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Accelerator/CP Family

Deep Learning meets Super Computers Performance Share

* NVIDIA GPUs - major force for accelerating DL
workloads

Petaflop/s-days

~ Computational requirement is increasing
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Courtesy: https://openai.com/blog/ai-and-compute/
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Parallelization Strategies

* Data Parallelism

* Model Parallelism
— Layer-level Parallelism

[ Distributed Training ]

v

* Layer

| Data Parallelism ]

* Pipeline
* Sub-Graph

— Neuron-level Parallelism
* Spatial
* Channel

* Hybrid Parallelism

— D&SP

— Megatron

— Hy-Fi

Network Based Computing Laboratory

[ Model Pa:rallelism ]

Advance
Offload
Schemes

Layer-level Parallelism

Pipeline Sub-Graph
Parallelism B Parallelism B Parallelism

ISC ‘22

y

[ Hybrid Parallelism ]

v

v

[Neuron-level Parallelism][ D&SP ] {Megatron}

A 4

;

Spatial Channels
arallelism | | Parallelism

High-Performance Deep Learning



Why Hybrid Parallelism?

* Data-Parallelism- only for models that fit
the memory A Dota Paraeiom
[ Layer Parallelism P e
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* Model parallelism can work for out-of- Low-Resolution *  High-Resolution  * Very High-Resolution
Square Image Size (X * X)
core models!
— Performance is questionable!
— Layer-parallelism is not enough
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Research Challenges

Challenge-2:
Challenge-1: Halo Exploitation of different
parallelism dimension

Challenge-3: Scaling
Integrated Hybrid

Exchange in PyTorch Training Solutions \

Meet Hy-Fi!
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Proposed Hybrid Five-Dimensional Parallelism (Hy-Fi)

9 # Parallelism Dimension in Hy-Fi
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Strategies to Optimize Halo Exchange

s Process Nimber Image Dlstrlbutlon Strategles
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GEMS-MAST vs GEMS-MASTER

Model Replica 1

Deep Learning Model
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Evaluation Setup

* System
— Lassen at Lawrence Livermore National Laboratory (LLNL)

* POWER®9 processor
* 4 NVIDIA Volta V100 GPUs per node

* Interconnect
— X Bus to connect two NUMA Nodes
— NVLink is used to connect GPU-GPU and GPU-Processor
— Infiband EDR

* PyTorch, MVAPICH2-GDR 2.3.5

*  We use and modify model definitions for ResNet(s) from keras.applications
and AmoebaNet model from TorchGpipe
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Accelerating Out-of-core Training at Scale

* Approach 1000+ Sl
o }
— LP: Layer Parallelism % 100- %Master-l—éOPt
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— Near-linear scaling (94.5%) on 2,048 GPUs
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Enabling Training on Very High-Resolution Images

* Enabled training on 8,192 X 8,192 and 16,384 X 16,384 images sizes

* Speedup over basic spatial parallelism
— 8,192 X 8,192 Images: 1.476X and 2.26X (Strong Scaling)
— 16,384 X 16,384 Images: 1.47X
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Conclusion

Proposed and Designed Hy-Fi
— Integrated five different parallelization strategies
* Spatial, Layer, Pipeline, Bi-directional, and Data
Communication optimizations to improve speedup
— PyTorch and MPI for flexibility and scalability

Performance Evaluation on large systems

— Up to 2.67X speedup for out-of-core DNNS

— Scaled Hy-Fi to 2,048 V100 GPUs on LLNL Lassen

— Achieved 94.5% scaling efficiency with GEMS-Hybrid
*  Future Work

Use Hy-Fi to train out-of-core DNNs on larger image tiles for digital pathology
— Add more parallelization strategies

Network Based Computing Laboratory
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Thank You!

jain.575@osu.edu

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

High Performance Deep Learning
http://hidl.cse.ohio-state.edu/

MVAPICH

MPI, PGAS and Hybrid MPI+PGAS Library

%:HIDL
High-Performance
Deep Learning

The High-Performance Deep Learning Project The High-Performance MPI/PGAS Project
http://hidl.cse.ohio-state.edu/ http://mvapich.cse.ohio-state.edu/
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