nodes

• Scaling Efficiency
– 98% up to 256 nodes
– 93.9% for 512 nodes 

HyPar-Flow at Scale (512 nodes on TACC Frontera)

481x speedup on 512 Intel Xeon Cascade Lake nodes (TACC Frontera)

A. A. Awan, A. Jain, Q. Anthony, H. Subramoni, and DK Panda, “HyPar-Flow: Exploiting MPI and Keras for Hybrid 
Parallel Training of TensorFlow models”, ISC ‘20, https://arxiv.org/pdf/1911.05146.pdf 

https://arxiv.org/pdf/1911.05146.pdf
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Why do we need Memory aware 
designs?

– Data and Model Parallel 
training has limitation!

– Maximum Batch Size 
depends on the memory.

– Basic Model Parallelism 
suffers from underutilization 
of memory and compute 

GEMS: GPU Enabled Memory Aware Model Parallelism Systems 

Memory requirement increases with the increase in image size!

A. Jain, A. Awan, A. Aljuhani, J. Hashmi, Q. Anthony, H. Subramoni, D. Panda, R. Machiraju, A. Parwani, “GEMS: GPU Enabled Memory Aware Model Parallelism System for 
Distributed DNN”,  SC ’20.
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• Pathology whole slide image (WSI) 
– Each WSI = 100,000 x 100,000 pixels
– Can not fit in a single GPU memory
– Tiles are extracted to make training possible

• Two main problems with tiles
– Restricted tile size because of GPU memory limitation
– Smaller tiles loose structural information

• Reduced training time significantly
– GEMS-Basic: 7.25 hours (1 node, 4 GPUs)
– GEMS-MAST: 6.28 hours (1 node, 4 GPUs)
– GEMS-MASTER: 4.21 hours (1 node, 4 GPUs)
– GEMS-Hybrid: 27 mins (32 nodes, 128 GPUs)
– Overall 15x reduction in training time!!!!

Exploiting Model Parallelism in AI-Driven Digital Pathology

Courtesy: 
https://blog.kitware.com/digital-slide-archive-large-i
mage-and-histomicstk-open-source-informatics-tools-f
or-management-visualization-and-analysis-of-digital-hi
stopathology-data/
 

Scaling ResNet 110 v2 on 1024×1024 image tiles 
us ing histopathology data

A. Jain, A. Awan, A. Aljuhani, J. Hashmi, Q. Anthony, H. Subramoni, D. K. Panda, R. Machiraju, and A. Parwani,  “GEMS: 
GPU Enabled Memory Aware Model Parallelism System for Distributed DNN Training”, Supercomputing (SC ‘20).
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• Dask is a popular task-based distributed computing framework:
– Scales Python applications from laptops to high-end systems
– Builds a task-graph that is executed lazily on parallel hardware
– Natively extends popular data processing libraries like numPy, Pandas

• Dask Distributed library supports parallel and distributed execution:
– Built using the asyncio package that allows execution of asynchronous/non-blocking/concurrent 

operations called coroutines: 
• These are defined using async and invoked using await 

– Dask Distributed library provide support for communication:
• TCP: Tornado-based 
• UCX: Built using a Cython wrapper called UCX-Py 

• Other Data Science frameworks include Apache Spark and Ray 

Introduction to Dask
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Dask Distributed Execution Model

Cluster

Client

Scheduler

Worker Worker Worker
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• Dask originally had two communication backends:
• TCP: Tornado-based 
• UCX: Built using a GPU-aware Cython wrapper called UCX-Py 

• MPI4Dask is an MVAPICH2-based communication backend for Dask: 
– First MPI-based communication device for Dask
– Optimizes CPU and GPU communication in the Dask framework on modern HPC clusters

MPI4Dask: MPI-based Communication Backend for 
Dask
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Dask Architecture

Distributed

Scheduler Worker Client

Comm Layer
tcp.py ucx.py
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High Performance Computing Hardware
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• Several ways to start Dask programs: 
– Manual 
– Utility classes: 

