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Background Discrete and Fast Fourier Transform

The Fast Fourier Transform (FFT)

• The FFT is an algorithm developed by Cooley-Tukey in 1965

• Considered one of the top 10 algorithms of the 20th century.

Discrete Fourier Transform (DFT)

Let x be an m-dimensional array of size N := N1 ×N2 × · · · ×Nm. Its
DFT is defined by y := DFT (x), obtained as:

y(k1, k2, . . . , km) :=

N1−1∑
n1=0

N2−1∑
n2=0

· · ·
Nm−1∑
nm=0

x̃ · e−2πi
(

k1n1
N1

+
k2n2
N2

···+ kmnm
Nm

)
,

where x̃ := x(n1, n2, . . . , nm).

• A naive DFT costs O(N2)

• Using the FFT, the cost can be reduced to O(N log2N).
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Background FFT for Exascale

Applications Relying on Parallel FFTs

Cosmology
ECP ExaSky - HACC

Particle Simulations
ECP CoPa / Cabana

Molecular Dynamics 
ECP EXAALT

Deep LearningSignal processing, 
ECP WARPX

PDE solutions, MASSIF

Figure: Several applications from the U.S. ECP project heavily rely on FFTs.
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Background Libraries for single-device systems

Single-Device FFT Libraries

Library Language Developer GPU support Open 
Source

2D & 3D 
support

Stride data 
support

CUFFT C NVIDIA ✓ ✓ ✓
ESSL C++ IBM ✓ ✓
FFTE Fortran Riken ✓ ✓ ✓

FFTPACK Fortran NCAR ✓
FFTS C U. Waikato ✓

FFTW3 C MIT ✓ ✓ ✓
FFTX C LBNL ✓ ✓ ✓ ✓
KFR C++ KFR ✓ ✓
KISS C++ Sandia ✓ ✓ ✓

OneMKL C Intel ✓ ✓ ✓
ROCM C++ AMD ✓ ✓ ✓ ✓
VkFFT C++ D. Tolmachev ✓ ✓ ✓ ✓

Figure: State-of-the-art of FFT libraries targeting a single-device unit.

Ref.: Interim Report on Benchmarking FFT Libraries on High Performance Systems

Ayala et al., ICL Tech Report 2021.
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Background Libraries for single-device systems

Single-Device FFT Comparison

• Useful when input data is small or can be batched.

• heFFTe provides portability to run FFT experiment on different
devices.

Figure: Comparison of single-device performance for a 5123 FFT.
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Distributed and Multi-GPU FFT Libraries for parallel systems

Parallel FFT implementation
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Distributed and Multi-GPU FFT Libraries for parallel systems

Parallel FFT implementation

These 3 tasks can be replaced by 1 via
MPI_Alltoallw

Communication can be accelerated by enabling Mixed-Precision, c.f., Advances in

Mixed Precision Algorithms: 2021 Edition. Abdelfattah et al., LLNL-TR-825909
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https://www.osti.gov/servlets/purl/1814677
https://www.osti.gov/servlets/purl/1814677


Distributed and Multi-GPU FFT Libraries for parallel systems

Parallel FFT Libraries

Library Developer Language CPU Backend GPU Backend Real-to-
Complex

Slab 
Decomp.

Brick 
Decomp.

2DECOMP&FFT NAG Fortran FFTW3, ESSL - ✓ ✓
AccFFT Georgia Tech C++ FFTW3 CUFFT ✓

Cluster FFT Intel Fortran MKL -
CRAFFT Cray Fortran FFTW3 - ✓

cuFFTMp NVIDIA C - CUFFT ✓

FFTE U. Tsukuba /
Riken Fortran FFTE CUFFT ✓

fftMPI Sandia C++ FFTW3, MKL, 
KISS ✓

FFTW3 MIT C FFTW3 - ✓ ✓
heFFTe ICL - UTK C++ FFTW3, MKL, 

Stock
CUFFT, ROCM, 

OneMKL ✓ ✓ ✓
nb3DFFT RWTH Aachen Fortran ESSL - ✓
P3DFFT UC San Diego C++ FFTW3 - ✓ ✓
spFFT ETH C++ FFTW3 CUFFT, ROCM ✓ ✓
SWFFT Argonne C++ FFTW3 - ✓

✓

-

Figure: State-of-the-art of FFT libraries targeting parallel systems.

