

https://twitter.com/mvapich

High Performance Machine Learning, Deep Learning, and Data Science with MVAPICH2

Tutorial at MUG '22

by

Aamir Shafi

The Ohio State University

shafi.16@osu.edu

https://cse.osu.edu/people/shafi.16

Arpan Jain

The Ohio State University

jain.575@osu.edu

http://u.osu.edu/jain.575

Outline

Introduction

- Machine Learning
 - -Distributed K-Means
 - -ML Solutions
- Deep Learning
 - -Deep Neural Networks
 - -Distributed Deep Learning
 - -DL Solutions
- Data Science
- Conclusion

What is Machine Learning and Deep Learning?

- Machine Learning (ML)
 - "the study of computer algorithms to improve automatically through experience and use of data"
- Deep Learning (DL) a subset of ML
 - Uses Deep Neural Networks (DNNs)
 - Perhaps, the most revolutionary subset!
- Based on learning data representation
- DNN Examples: Convolutional Neural Networks, Recurrent Neural Networks, Hybrid Networks
- Data Scientist or Developer Perspective for using DNNs
 - 1. Identify DL as solution to a problem
 - 2. Determine Data Set
 - 3. Select Deep Learning Algorithm to Use
 - 4. Use a large data set to train an algorithm

Courtesy:

https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-lear ning-1pcv3zeg

https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning, MUG '22

3

History: Milestones in the Development of ML/DL

Network Based Computing Laboratory

MUG '22

4

Outline

- Introduction
- Machine Learning

 Distributed K-Means
 - -ML Solutions
- Deep Learning
 - -Deep Neural Networks
 - -Distributed Deep Learning
 - -DL Solutions
- Data Science
- Conclusion

Three Main Types of Machine Learning

Courtesy: https://bigdata-madesimple.com/machine-learning-explained-understanding-supervised-unsupervised-and-reinforcement-learning/

Network Based Computing Laboratory

Support for Parallel and Distributed Execution

- Scikit-learn:
 - Supports execution via Joblib (<u>https://joblib.readthedocs.io/en/latest/</u>)
 - Joblib supports multi-threaded and multi-process execution (on multiple nodes)
- XGBoost:
 - Multiple ways to run on cluster of nodes:
 - Dask (<u>http://dask.org</u>)
 - Ray (<u>https://ray.io/</u>)
 - AWS YARN
 - Apache Spark (<u>https://spark.apache.org/</u>) using XGBoost4J-Spark
- cuML:
 - Execution is supposed on multiple nodes using Dask (<u>http://dask.org</u>) and NVIDIA's NCCL

Allreduce Collective Communication Pattern

• Element-wise Sum data from all processes and sends to all processes

int MPI_Allreduce (const void * sendbuf, void * recvbuf, int count, MPI_Datatype datatype,

MPI_Op operation, MPI_Comm comm)

Input-only Parameters				
Parameter	Description			
sendbuf	Starting address of send buffer			
recvbuf	Starting address of recv buffer			
type	Data type of buffer elements			
count	Number of elements in the buffers			
operation	Reduction operation to be performed (e.g. sum)			
comm	Communicator handle			

Input/Output Parameters

Parameter	Description
recvbuf	Starting address of receive buffer

Sendbuf (Before)

Recvbuf (After)

Network Based Computing Laboratory

Overview of the MVAPICH2 Project

- High Performance open-source MPI Library
- Support for multiple interconnects
 - InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE), AWS EFA, Rockport Networks, and Slingshot10/11, Broadcom
- Support for multiple platforms
 - x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)
- Started in 2001, first open-source version demonstrated at SC '02
- Supports the latest MPI-3.1 standard
- <u>http://mvapich.cse.ohio-state.edu</u>
- Additional optimized versions for different systems/environments:
 - MVAPICH2-X (Advanced MPI + PGAS), since 2011
 - MVAPICH2-GDR with support for NVIDIA (since 2014) and AMD (since 2020) GPUs
 - MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014
 - MVAPICH2-Virt with virtualization support, since 2015
 - MVAPICH2-EA with support for Energy-Awareness, since 2015
 - MVAPICH2-Azure for Azure HPC IB instances, since 2019
 - MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019
- Tools:
 - OSU MPI Micro-Benchmarks (OMB), since 2003
 - OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