• LocalCUDACluster, SLURMCluster, SGECluster, PBCCluster, and others

• MPI4Dask uses the Dask-MPI to bootstrap execution of Dask 
programs

• Dynamic connectivity is established using the asyncio 
package in MPI4Dask: 
– Scheduler and workers listen for incoming connections by calling 

asyncio.start_server()
– Workers and client connect using asyncio.open_connection()

MPI4Dask: Bootstrapping and Dynamic Connectivity
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• Implements communication coroutines for point-to-point MPI functions:
– Using mpi4py (Cython wrappers) and MVAPICH2-GDR

• mpi4py provides two flavors of point-to-point communication functions: 
– Send()/Recv() – for exchanging data in buffers  (faster and used in MPI4Dask)
– send()/recv()  – for communicating Python objects (pickle/unpickle)
– GPU buffers implement the __cuda_array_interface__

• Implemented chunking mechanism for large messages
• The send and receive communication coroutines are as follows: 

MPI4Dask: Point-to-point Communication 
Coroutines
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• MPI4Dask is available to download from: http://hibd.cse.ohio-state.edu/
– The userguide is available at: http://hibd.cse.ohio-state.edu/static/media/hibd/dask/mpi4dask-0.2-userguide.pdf

• Section 3: Setup Instructions
– 3.1 Installation Pre-requisites: 

• 3.1.1 Install Miniconda
• 3.1.2 Modules/Libraries for GPU-based Dask Applications: 
• 3.1.3 Modules/Libraries for CPU-based Dask Applications: 
• 3.1.4 Install the MVAPICH2 Library (MVAPICH2-X, MVAPICH2, or MVAPICH2-GDR)
• 3.1.5 Install the mpi4py Library
• 3.1.6 Install Dask-MPI package

– 3.2 Install MPI4Dask
• Section 4. Running GPU-based Dask Applications

– 4.1 Writing the host file
– 4.2 Sum of cuPy Array and its Transpose
– 4.3 cuDF Merge

• Section 5. Running GPU-based Dask Applications
– 5.1 Writing the host file
– 5.2 Sum of numPy Array and its Transpose
– 5.3 Sum of Pandas Data Frame
– 5.4 SVD

MPI4Dask Installation

http://hibd.cse.ohio-state.edu/
http://hibd.cse.ohio-state.edu/static/media/hibd/dask/mpi4dask-0.2-userguide.pdf
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Modules/Libraries for GPU-based Dask Applications: 
$ conda install -c conda-forge -c rapidsai -c nvidia automake make libtool pkg-config libhwloc psutil python=3.8 setuptools cython cudatoolkit=10.2 cupy 
dask-cudf dask==2021.1.1 distributed numpy rmm

Modules/Libraries for CPU-based Dask Applications: 
$ conda install -c conda-forge -c rapidsai -c nvidia automake make libtool pkg-config libhwloc psutil python=3.8 setuptools cython dask==2021.1.1 
distributed=2021.1.1 numpy

Install the MVAPICH2 Library (MVAPICH2-X, MVAPICH2, or MVAPICH2-GDR)

Install the mpi4py Library
$ git clone https://github.com/mpi4py/mpi4py.git
$ edit mpi.cfg file
[MVAPICH2]
mpi_dir = /path/to/MVAPICH2-GDR/install/directory
mpicc = %(mpi_dir)s/bin/mpicc
mpicxx = %(mpi_dir)s/bin/mpicxx
include_dirs = %(mpi_dir)s/include
library_dirs = %(mpi_dir)s/lib64
runtime_library_dirs = %(library_dirs)s

$ python setup.py build --mpi=MVAPICH2-GDR; $ pip install .

Installation Pre-requisites
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Install Dask-MPI package

$ git clone https://github.com/dask/dask-mpi.git
$ cd dask-mpi
$ python setup.py build
$ pip install .

