
Towards Exascale FFT Computation
A survey, benchmark, and MPI Challenges

A. Ayala1 S. Tomov1 M. Stoyanov2 J. Dongarra1,2

1Innovative Computing Laboratory
University of Tennessee at Knoxville

2Oak Ridge National Laboratory

The 10th Annual MVAPICH User Group Meeting

MUG 2022 1 / 29

Section summary

1 Background
Discrete and Fast Fourier Transform
FFT for Exascale
Libraries for single-device systems

2 Distributed and Multi-GPU FFT
Libraries for parallel systems
heFFTe Acceleration
Batched FFT on GPUs
Distributed FFT Convolution
Mixed Precision FFT

3 Experiments & Profiling
Scalability
Communication Bottleneck
FFT (Auto) Tuning
Profiling Multi-GPU FFT

MUG 2022 2 / 29

Background Discrete and Fast Fourier Transform

The Fast Fourier Transform (FFT)

• The FFT is an algorithm developed by Cooley-Tukey in 1965

• Considered one of the top 10 algorithms of the 20th century.

Discrete Fourier Transform (DFT)

Let x be an m-dimensional array of size N := N1 ×N2 × · · · ×Nm. Its
DFT is defined by y := DFT (x), obtained as:

y(k1, k2, . . . , km) :=

N1−1∑
n1=0

N2−1∑
n2=0

· · ·
Nm−1∑
nm=0

x̃ · e−2πi
(

k1n1
N1

+
k2n2
N2

···+ kmnm
Nm

)
,

where x̃ := x(n1, n2, . . . , nm).

• A naive DFT costs O(N2)

• Using the FFT, the cost can be reduced to O(N log2N).

MUG 2022 3 / 29

Background Discrete and Fast Fourier Transform

The Fast Fourier Transform (FFT)

• The FFT is an algorithm developed by Cooley-Tukey in 1965

• Considered one of the top 10 algorithms of the 20th century.

Discrete Fourier Transform (DFT)

Let x be an m-dimensional array of size N := N1 ×N2 × · · · ×Nm. Its
DFT is defined by y := DFT (x), obtained as:

y(k1, k2, . . . , km) :=

N1−1∑
n1=0

N2−1∑
n2=0

· · ·
Nm−1∑
nm=0

x̃ · e−2πi
(

k1n1
N1

+
k2n2
N2

···+ kmnm
Nm

)
,

where x̃ := x(n1, n2, . . . , nm).

• A naive DFT costs O(N2)

• Using the FFT, the cost can be reduced to O(N log2N).

MUG 2022 3 / 29

Background Discrete and Fast Fourier Transform

The Fast Fourier Transform (FFT)

• The FFT is an algorithm developed by Cooley-Tukey in 1965

• Considered one of the top 10 algorithms of the 20th century.

Discrete Fourier Transform (DFT)

Let x be an m-dimensional array of size N := N1 ×N2 × · · · ×Nm. Its
DFT is defined by y := DFT (x), obtained as:

y(k1, k2, . . . , km) :=

N1−1∑
n1=0

N2−1∑
n2=0

· · ·
Nm−1∑
nm=0

x̃ · e−2πi
(

k1n1
N1

+
k2n2
N2

···+ kmnm
Nm

)
,

where x̃ := x(n1, n2, . . . , nm).

• A naive DFT costs O(N2)

• Using the FFT, the cost can be reduced to O(N log2N).

MUG 2022 3 / 29

Background Discrete and Fast Fourier Transform

The Fast Fourier Transform (FFT)

• The FFT is an algorithm developed by Cooley-Tukey in 1965

• Considered one of the top 10 algorithms of the 20th century.

Discrete Fourier Transform (DFT)

Let x be an m-dimensional array of size N := N1 ×N2 × · · · ×Nm. Its
DFT is defined by y := DFT (x), obtained as:

y(k1, k2, . . . , km) :=

N1−1∑
n1=0

N2−1∑
n2=0

· · ·
Nm−1∑
nm=0

x̃ · e−2πi
(

k1n1
N1

+
k2n2
N2

···+ kmnm
Nm

)
,

where x̃ := x(n1, n2, . . . , nm).