- Used by more than 3,275 organizations in 90 countries
- More than 1.61 Million downloads from the OSU site directly
- Empowering many TOP500 clusters (June '22 ranking)
 - 6th, 10,649,600-core (Sunway TaihuLight) at NSC, China
 - **16**th, 448, 448 cores (Frontera) at TACC
 - 30th, 288,288 cores (Lassen) at LLNL
 - 42nd, 570,020 cores (Nurion) in South Korea and many more
- Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, OpenHPC, and Spack)
- Partner in the 16th ranked TACC Frontera system
- Empowering Top500 systems for more than 20 years

Parallelizing K-Means

- Step 0: Initialize centroids
 - Assign initial cluster means randomly
- Step 1: Data Division
 - Distribute elements among GPUs
- Step 2: Assign elements (colors)
 - Assign each element to the cluster with the closest mean
- Step 3: Update local cluster mean
 - Calculate local cluster means for all local points
- Step 4: Update global cluster mean*
 - Calculate global cluster means by calling Allreduce()
- Step 5: Repeat steps 2-4 until convergence

Parallelizing the K-means Algorithm

- Step 0: Initialize centroids
 - Assign initial cluster means randomly
- Step 1: Data Division
 - Distribute elements among GPUs
- Step 2: Assign elements (color)
 - Assign each element to the cluster with the closest mean
- Step 3: Update local cluster mean
 - Calculate local cluster means for all local points
- Step 4: Update global cluster mean*
 - Calculate global cluster means by calling Allreduce()
- Step 5: Repeat steps 2-4 until convergence

Step 5: Repeat 2-4 until convergence

MUG '22

Parallelizing K-Means Clustering

 $D=\{t1, t2, \dots, Tn\}$ // Set of elements // Number of desired clusters K **Output:** // Set of clusters Κ K-Means algorithm: Assign initial values for m1, m2,.... mk repeat assign each item ti to the clusters which has the closest mean;

calculate new mean for each cluster; until convergence criteria is met;

Recompute centroids after MPI_Allreduce

Courtesy: https://github.com/tmscarla/k-means-parallel http://users.eecs.northwestern.edu/~wkliao/Kmeans/

Node 0

Node 1

1.5

128 dims

16384

8192

Start!

0.5

Domain Decomposition

1.0

k-means on Hopper @NERSC

0

0.5

0.0

LO. o

0.0

3500

3000

2500

2000

1500 1000

500

0

512

1024

2048

number of MPI cores

computation time in seconds

Outline

- Introduction
- Machine Learning

 Distributed K-Means
 - -ML Solutions
- Deep Learning
 - -Deep Neural Networks
 - -Distributed Deep Learning
 - -DL Solutions
- Data Science
- Conclusion

The cuML Library: Accelerating ML on GPUs

- The NVIDIA RAPIDS project aims to build end-to-end data science analytic pipelines on GPUs
- An important component is the cuML library:
 - GPU-accelerated ML library
 - GPU-counterpart of Scikit-learn
 - Supports the execution of ML workloads on Multi-Node Multi-GPUs (MNMG) systems
- Most existing ML libraries, including Scikit-learn and Apache Spark's MLlib, only support CPU execution of ML algorithms
 - Conventional wisdom has been that only DNNs are a good match for GPUs because of high computational requirements

Main components of the cuML library

- Main components
 - Python layer
 - Provides a Scikit-learn like interface
 - Hides the complexities of the CUDA/C/C++ layer
 - Primitives and cuML algorithms built on top of CUDA
 - ML Algorithms
 - Primitives
 - Reusable building blocks for building machine learning algorithms
 - Common for different machine learning algorithms
 - Used to build different machine learning algorithms
 - Communication Support in cuML:
 - Point-to-point communication: Dask
 - Collective communication: NVIDIA Collective Communications Library (NCCL)