Install MPI4Dask

$ wget http://hibd.cse.ohio-state.edu/download/hibd/dask/mpi4dask-0.2.tar.gz
$ tar -xzvf mpi4dask-0.2.tar.gz
$ cd mpi4dask-0.2/distributed
$ python setup.py build
$ pip install .

$ conda list
$ conda list | grep distributed
$ conda list  |grep dask

Install Dask-MPI and MPI4Dask
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Sum of cuPy Array and its Transpose [GPU]
$ cd mpi4dask-0.2/dask-apps/gpu
$ LD_PRELOAD=$MPILIB/lib64/libmpi.so $MPILIB/bin/mpirun_rsh -export-all -np 4 -hostfile hosts MV2_USE_CUDA=1 
MV2_USE_GDRCOPY=1 MV2_GPUDIRECT_GDRCOPY_LIB=/opt/gdrcopy2.0/lib64/libgdrapi.so MV2_CPU_BINDING_LEVEL=SOCKET 
MV2_CPU_BINDING_POLICY=SCATTER python cupy_sum_mpi.py

cuDF Merge [GPU]
$ cd mpi4dask-0.2/dask-apps/gpu
$ LD_PRELOAD=$MPILIB/lib/libmpi.so $MPILIB/bin/mpirun_rsh -export-all -np 4 -hostfile hosts MV2_USE_CUDA=1 MV2_USE_GDRCOPY=1 
MV2_GPUDIRECT_GDRCOPY_LIB=/opt/gdrcopy2.0/lib64/libgdrapi.so MV2_CPU_BINDING_LEVEL=SOCKET 
MV2_CPU_BINDING_POLICY=SCATTER python cudf_merge_mpi.py --type gpu --protocol mpi --runs 20 --chunk-size 1_000_000_00

Sum of numPy Array and its Transpose [CPU]
$ cd mpi4dask-0.2/dask-apps/cpu
$ LD_PRELOAD=$MPILIB/lib/libmpi.so $MPILIB/bin/mpirun_rsh -export-all -np 4 -hostfile hosts MV2_CPU_BINDING_LEVEL=SOCKET 
MV2_CPU_BINDING_POLICY=SCATTER python numpy_sum_mpi.py 

Sum of Pandas DataFrame [CPU]
$ cd mpi4dask-0.2/dask-apps/cpu
$ LD_PRELOAD=$MPILIB/lib/libmpi.so $MPILIB/bin/mpirun_rsh -export-all -np 4 -hostfile hosts MV2_CPU_BINDING_LEVEL=SOCKET 
MV2_CPU_BINDING_POLICY=SCATTER python dask-cudf_sum_mpi.py 

Running GPU and CPU Dask Applications
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Benchmark: Sum of cuPy Array and its Transpose (TACC 
Frontera GPU Subsystem) 

A. Shafi , J. Hashmi , H. Subramoni , and D. K. Panda, Efficient MPI-based 
Communication for GPU-Accelerated Dask Applications, CCGrid ‘21 
https://arxiv.org/abs/2101.08878 

MPI4Dask 0.2 release

(http://hibd.cse.ohio-state.edu)

1.71x better on average
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• Exponential growth in Machine Learning/Deep Learning/Data Science 
frameworks

• Provided an overview of issues, challenges, and opportunities for 
designing efficient communication runtimes 
– Efficient, scalable, and hierarchical designs are crucial for ML/DL/Data Science frameworks
– Co-design of communication runtimes and ML/DL/Data Science frameworks will be essential

• Presented use-cases to demonstrate the complex interaction between DL/ML/Dask 
middleware with the underling HPC technologies and middleware 

• Need collaborative efforts to achieve the full potential

Conclusion
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Thank You!

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The MVAPICH2 Project
http://mvapich.cse.ohio-state.edu/

Follow us on

https://twitter.com/mvapich 

{shafi.16, jain.575}@osu.edu
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