• A naive DFT costs O(N2)

• Using the FFT, the cost can be reduced to O(N log2N).

MUG 2022 3 / 29

Background Discrete and Fast Fourier Transform

The Fast Fourier Transform (FFT)

• The FFT is an algorithm developed by Cooley-Tukey in 1965

• Considered one of the top 10 algorithms of the 20th century.

Discrete Fourier Transform (DFT)

Let x be an m-dimensional array of size N := N1 ×N2 × · · · ×Nm. Its
DFT is defined by y := DFT (x), obtained as:

y(k1, k2, . . . , km) :=

N1−1∑
n1=0

N2−1∑
n2=0

· · ·
Nm−1∑
nm=0

x̃ · e−2πi
(

k1n1
N1

+
k2n2
N2

···+ kmnm
Nm

)
,

where x̃ := x(n1, n2, . . . , nm).

• A naive DFT costs O(N2)

• Using the FFT, the cost can be reduced to O(N log2N).

MUG 2022 3 / 29

Background FFT for Exascale

Applications Relying on Parallel FFTs

Cosmology
ECP ExaSky - HACC

Particle Simulations
ECP CoPa / Cabana

Molecular Dynamics
ECP EXAALT

Deep LearningSignal processing,
ECP WARPX

PDE solutions, MASSIF

Figure: Several applications from the U.S. ECP project heavily rely on FFTs.

MUG 2022 4 / 29

Background Libraries for single-device systems

Single-Device FFT Libraries

Library Language Developer GPU support Open
Source

2D & 3D
support

Stride data
support

CUFFT C NVIDIA ✓ ✓ ✓
ESSL C++ IBM ✓ ✓
FFTE Fortran Riken ✓ ✓ ✓

FFTPACK Fortran NCAR ✓
FFTS C U. Waikato ✓

FFTW3 C MIT ✓ ✓ ✓
FFTX C LBNL ✓ ✓ ✓ ✓
KFR C++ KFR ✓ ✓
KISS C++ Sandia ✓ ✓ ✓

OneMKL C Intel ✓ ✓ ✓
ROCM C++ AMD ✓ ✓ ✓ ✓
VkFFT C++ D. Tolmachev ✓ ✓ ✓ ✓

Figure: State-of-the-art of FFT libraries targeting a single-device unit.

Ref.: Interim Report on Benchmarking FFT Libraries on High Performance Systems

Ayala et al., ICL Tech Report 2021.

MUG 2022 5 / 29

https://icl.utk.edu/publications/interim-report-benchmarking-fft-libraries-high-performance-systems.

Background Libraries for single-device systems

Single-Device FFT Comparison

• Useful when input data is small or can be batched.

• heFFTe provides portability to run FFT experiment on different
devices.

Figure: Comparison of single-device performance for a 5123 FFT.

MUG 2022 6 / 29

Distributed and Multi-GPU FFT Libraries for parallel systems

Parallel FFT implementation

MUG 2022 7 / 29

Distributed and Multi-GPU FFT Libraries for parallel systems

Parallel FFT implementation

MUG 2022 7 / 29

Distributed and Multi-GPU FFT Libraries for parallel systems

Parallel FFT implementation

MUG 2022 7 / 29

Distributed and Multi-GPU FFT Libraries for parallel systems

Parallel FFT implementation

MUG 2022 7 / 29

Distributed and Multi-GPU FFT Libraries for parallel systems

Parallel FFT implementation

MUG 2022 7 / 29

Distributed and Multi-GPU FFT Libraries for parallel systems

Parallel FFT implementation

MUG 2022 7 / 29

Distributed and Multi-GPU FFT Libraries for parallel systems

Parallel FFT implementation

These 3 tasks can be replaced by 1 via
MPI_Alltoallw

Communication can be accelerated by enabling Mixed-Precision, c.f., Advances in

Mixed Precision Algorithms: 2021 Edition. Abdelfattah et al., LLNL-TR-825909

MUG 2022 7 / 29

https://www.osti.gov/servlets/purl/1814677
https://www.osti.gov/servlets/purl/1814677

Distributed and Multi-GPU FFT Libraries for parallel systems

Parallel FFT Libraries

Library Developer Language CPU Backend GPU Backend Real-to-
Complex

Slab
Decomp.