Accelerating cuML with MVAPICH2-GDR

- Utilize MVAPICH2-GDR (with mpi4py) as communication backend during the training phase (the fit() function) in the Multi-node Multi-GPU (MNMG) setting over cluster of GPUs
- Communication primitives:
 - Allreduce
 - Reduce
 - Broadcast
- Exploit optimized collectives

MPI4cuML 0.1 release (http://hidl.cse.ohio-state.edu)

Nearest Neighbors

Truncated SVD

M. Ghazimirsaeed , Q. Anthony , A. Shafi , H. Subramoni , and D. K. Panda, Accelerating GPU-based Machine Learning in Python using MPI Library: A Case Study with MVAPICH2-GDR, MLHPC Workshop, Nov 2020

Training Time (s)

Outline

- Introduction
- Machine Learning

 Distributed K-Means
 ML Solutions
- Deep Learning
 - -Deep Neural Networks
 - -Distributed Deep Learning
 - -DL Solutions
- Data Science
- Conclusion

Understanding the Deep Neural Network Concepts

• Example of a 3-layer Deep Neural Network (DNN) – (input layer is not counted)

Courtesy: <u>http://cs231n.github.io/neural-networks-1/</u>

Essential Concepts: Learning Rate (a)

Courtesy: <u>https://www.jeremyjordan.me/nn-learning-rate/</u>

Essential Concepts: Batch Size

- Batched Gradient Descent
 - Batch Size = N
- Stochastic Gradient Descent
 - Batch Size = 1
- Mini-batch Gradient Descent
 - Somewhere in the middle
 - Common:
 - <u>Batch Size</u> = 64, 128, 256, etc.
- Finding the optimal batch size will yield the fastest learning.

Courtesy: <u>https://www.jeremyjordan.me/gradient-descent/</u>

Outline

- Introduction
- Machine Learning

 Distributed K-Means
 ML Solutions
- Deep Learning
 - **-Deep Neural Networks**
 - **Distributed Deep Learning**
 - -DL Solutions
- Data Science
- Conclusion

The Need for Parallel and Distributed Training

- Why do we need Parallel Training?
- Larger and Deeper models are being proposed
 - AlexNet -> ResNet -> NASNet AmoebaNet
 - DNNs require a lot of memory and a lot of computation
 - Larger models cannot fit a GPU's memory
- Single GPU training cannot keep up with ever-larger models
- Community has moved to multi-GPU training
- Multi-GPU in one node is good but there is a limit to Scale-up (8-16 GPUs)
- Multi-node (Distributed or Parallel) Training is necessary!!

Parallelization Strategies

- Some parallelization strategies..
 - Data Parallelism or Model Parallelism
 - Hybrid Parallelism

Hybrid (Model and Data) Parallelism

Data Parallelism

Courtesy: <u>http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks</u>

MUG '22

Data Parallelism and MPI Collectives

- Step1: Data Propagation
 - Distribute the Data among GPUs
- Step2: Forward Backward Pass
 - Perform forward pass and calculate the prediction
 - Calculate Error by comparing prediction with actual output
 - Perform backward pass and calculate gradients
- Step3: Gradient Aggregation
 - Call MPI_Allreduce to reduce the local gradients
 - Update parameters locally using global gradients

Outline

- Introduction
- Machine Learning

 Distributed K-Means
 ML Solutions
- Deep Learning
 - **-Deep Neural Networks**
 - **Distributed Deep Learning**

-DL Solutions

- Data Science
- Conclusion

Solutions and Case Studies: Exploiting HPC for DL

- Data Parallelism
- Model-Parallelism

MVAPICH2 (MPI)-driven Infrastructure for ML/DL Training

More details available from: <u>http://hidl.cse.ohio-state.edu</u>

Install Horovod with MVAPICH2-X and MVAPICH2-GDR

Command to install Horovod with MVAPICH2-X

\$ HOROVOD_WITH_MPI=1 pip install --no-cache-dir horovod

Command to install Horovod with MVAPICH2-GDR

\$ HOROVOD_GPU_ALLREDUCE=MPI HOROVOD_CUDA_HOME=/opt/cuda/11.3 HOROVOD_WITH_MPI=1 pip install --no-cache-dir horovod