Ref.: Interim Report on Benchmarking FFT Libraries on High Performance Systems

Ayala et al., ICL Tech Report 2021.
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Distributed and Multi-GPU FFT Libraries for parallel systems

The Highly Efficient FFT for Exascale (heFFTe)

• heFFTe is part of the US Exascale Project (ECP).
• Funded by DoE, it aims to provide reliable FFT computation on
exascale systems.
• Integrated to ECP projects such as Copa-Cabana.
• Unique features: Batched FFT, Convolution, Sine/Cosine
transform, Mixed Precision FFT.

https://bitbucket.org/icl/heffte/

Figure: heFFTe interfaces and architecture support.
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Distributed and Multi-GPU FFT heFFTe Acceleration

Moving FFT Kernels to GPUs

• Moving local kernels to GPUs yields high speedups.

• In the following example, we show this effect on Summit.

Figure: Performance comparison between fftMPI, using 1280 IBM Power9 Cores, 40
cores per node (left) and heFFte, using 192 NVIDIA V100-GPUs, 6 per node (right).

Ref.: heFFTe: Highly Efficient FFT for Exascale. Ayala et al., ICCS 2020.
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Distributed and Multi-GPU FFT heFFTe Acceleration

LAMMPS Rhodopsin Benchmark using heFFTe

• Molecular dynamics apps heavily rely on FFTs, and often have
their own parallel FFT implementation (e.g., fftMPI, SWFFT).

• Using heFFTe real-to-complex accelerates LAMMPS Kspace
kernel around 1.76×.

fftMPI heFFTe

FFT Library
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Figure: Breakdown for the LAMMPS Rhodopsin experiment. Using 32 Summit
nodes, 6 V-100 GPUs per node, and 1 MPI per GPU.

Ref.: Performance Analysis of Parallel FFT on Large Multi-GPU Systems.

Ayala et al., IEEE IPDPS 2022.
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Distributed and Multi-GPU FFT Batched FFT on GPUs

3-D Batched FFT experiments

• Batched FFTs are needed in applications such image processing,
filtering, particle energy computations, among others.

Figure: Batch of 3-D FFT of size 643 on NVIDIA and AMD GPUs, 1 MPI per
GPU. Speedups of over 2× with respect to the not batched version.
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Distributed and Multi-GPU FFT Distributed FFT Convolution

3-D Convolution

• Convolutions are widely used for solving PDEs, e.g., in
Earthquake simulation.
• They are also useful for convolutional networks.

Figure: Convolution of a 3-D FFT of size 643, using 40 Power9 cores and 6 V-100
GPUs per node.
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Distributed and Multi-GPU FFT Mixed Precision FFT

Enabling Mixed Precision in heFFTe

• Can be achieved using third party lossless and lossy compression
libraries (NVOMP, ZFP).
• Currently, heFFTe uses casting compression + our own
implementation of MPI OSC Alltoall

Figure: Speedup obtained reducing Floating Point (FP).

Ref.: Mixed precision and approximate 3D FFTs. Cayrols et al., IEEE Cluster 2022.

MUG 2022 13 / 29

https://icl.utk.edu/files/publications/2022/icl-utk-1555-2022.pdf


Distributed and Multi-GPU FFT Mixed Precision FFT

Enabling Mixed Precision in heFFTe

• Can be achieved using third party lossless and lossy compression
libraries (NVOMP, ZFP).
• Currently, heFFTe uses casting compression + our own
implementation of MPI OSC Alltoall

Figure: Accuracy obtained reducing Floating Point (FP).

Ref.: Mixed precision and approximate 3D FFTs. Cayrols et al., IEEE Cluster 2022.
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Experiments & Profiling Scalability

Scaling FFT on top Supercomputers

• Parallel FFT scales at the same rate of the underlying MPI
framework, until a breakdown point.

Figure: Strong Scalability on up to 6144 V-100 GPUs on Summit (left), and Weak
Scalability on up to ∼ 1.2M Fugaku core, 48 cores per node (right). Using heFFTe.

Ref.: Scalability Issues in FFT Computation. Ayala et al., ACM PACT 2021.
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Experiments & Profiling Scalability

Scaling FFT on top Supercomputers

• Similar behavior is observed for state-of-the-art FFT libraries.

Figure: Strong Scalability on 32K Power9 cores for CPU-based libraries (left), and
4096 V-100 for GPU-based libraries (right).

Ref.: FFT Benchmark Performance Experiments on Systems Targeting Exascale.