Brick
Decomp.

2DECOMP&FFT NAG Fortran FFTW3, ESSL - ✓ ✓
AccFFT Georgia Tech C++ FFTW3 CUFFT ✓

Cluster FFT Intel Fortran MKL -
CRAFFT Cray Fortran FFTW3 - ✓

cuFFTMp NVIDIA C - CUFFT ✓

FFTE U. Tsukuba /
Riken Fortran FFTE CUFFT ✓

fftMPI Sandia C++ FFTW3, MKL,
KISS ✓

FFTW3 MIT C FFTW3 - ✓ ✓
heFFTe ICL - UTK C++ FFTW3, MKL,

Stock
CUFFT, ROCM,

OneMKL ✓ ✓ ✓
nb3DFFT RWTH Aachen Fortran ESSL - ✓
P3DFFT UC San Diego C++ FFTW3 - ✓ ✓
spFFT ETH C++ FFTW3 CUFFT, ROCM ✓ ✓
SWFFT Argonne C++ FFTW3 - ✓

✓

-

Figure: State-of-the-art of FFT libraries targeting parallel systems.

Ref.: Interim Report on Benchmarking FFT Libraries on High Performance Systems

Ayala et al., ICL Tech Report 2021.

MUG 2022 8 / 29

https://icl.utk.edu/publications/interim-report-benchmarking-fft-libraries-high-performance-systems.

Distributed and Multi-GPU FFT Libraries for parallel systems

The Highly Efficient FFT for Exascale (heFFTe)

• heFFTe is part of the US Exascale Project (ECP).
• Funded by DoE, it aims to provide reliable FFT computation on
exascale systems.
• Integrated to ECP projects such as Copa-Cabana.
• Unique features: Batched FFT, Convolution, Sine/Cosine
transform, Mixed Precision FFT.

https://bitbucket.org/icl/heffte/

Figure: heFFTe interfaces and architecture support.

MUG 2022 9 / 29

Distributed and Multi-GPU FFT heFFTe Acceleration

Moving FFT Kernels to GPUs

• Moving local kernels to GPUs yields high speedups.

• In the following example, we show this effect on Summit.

Figure: Performance comparison between fftMPI, using 1280 IBM Power9 Cores, 40
cores per node (left) and heFFte, using 192 NVIDIA V100-GPUs, 6 per node (right).

Ref.: heFFTe: Highly Efficient FFT for Exascale. Ayala et al., ICCS 2020.

MUG 2022 10 / 29

https://link.springer.com/chapter/10.1007/978-3-030-50371-0_19

Distributed and Multi-GPU FFT heFFTe Acceleration

LAMMPS Rhodopsin Benchmark using heFFTe

• Molecular dynamics apps heavily rely on FFTs, and often have
their own parallel FFT implementation (e.g., fftMPI, SWFFT).

• Using heFFTe real-to-complex accelerates LAMMPS Kspace
kernel around 1.76×.

fftMPI heFFTe

FFT Library

0

20

40

60

80

100

R
u
n
ti

m
e
 [
%

]

0.37ms
0.21ms

 Rhodospin experiment on a 32K atom system

Pair

Bond-Force

Kspace

Neighbor

Other

Figure: Breakdown for the LAMMPS Rhodopsin experiment. Using 32 Summit
nodes, 6 V-100 GPUs per node, and 1 MPI per GPU.