Run PyTorch on a single GPU

+ python pytorch_synthetic_benchmark.py --batch-size 64 --num-iters=5

	V100
Model: resnet50	
Batch size: 64	
Number of GPUs: 1	
Running warmup	
Running benchmark	
Iter #0: 333.9 img/sec per GPU	
Iter #1: 334.2 img/sec per GPU	
Iter #2: 333.9 img/sec per GPU	
Iter #3: 333.8 img/sec per GPU	
Iter #4: 333.9 img/sec per GPU	
Img/sec per GPU: 334.0 +-0.2	
Total img/sec on 1 GPU(s): 334.0 +-0.2	

Run PyTorch on two nodes with 1 GPU/node (using MVAPICH2-GDR)

+ mpirun_rsh -np 2 gpu11 gpu12 MV2_USE_CUDA=1 MV2_CPU_BINDING_POLICY=hybrid MV2_HYBRID_BINDING_POLICY=spread MV2_USE_RDMA_CM=0 MV2_GPUDIRECT_GDRCOPY_LIB=/opt/gdrcopy2.0/lib64/libgdrapi.so LD_PRELOAD=mv2-gdr/lib/libmpi.so

python pytorch_synthetic_benchmark.py --batch-size 64 --num-iters=5

V100 Model: resnet50 Batch size: 64 Number of GPUs: 2 Running warmup... Running benchmark... Iter #0: 317.0 img/sec per GPU Iter #1: 314.9 img/sec per GPU Iter #2: 315.4 img/sec per GPU Iter #3: 318.0 img/sec per GPU Iter #4: 316.7 img/sec per GPU Img/sec per GPU: 316.4 +-2.2 ~1.89X on Total img/sec on 2 GPU(s): 632.8 +-4 2 GPUs

MVAPICH2-GDR vs. NCCL2 – Allreduce Operation (OSC Pitzer)

- Optimized designs in MVAPICH2-GDR offer better/comparable performance for most cases
- MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on OSC Pitzer system

Platform: OSC Pitzer system (8 nodes with 2 Nvidia Volta GPUs), CUDA 11.6

Distributed TensorFlow on ORNL Summit (1,536 GPUs)

- ResNet-50 Training using TensorFlow benchmark on SUMMIT -- 1536 Volta GPUs!
- 1,281,167 (1.2 mil.) images
- Time/epoch = 3 seconds
- Total Time (90 epochs)
 = 3 x 90 = 270 seconds =

4.5 minutes!

MVAPICH2-GDR 2.3.4

*We observed issues for NCCL2 beyond 384 GPUs

Platform: The Summit Supercomputer (#2 on Top500.org) – 6 NVIDIA Volta GPUs per node connected with NVLink, CUDA 10.1

MUG '22

Distributed TensorFlow on TACC Frontera (2048 CPU nodes)

- Scaled TensorFlow to 2048 nodes on Frontera using MVAPICH2 and IntelMPI
- MVAPICH2 delivers close to the ideal performance for DNN training
- Report a peak of 260,000 images/sec on 2048 nodes
- On 2048 nodes, ResNet-50 can be trained in 7 minutes!

Solutions and Case Studies: Exploiting HPC for DL

- Data Parallelism
- Model-Parallelism

HyPar-Flow: <u>Hybrid Parallelism for TensorFlow</u>

- Why Hybrid parallelism?
 - Data Parallel training has limits!
- We propose HyPar-Flow
 - An easy to use Hybrid parallel training framework
 - Hybrid = Data + Model
 - Supports Keras models and exploits TF 2.0 Eager
 - Execution
 - Exploits MPI for Point-topoint and Collectives

Benchmarking large-models lead to better insights and ability to develop new approaches!