Ayala et al., ICL Tech Report 2022.
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Experiments & Profiling Communication Bottleneck

3-D FFT with All-to-All Communication

MPI_Alltoall

Forward 1D FFT
Backward 1D FFT

95.13%

2.2%
1.8%

Others: 0.87%
Grids: (1, 4, 4)  - (4, 1, 4)  - (4, 4, 1) 
Average time per direction: 0.51395 (s)
Performance:  313.38 GFlops/s
Memory usage: 5120MB/rank
Max error:    4.57383e-15

Figure: Vampir trace of back-to-back 3-D FFTs of size 10243 (5 forward + 5
backward), using 4 Summit nodes with 16 NVIDIA GPUs, 4 MPIs per node.
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Experiments & Profiling Communication Bottleneck

3-D FFT with Point-to-Point Communication

Pipelined Isend/Irecv

Forward 1D FFT
Backward 1D FFT

92.57%

2.94%

Others: 1.13%Grids: (1, 4, 4)  - (4, 1, 4)  - (4, 4, 1) 
Average time per direction: 0.298241 (s)
Performance:  540.04 GFlops/s
Memory usage: 5120MB/rank
Max error:    4.57383e-15

MPI_Waitall

2.22%
1.14%

Figure: Vampir trace of back-to-back 3-D FFTs of size 10243 (5 forward + 5
backward), using 4 Summit nodes with 16 NVIDIA GPUs, 4 MPIs per node.
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Experiments & Profiling Communication Bottleneck

Scaling Communication

• While messages become smaller, latency effects become significant.
• Next figure shows variability of time spent on MPI Alltoall.

Figure: Strong Scalability on up to 6144 V-100 GPUs on Summit (left), and Weak
Scalability on up to ∼ 1.2M Fugaku core, 48 cores per node (right). Using heFFTe.

Ref.: Accelerating MultProcess Communication for Parallel 3-D FFT. Ayala et al.,

ExaMPI SC 2021.
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Experiments & Profiling FFT (Auto) Tuning

Tuning Processor grid

• At every transposition step a processor grid P ×Q is defined

• The selection of this grid highly impacts scalability, in the next
figure we set P = 5 and let Q vary.

Number of Summit nodes

Figure: Strong Scalability on 40960 Power9 cores setting different grids 5×Q.
Using P3DFFT. Auto-tuning also available with XTune.

Ref.: Interim Report on Benchmarking FFT Libraries on High Performance Systems

Ayala et al., ICL Tech Report 2021.
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Experiments & Profiling FFT (Auto) Tuning

Tuning Processor grid

• At every transposition step a processor grid P ×Q is defined

• This grid can be found using autotuning, e.g., using GPU-Tune

Figure: GPU-Tune for autotuning heFFTe processor grids.

Ref.: Autotuning heFFTe with GPU-Tune. Sherry Li’s Group at LBNL.
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Experiments & Profiling FFT (Auto) Tuning

Tuning Algorithm

• Choosing between Pencil or Slab can lead to considerable
speedups, ∼ 30%.
• The choice of Binary or Collective MPI is important at large-scale.

Figure: Phase Diagram (left) and best settings for a 5123 FFT with 6 GPUs per
node and manual tuning (right). Using heFFTe on Summit.

Ref.: Impacts of Multi-GPU MPI collective communications on large FFT

computation Ayala et al., ExaMPI SC 2019.
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Experiments & Profiling Profiling Multi-GPU FFT

Profiling Communication of Distributed FFTs

• We have used the following tools:
• NVVP, rocProf
• Score-P, Vampir, Cube

• Available ongoing developments include: OSU-INAM

• Challenges of the state-of-the-art:
• Limited support for modern C++
• Lack of support for all MPI distributions
• Some do not support GPUs yet
• If any, support for GPUs is vendor-specific
• Hard to perform user-specific requests
• In general, output does not reflect FFT workloads
• Not mapping to the architecture and network
• Developing a profiler tool requires lots of effort

MUG 2022 25 / 29



Experiments & Profiling Profiling Multi-GPU FFT

Building a Simple and Unorthodox FFT profiler

• heFFTe tracing provides a detailed timing for tasks

• We need an adaptable visualization tool

• We can take advantage of the following analogies:
• Network Traffic ←→ Vehicular Traffic
• Memory unit ←→ Vehicle
• Practical Bandwidth ←→ Average Velocity
• Peak Bandwidth ←→ Road Capacity

• Using the power of heFFTe tracing + Python + TransCAD, we
can build an architecture-aware visualization of network
congestion.

• Defining network peak values, TransCAD can also provide
optimized paths

Ref.: heFFTe profiler Ayala, 2022.
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Experiments & Profiling Profiling Multi-GPU FFT

Profiling Communication with heFFTe

• We can obtain a video of data-volume exchange over time.
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Experiments & Profiling Profiling Multi-GPU FFT

Profiling with heFFTe

• We can obtain a video of network traffic over time.
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Experiments & Profiling Profiling Multi-GPU FFT
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