Ref.: Performance Analysis of Parallel FFT on Large Multi-GPU Systems.

Ayala et al., IEEE IPDPS 2022.

MUG 2022 11 / 29

https://ieeexplore.ieee.org/abstract/document/9835388

Distributed and Multi-GPU FFT heFFTe Acceleration

LAMMPS Rhodopsin Benchmark using heFFTe

• Molecular dynamics apps heavily rely on FFTs, and often have
their own parallel FFT implementation (e.g., fftMPI, SWFFT).
• Using heFFTe real-to-complex accelerates LAMMPS Kspace
kernel around 1.76×.

fftMPI heFFTe

FFT Library

0

20

40

60

80

100

R
u
n
ti

m
e
 [
%

]

0.37ms
0.21ms

 Rhodospin experiment on a 32K atom system

Pair

Bond-Force

Kspace

Neighbor

Other

Figure: Breakdown for the LAMMPS Rhodopsin experiment. Using 32 Summit
nodes, 6 V-100 GPUs per node, and 1 MPI per GPU.

Ref.: Performance Analysis of Parallel FFT on Large Multi-GPU Systems.

Ayala et al., IEEE IPDPS 2022.

MUG 2022 11 / 29

https://ieeexplore.ieee.org/abstract/document/9835388

Distributed and Multi-GPU FFT Batched FFT on GPUs

3-D Batched FFT experiments

• Batched FFTs are needed in applications such image processing,
filtering, particle energy computations, among others.

Figure: Batch of 3-D FFT of size 643 on NVIDIA and AMD GPUs, 1 MPI per
GPU. Speedups of over 2× with respect to the not batched version.

MUG 2022 12 / 29

Distributed and Multi-GPU FFT Batched FFT on GPUs

3-D Batched FFT experiments

• Batched FFTs are needed in applications such image processing,
filtering, particle energy computations, among others.

2× speedup

Figure: Batch of 3-D FFT of size 643 on NVIDIA and AMD GPUs, 1 MPI per
GPU. Speedups of over 2× with respect to the not batched version.

MUG 2022 12 / 29

Distributed and Multi-GPU FFT Distributed FFT Convolution

3-D Convolution

• Convolutions are widely used for solving PDEs, e.g., in
Earthquake simulation.
• They are also useful for convolutional networks.

Figure: Convolution of a 3-D FFT of size 643, using 40 Power9 cores and 6 V-100
GPUs per node.

MUG 2022 13 / 29

Distributed and Multi-GPU FFT Mixed Precision FFT

Enabling Mixed Precision in heFFTe

• Can be achieved using third party lossless and lossy compression
libraries (NVOMP, ZFP).
• Currently, heFFTe uses casting compression + our own
implementation of MPI OSC Alltoall

Figure: Speedup obtained reducing Floating Point (FP).

Ref.: Mixed precision and approximate 3D FFTs. Cayrols et al., IEEE Cluster 2022.

MUG 2022 13 / 29

https://icl.utk.edu/files/publications/2022/icl-utk-1555-2022.pdf

Distributed and Multi-GPU FFT Mixed Precision FFT

Enabling Mixed Precision in heFFTe

• Can be achieved using third party lossless and lossy compression
libraries (NVOMP, ZFP).
• Currently, heFFTe uses casting compression + our own
implementation of MPI OSC Alltoall

Figure: Accuracy obtained reducing Floating Point (FP).

Ref.: Mixed precision and approximate 3D FFTs. Cayrols et al., IEEE Cluster 2022.

MUG 2022 14 / 29

https://icl.utk.edu/files/publications/2022/icl-utk-1555-2022.pdf

Experiments & Profiling Scalability

Scaling FFT on top Supercomputers

• Parallel FFT scales at the same rate of the underlying MPI
framework, until a breakdown point.

Figure: Strong Scalability on up to 6144 V-100 GPUs on Summit (left), and Weak
Scalability on up to ∼ 1.2M Fugaku core, 48 cores per node (right). Using heFFTe.