A. A. Awan, A. Jain, Q. Anthony, H. Subramoni, and DK Panda, "HyPar-Flow: Exploiting MPI and Keras for Hybrid Parallel Training of TensorFlow models", ISC <u>'</u>20, <u>https://arxiv.org/pdf/1911.05146.pdf</u>

Model/Hybrid Parallelism and MPI Collectives

- HyPar-Flow is practical (easy-to-use) and high-performance (uses MPI)
 - Based on Keras models and exploits TF 2.0 Eager Execution
 - Leverages MPI Pt-to-pt. and Collectives for communication

HyPar-Flow at Scale (512 nodes on TACC Frontera)

- ResNet-1001 with variable batch size
- Approach:
 - 48 model-partitions for 56 cores
 - 512 model-replicas for 512 nodes
 - Total cores: 48 x 512 = 24,576
- Speedup
 - 253X on 256 nodes
 - 481X on 512 nodes
- Scaling Efficiency
 - 98% up to 256 nodes
 - 93.9% for 512 nodes

481x speedup on 512 Intel Xeon Cascade Lake nodes (TACC Frontera)

A. A. Awan, A. Jain, Q. Anthony, H. Subramoni, and DK Panda, "HyPar-Flow: Exploiting MPI and Keras for Hybrid Parallel Training of TensorFlow models", ISC '20, <u>https://arxiv.org/pdf/1911.05146.pdf</u>

GEMS: <u>GPU Enabled Memory Aware Model Parallelism Systems</u>

Why do we need Memory aware designs?

- Data and Model Parallel training has limitation!
- Maximum Batch Size depends on the memory.
- Basic Model Parallelism
 suffers from underutilization
 of memory and compute []

Memory requirement increases with the increase in image size!

A. Jain, A. Awan, A. Aljuhani, J. Hashmi, Q. Anthony, H. Subramoni, D. Panda, R. Machiraju, A. Parwani, "GEMS: GPU Enabled Memory Aware Model Parallelism System for Distributed DNN", SC '20.

Exploiting Model Parallelism in AI-Driven Digital Pathology

- Pathology whole slide image (WSI)
 - Each WSI = 100,000 x 100,000 pixels
 - Can not fit in a single GPU memory
 - Tiles are extracted to make training possible
- You main problems with tiles
 - Restricted tile size because of GPU memory limitation
 - Smaller tiles loose structural information
- Reduced training time significantly
 - GEMS-Basic: 7.25 hours (1 node, 4 GPUs)
 - GEMS-MAST: 6.28 hours (1 node, 4 GPUs)
 - GEMS-MASTER: 4.21 hours (1 node, 4 GPUs)
 - GEMS-Hybrid: 27 mins (32 nodes, 128 GPUs)
 - Overall 15x reduction in training time!!!!

Courtesy:

https://blog.kitware.com/digital-slide-archive-large-i mage-and-histomicstk-open-source-informatics-tools-f or-management-visualization-and-analysis-of-digital-h stopathology-data/

Number of GPUs Scaling ResNet110 v2 on 1024×1024 image tiles using histopathology data

Outline

- Introduction
- Machine Learning
 Distributed K-Means
 - -ML Solutions
- Deep Learning
 - **-Deep Neural Networks**
 - -Distributed Deep Learning
 - **-DL Solutions**
- Data Science
- Conclusion

Introduction to Dask

- Dask is a popular task-based distributed computing framework:
 - Scales Python applications from laptops to high-end systems
 - Builds a task-graph that is executed lazily on parallel hardware
 - Natively extends popular data processing libraries like numPy, Pandas
- Dask Distributed library supports parallel and distributed execution:
 - Built using the asyncio package that allows execution of asynchronous/non-blocking/concurrent operations called *coroutines*:
 - These are defined using async and invoked using await
 - Dask Distributed library provide support for communication:
 - TCP: Tornado-based
 - UCX: Built using a Cython wrapper called UCX-Py
- Other Data Science frameworks include Apache Spark and Ray

Dask Distributed Execution Model

MPI4Dask: MPI-based Communication Backend for Dask

- Dask originally had two communication backends:
 - TCP: Tornado-based
 - UCX: Built using a GPU-aware Cython wrapper called UCX-Py
- MPI4Dask is an MVAPICH2-based communication backend for Dask:
 - First MPI-based communication device for Dask
 - Optimizes CPU and GPU communication in the Dask framework on modern HPC clusters