Ref.: Scalability Issues in FFT Computation. Ayala et al., ACM PACT 2021.

MUG 2022 15 / 29

https://netlib.org/utk/people/JackDongarra/PAPERS/Ayala2021_Chapter_ScalabilityIssuesInFFTComputat.pdf

Experiments & Profiling Scalability

Scaling FFT on top Supercomputers

• Parallel FFT scales at the same rate of the underlying MPI
framework, until a breakdown point.

Figure: Strong Scalability on up to 6144 V-100 GPUs on Summit (left), and Weak
Scalability on up to ∼ 1.2M Fugaku core, 48 cores per node (right). Using heFFTe.

Ref.: Scalability Issues in FFT Computation. Ayala et al., ACM PACT 2021.

MUG 2022 16 / 29

https://netlib.org/utk/people/JackDongarra/PAPERS/Ayala2021_Chapter_ScalabilityIssuesInFFTComputat.pdf

Experiments & Profiling Scalability

Scaling FFT on top Supercomputers

• Similar behavior is observed for state-of-the-art FFT libraries.

Figure: Strong Scalability on 32K Power9 cores for CPU-based libraries (left), and
4096 V-100 for GPU-based libraries (right).

Ref.: FFT Benchmark Performance Experiments on Systems Targeting Exascale.

Ayala et al., ICL Tech Report 2022.

MUG 2022 17 / 29

https://icl.utk.edu/files/publications/2022/icl-utk-1548-2022.pdf

Experiments & Profiling Scalability

Scaling FFT on top Supercomputers

• Similar behavior is observed for state-of-the-art FFT libraries.

Figure: Strong Scalability on 32K Power9 cores for CPU-based libraries (left), and
4096 V-100 for GPU-based libraries (right).

Ref.: FFT Benchmark Performance Experiments on Systems Targeting Exascale.

Ayala et al., ICL Tech Report 2022.

MUG 2022 18 / 29

https://icl.utk.edu/files/publications/2022/icl-utk-1548-2022.pdf

Experiments & Profiling Communication Bottleneck

3-D FFT with All-to-All Communication

MPI_Alltoall

Forward 1D FFT
Backward 1D FFT

95.13%

2.2%
1.8%

Others: 0.87%
Grids: (1, 4, 4) - (4, 1, 4) - (4, 4, 1)
Average time per direction: 0.51395 (s)
Performance: 313.38 GFlops/s
Memory usage: 5120MB/rank
Max error: 4.57383e-15

Figure: Vampir trace of back-to-back 3-D FFTs of size 10243 (5 forward + 5
backward), using 4 Summit nodes with 16 NVIDIA GPUs, 4 MPIs per node.

MUG 2022 19 / 29

Experiments & Profiling Communication Bottleneck

3-D FFT with Point-to-Point Communication

Pipelined Isend/Irecv

Forward 1D FFT
Backward 1D FFT

92.57%

2.94%

Others: 1.13%Grids: (1, 4, 4) - (4, 1, 4) - (4, 4, 1)
Average time per direction: 0.298241 (s)
Performance: 540.04 GFlops/s
Memory usage: 5120MB/rank
Max error: 4.57383e-15

MPI_Waitall

2.22%
1.14%

Figure: Vampir trace of back-to-back 3-D FFTs of size 10243 (5 forward + 5
backward), using 4 Summit nodes with 16 NVIDIA GPUs, 4 MPIs per node.

MUG 2022 20 / 29

Experiments & Profiling Communication Bottleneck

Scaling Communication

• While messages become smaller, latency effects become significant.
• Next figure shows variability of time spent on MPI Alltoall.

Figure: Strong Scalability on up to 6144 V-100 GPUs on Summit (left), and Weak
Scalability on up to ∼ 1.2M Fugaku core, 48 cores per node (right). Using heFFTe.

Ref.: Accelerating MultProcess Communication for Parallel 3-D FFT. Ayala et al.,

ExaMPI SC 2021.
MUG 2022 21 / 29

https://ieeexplore.ieee.org/abstract/document/9652837

Experiments & Profiling FFT (Auto) Tuning

Tuning Processor grid

• At every transposition step a processor grid P ×Q is defined

• The selection of this grid highly impacts scalability, in the next
figure we set P = 5 and let Q vary.

Number of Summit nodes

Figure: Strong Scalability on 40960 Power9 cores setting different grids 5×Q.
Using P3DFFT. Auto-tuning also available with XTune.

Ref.: Interim Report on Benchmarking FFT Libraries on High Performance Systems

Ayala et al., ICL Tech Report 2021.

MUG 2022 22 / 29

https://icl.utk.edu/publications/interim-report-benchmarking-fft-libraries-high-performance-systems

Experiments & Profiling FFT (Auto) Tuning

Tuning Processor grid

• At every transposition step a processor grid P ×Q is defined

• This grid can be found using autotuning, e.g., using GPU-Tune

Figure: GPU-Tune for autotuning heFFTe processor grids.

Ref.: Autotuning heFFTe with GPU-Tune. Sherry Li’s Group at LBNL.

MUG 2022 23 / 29

https://github.com/gptune/GPTune

Experiments & Profiling FFT (Auto) Tuning

Tuning Algorithm

• Choosing between Pencil or Slab can lead to considerable
speedups, ∼ 30%.
• The choice of Binary or Collective MPI is important at large-scale.

Figure: Phase Diagram (left) and best settings for a 5123 FFT with 6 GPUs per
node and manual tuning (right). Using heFFTe on Summit.

Ref.: Impacts of Multi-GPU MPI collective communications on large FFT

computation Ayala et al., ExaMPI SC 2019.

MUG 2022 24 / 29

https://netlib.org/utk/people/JackDongarra/PAPERS/icl-utk-1265-2019.pdf
https://netlib.org/utk/people/JackDongarra/PAPERS/icl-utk-1265-2019.pdf

Experiments & Profiling Profiling Multi-GPU FFT

Profiling Communication of Distributed FFTs

• We have used the following tools:
• NVVP, rocProf
• Score-P, Vampir, Cube

• Available ongoing developments include: OSU-INAM

• Challenges of the state-of-the-art:
• Limited support for modern C++
• Lack of support for all MPI distributions
• Some do not support GPUs yet
• If any, support for GPUs is vendor-specific
• Hard to perform user-specific requests
• In general, output does not reflect FFT workloads
• Not mapping to the architecture and network
• Developing a profiler tool requires lots of effort

MUG 2022 25 / 29

Experiments & Profiling Profiling Multi-GPU FFT

Building a Simple and Unorthodox FFT profiler

• heFFTe tracing provides a detailed timing for tasks

• We need an adaptable visualization tool

• We can take advantage of the following analogies:
• Network Traffic ←→ Vehicular Traffic
• Memory unit ←→ Vehicle
• Practical Bandwidth ←→ Average Velocity
• Peak Bandwidth ←→ Road Capacity

• Using the power of heFFTe tracing + Python + TransCAD, we
can build an architecture-aware visualization of network
congestion.

• Defining network peak values, TransCAD can also provide
optimized paths

Ref.: heFFTe profiler Ayala, 2022.

MUG 2022 26 / 29

https://heffte.icl.utk.edu

Experiments & Profiling Profiling Multi-GPU FFT

Building a Simple and Unorthodox FFT profiler

• heFFTe tracing provides a detailed timing for tasks

• We need an adaptable visualization tool

• We can take advantage of the following analogies:
• Network Traffic ←→ Vehicular Traffic
• Memory unit ←→ Vehicle
• Practical Bandwidth ←→ Average Velocity
• Peak Bandwidth ←→ Road Capacity

• Using the power of heFFTe tracing + Python + TransCAD, we
can build an architecture-aware visualization of network
congestion.