Dask Architecture

Network Based Computing Laboratory

MUG '22

MPI4Dask: Bootstrapping and Dynamic Connectivity

- Several ways to start Dask programs:
 - Manual
 - Utility classes:
 - LocalCUDACluster, SLURMCluster, SGECluster, PBCCluster, and others
- MPI4Dask uses the Dask-MPI to bootstrap execution of Dask programs
- Dynamic connectivity is established using the asyncio package in MPI4Dask:
 - Scheduler and workers listen for incoming connections by calling asyncio.start_server()
 - Workers and client connect using asyncio.open_connection()

MPI4Dask: Point-to-point Communication Coroutines

- Implements communication coroutines for point-to-point MPI functions:
 - Using mpi4py (Cython wrappers) and MVAPICH2-GDR
- mpi4py provides two flavors of point-to-point communication functions:
 - Send()/Recv() for exchanging data in buffers (faster and used in MPI4Dask)
 - send()/recv() for communicating Python objects (pickle/unpickle)
 - GPU buffers implement the __cuda_array_interface__
- Implemented chunking mechanism for large messages
- The send and receive communication coroutines are as follows:

```
1 request = comm.Isend([buf, size], dest, tag)
2 status = request.Test()
3
4 while status is False:
5 await asyncio.sleep(0)
6 status = request.Test()
```

```
1 request = comm.Irecv([buf, size], src, tag)
2 status = request.Test()
3
4 while status is False:
5 await asyncio.sleep(0)
6 status = request.Test()
```

MPI4Dask Installation

- MPI4Dask is available to download from: <u>http://hibd.cse.ohio-state.edu/</u>
 - The userguide is available at: <u>http://hibd.cse.ohio-state.edu/static/media/hibd/dask/mpi4dask-0.2-userguide.pdf</u>
- Section 3: Setup Instructions
 - 3.1 Installation Pre-requisites:
 - 3.1.1 Install Miniconda
 - 3.1.2 Modules/Libraries for GPU-based Dask Applications:
 - 3.1.3 Modules/Libraries for CPU-based Dask Applications:
 - 3.1.4 Install the MVAPICH2 Library (MVAPICH2-X, MVAPICH2, or MVAPICH2-GDR)
 - 3.1.5 Install the mpi4py Library
 - 3.1.6 Install Dask-MPI package
 - 3.2 Install MPI4Dask
- Section 4. Running GPU-based Dask Applications
 - 4.1 Writing the host file
 - 4.2 Sum of cuPy Array and its Transpose
 - 4.3 cuDF Merge
- Section 5. Running GPU-based Dask Applications
 - 5.1 Writing the host file
 - 5.2 Sum of numPy Array and its Transpose
 - 5.3 Sum of Pandas Data Frame
 - 5.4 SVD

Installation Pre-requisites

Modules/Libraries for GPU-based Dask Applications:

\$ conda install -c conda-forge -c rapidsai -c nvidia automake make libtool pkg-config libhwloc psutil python=3.8 setuptools cython cudatoolkit=10.2 cupy dask-cudf dask==2021.1.1 distributed numpy rmm

Modules/Libraries for CPU-based Dask Applications:

\$ conda install -c conda-forge -c rapidsai -c nvidia automake make libtool pkg-config libhwloc psutil python=3.8 setuptools cython dask==2021.1.1 distributed=2021.1.1 numpy

Install the MVAPICH2 Library (MVAPICH2-X, MVAPICH2, or MVAPICH2-GDR)

Install the mpi4py Library

\$ git clone https://github.com/mpi4py/mpi4py.git \$ edit mpi.cfg file [MVAPICH2] mpi_dir = /path/to/MVAPICH2-GDR/install/directory mpicc = %(mpi_dir)s/bin/mpicc mpicxx = %(mpi_dir)s/bin/mpicxx include_dirs = %(mpi_dir)s/include library_dirs = %(mpi_dir)s/lib64 runtime_library_dirs = %(library_dirs)s

\$ python setup.py build --mpi=MVAPICH2-GDR; \$ pip install .

Install Dask-MPI and MPI4Dask

Install Dask-MPI package

\$ git clone https://github.com/dask/dask-mpi.git

\$ cd dask-mpi

\$ python setup.py build

\$ pip install .

Install MPI4Dask

\$ wget http://hibd.cse.ohio-state.edu/download/hibd/dask/mpi4dask-0.2.tar.gz
\$ tar -xzvf mpi4dask-0.2.tar.gz
\$ cd mpi4dask-0.2/distributed
\$ python setup.py build
\$ pip install .

\$ conda list
\$ conda list | grep distributed
\$ conda list | grep dask

Running GPU and CPU Dask Applications

Sum of cuPy Array and its Transpose [GPU]

\$ cd mpi4dask-0.2/dask-apps/gpu

\$ LD_PRELOAD=\$MPILIB/lib64/libmpi.so \$MPILIB/bin/mpirun_rsh -export-all -np 4 -hostfile hosts MV2_USE_CUDA=1
MV2_USE_GDRCOPY=1 MV2_GPUDIRECT_GDRCOPY_LIB=/opt/gdrcopy2.0/lib64/libgdrapi.so MV2_CPU_BINDING_LEVEL=SOCKET
MV2_CPU_BINDING_POLICY=SCATTER python cupy_sum_mpi.py

cuDF Merge [GPU]

\$ cd mpi4dask-0.2/dask-apps/gpu

\$ LD_PRELOAD=\$MPILIB/lib/libmpi.so \$MPILIB/bin/mpirun_rsh -export-all -np 4 -hostfile hosts MV2_USE_CUDA=1 MV2_USE_GDRCOPY=1 MV2_GPUDIRECT_GDRCOPY_LIB=/opt/gdrcopy2.0/lib64/libgdrapi.so MV2_CPU_BINDING_LEVEL=SOCKET MV2_CPU_BINDING_POLICY=SCATTER python cudf_merge_mpi.py --type gpu --protocol mpi --runs 20 --chunk-size 1_000_000_00

Sum of numPy Array and its Transpose [CPU]

\$ cd mpi4dask-0.2/dask-apps/cpu

\$ LD_PRELOAD=\$MPILIB/lib/libmpi.so \$MPILIB/bin/mpirun_rsh -export-all -np 4 -hostfile hosts MV2_CPU_BINDING_LEVEL=SOCKET MV2_CPU_BINDING_POLICY=SCATTER python numpy_sum_mpi.py

Sum of Pandas DataFrame [CPU]

\$ cd mpi4dask-0.2/dask-apps/cpu

\$ LD_PRELOAD=\$MPILIB/lib/libmpi.so \$MPILIB/bin/mpirun_rsh -export-all -np 4 -hostfile hosts MV2_CPU_BINDING_LEVEL=SOCKET MV2_CPU_BINDING_POLICY=SCATTER python dask-cudf_sum_mpi.py

Benchmark: Sum of cuPy Array and its Transpose (TACC Frontera GPU Subsystem)

A. Shafi , J. Hashmi , H. Subramoni , and D. K. Panda, Efficient MPI-based Communication for GPU-Accelerated Dask Applications, CCGrid '21 https://arxiv.org/abs/2101.08878 MPI4Dask 0.2 release

(http://hibd.cse.ohio-state.edu)

Network Based Computing Laboratory

Outline

- Introduction
- Machine Learning
 Distributed K-Means
 - -ML Solutions
- Deep Learning
 - **-Deep Neural Networks**
 - -Distributed Deep Learning
 - **-DL Solutions**
- Open Issues and Challenges
- Conclusion

Conclusion

- Exponential growth in Machine Learning/Deep Learning/Data Science frameworks
- Provided an overview of issues, challenges, and opportunities for designing efficient communication runtimes
 - Efficient, scalable, and hierarchical designs are crucial for ML/DL/Data Science frameworks
 - Co-design of communication runtimes and ML/DL/Data Science frameworks will be essential
- Presented use-cases to demonstrate the complex interaction between DL/ML/Dask middleware with the underling HPC technologies and middleware
- Need collaborative efforts to achieve the full potential

Funding Acknowledgments

Funding Support by

Acknowledgments to all the Heroes (Past/Current Students and Staffs)

Current Students (Graduate)			Current Research Scientists	Current Faculty
 N. Alnaasan (Ph.D.) Q. Anthony (Ph.D.) P. CC. Chun (Ph.D.) B. N. Contini (Ph.D.) B. A. Jain (Ph.D.) K. Past Students 	. S. Khorassani (Ph.D.) – A. H. Tu Kousha (Ph.D.) – S. Xu (Ph . Michalowicz (Ph.D.) – Q. Zhou . Ramesh (Ph.D.) – K. Al Atta . K. Suresh (Ph.D.) – L. Xu (Ph	(Ph.D.) - H. Ahn (Ph.D.) n.D.) - G. Kuncham (Ph.D.) (Ph.D.) - R. Vaidya (Ph.D.) (ar (M.S.) - J. Yao (P.hD.) n.D.) - M. Han (M.S.) - A. Guptha (M.S.)	 M. Abduljabbar A. Shafi Current Students (Undergrads) V. Shah T. Chen 	 H. Subramoni Current Software Engineers B. Seeds N. Pavuk N. Shineman M. Lieber
 A. Awan (Ph.D.) A. Augustine (M.S.) P. Balaji (Ph.D.) 	 T. Gangadharappa (M.S.) K. Gopalakrishnan (M.S.) J. Hashmi (Ph.D.) 	 P. Lai (M.S.) J. Liu (Ph.D.) M. Luo (Ph.D.) 	D. Shankar (Ph.D.) G. Santhanaraman (Ph.D.) N. Sarkauskas (B.S. and M.S)	Current Research Specialist — R. Motlagh
 M. Bayatpour (Ph.D.) R. Biswas (M.S.) S. Bhagvat (M.S.) A. Bhat (M.S.) 	 W. Huang (Ph.D.) W. Jiang (M.S.) J. Jose (Ph.D.) M. Kedia (M.S.) 	 A. Mamidala (Ph.D.) G. Marsh (M.S.) V. Meshram (M.S.) A. Moody (M.S.) 	N. Senthil Kumar (M.S.) A. Singh (Ph.D.) J. Sridhar (M.S.) S. Srivastava (M.S.)	Past Research Scientists – K. Hamidouche – S. Sur – X. Lu
 D. Buntinas (Ph.D.) L. Chai (Ph.D.) B. Chandrasekharan (M.S.) S. Chakraborthy (Ph.D.) N. Dandapanthula (M.S.) V. Dhanraj (M.S.) 	 S. Kini (M.S.) M. Koop (Ph.D.) S.) – K. Kulkarni (M.S.) R. Kumar (M.S.) S. Krishnamoorthy (M.S.) K. Kandalla (Ph.D.) 	 S. Naravula (Ph.D.) R. Noronha (Ph.D.) X. Ouyang (Ph.D.) S. Pai (M.S.) S. Potluri (Ph.D.) K. Raj (M.S.) 	H. Subramoni (Ph.D.) K. Vaidyanathan (Ph.D.) A. Vishnu (Ph.D.) J. Wu (Ph.D.) W. Yu (Ph.D.)	Past Senior Research Associate – J. Hashmi Past Programmers – A. Reifsteck – D. Bureddy
 CH. Chu (Ph.D.) Past Post-Docs D. Banerjee X. Besseron M. S. Ghazimeersaeed 	 M. Li (Ph.D.) HW. Jin J. Lin K. Manian M. Luo S. Marcarelli 	 R. Rajachandrasekar (Ph.D.) A. Ruhela J. Vienne H. Wang 	J. Zhang (Ph.D.)	 J. Perkins Past Research Specialist M. Arnold J. Smith

Thank You!

{shafi.16, jain.575}@osu.edu

https://twitter.com/mvapich

Network-Based Computing Laboratory

http://nowlab.cse.ohio-state.edu/

The MVAPICH2 Project <u>http://mvapich.cse.ohio-state.edu/</u>

Deep Learning The High-Performance Deep Learning Project <u>http://hidl.cse.ohio-state.edu/</u>