• Defining network peak values, TransCAD can also provide
optimized paths

Ref.: heFFTe profiler Ayala, 2022.

MUG 2022 26 / 29

https://heffte.icl.utk.edu

Experiments & Profiling Profiling Multi-GPU FFT

Building a Simple and Unorthodox FFT profiler

• heFFTe tracing provides a detailed timing for tasks

• We need an adaptable visualization tool

• We can take advantage of the following analogies:
• Network Traffic ←→ Vehicular Traffic
• Memory unit ←→ Vehicle
• Practical Bandwidth ←→ Average Velocity
• Peak Bandwidth ←→ Road Capacity

• Using the power of heFFTe tracing + Python + TransCAD, we
can build an architecture-aware visualization of network
congestion.

• Defining network peak values, TransCAD can also provide
optimized paths

Ref.: heFFTe profiler Ayala, 2022.

MUG 2022 26 / 29

https://heffte.icl.utk.edu

Experiments & Profiling Profiling Multi-GPU FFT

Building a Simple and Unorthodox FFT profiler

• heFFTe tracing provides a detailed timing for tasks

• We need an adaptable visualization tool

• We can take advantage of the following analogies:
• Network Traffic ←→ Vehicular Traffic
• Memory unit ←→ Vehicle
• Practical Bandwidth ←→ Average Velocity
• Peak Bandwidth ←→ Road Capacity

• Using the power of heFFTe tracing + Python + TransCAD, we
can build an architecture-aware visualization of network
congestion.

• Defining network peak values, TransCAD can also provide
optimized paths

Ref.: heFFTe profiler Ayala, 2022.

MUG 2022 26 / 29

https://heffte.icl.utk.edu

Experiments & Profiling Profiling Multi-GPU FFT

Building a Simple and Unorthodox FFT profiler

• heFFTe tracing provides a detailed timing for tasks

• We need an adaptable visualization tool

• We can take advantage of the following analogies:
• Network Traffic ←→ Vehicular Traffic
• Memory unit ←→ Vehicle
• Practical Bandwidth ←→ Average Velocity
• Peak Bandwidth ←→ Road Capacity

• Using the power of heFFTe tracing + Python + TransCAD, we
can build an architecture-aware visualization of network
congestion.

• Defining network peak values, TransCAD can also provide
optimized paths

Ref.: heFFTe profiler Ayala, 2022.

MUG 2022 26 / 29

https://heffte.icl.utk.edu

Experiments & Profiling Profiling Multi-GPU FFT

Profiling Communication with heFFTe

• We can obtain a video of data-volume exchange over time.

MUG 2022 27 / 29

Experiments & Profiling Profiling Multi-GPU FFT

Profiling with heFFTe

• We can obtain a video of network traffic over time.

MUG 2022 28 / 29

Experiments & Profiling Profiling Multi-GPU FFT

Acknowledgments

• heFFTe is funded by the Department of Energy (DoE) Exascale
Project WBS 2.3.3.13.

• Collaborators:
• A. Haidar (NVIDIA)
• ICL OpenMPI Team (UTK)
• ICL FIBER Team (UTK)
• Network-Based Computing Research (DK. Panda’s group, OSU)
• ECP X-Tune (Sherry Li’s group, LBNL)
• D. Takahashi (U. Tsukuba)
• D. Pekurovsky (SDSC)

MUG 2022 29 / 29

	Background
	Discrete and Fast Fourier Transform
	FFT for Exascale
	Libraries for single-device systems

	Distributed and Multi-GPU FFT
	Libraries for parallel systems
	heFFTe Acceleration
	Batched FFT on GPUs
	Distributed FFT Convolution
	Mixed Precision FFT

	Experiments & Profiling
	Scalability
	Communication Bottleneck
	FFT (Auto) Tuning
	Profiling Multi-GPU FFT

	anm1:
	1.1:
	1.0:
	anm0:
	0.2:
	0.1:
	0.0:

