
MPI4Spark: A High-Performance Communication Framework for
Spark using MPI

Kinan Al-Attar and Aamir Shafi

Network-Based Computing Laboratory
Dept. of Computer Science and Engineering , The Ohio State University

alattar.2@osu.edu, shafi.16@osu.edu

Presented at MUG 2022

2Network Based Computing Laboratory MUG ‘22

• Background
– Introduction to Spark and Netty

• Motivation and Challenges
• MPI4Spark Design and Implementation
• MPI4Spark Performance Evaluation
• Conclusions and Future Work

Presentation Outline

3Network Based Computing Laboratory MUG ‘22

• Big Data has changed the way people understand
and harness the power of data, both in the
business and research domains

• Big Data has become one of the most important
elements in business analytics

• Big Data and High Performance Computing (HPC)
are converging to meet large scale data processing
challenges

• Running High Performance Data Analysis (HPDA)
workloads in the cloud is gaining popularity
• According to the latest OpenStack survey, 27% of

cloud deployments are running HPDA workloads
• Sometimes also called Data Science

Introduction to Big Data Analytics and Trends

http://www.coolinfographics.com/blog/tag/data?currentPage=3

http://www.climatecentral.org/news/white-house-brings-together-big-data-and-climate-change-
17194

4Network Based Computing Laboratory MUG ‘22

• An in-memory data-processing framework
– Iterative machine learning jobs
– Interactive data analytics
– Scala based Implementation
– Standalone, YARN, Mesos

• A unified engine to support Batch,
Streaming, SQL, Graph, ML/DL workloads

• Scalable and communication intensive
– Wide dependencies between Resilient

Distributed Datasets (RDDs)
– MapReduce-like shuffle operations to

repartition RDDs
– Sockets based communication

The Apache Spark Framework

http://spark.apache.org

Spark

Spark
Streaming
(real-time)

GraphX
(graph)

…
Spark
SQL

MLlib
(Machine
Learning

)

BlinkDB

Standalone Apache Mesos YARN

Caffe,
TensorFlow,
BigDL, etc.

(Deep
Learning)

http://spark.apache.org/

5Network Based Computing Laboratory MUG ‘22

• Key idea: Resilient Distributed Datasets (RDDs)
– Immutable distributed collections of objects that can be cached in memory across

cluster nodes
– Created by transforming data in stable storage using data flow operators (map, filter,

groupBy, …)
– Manipulated through various parallel operators
– Automatically rebuilt on failure

• rebuilt if a partition is lost

• Interface
– Clean language-integrated API in Scala (Python & Java)
– Can be used interactively from Scala and PySpark console

RDD Programming Model in Spark

6Network Based Computing Laboratory MUG ‘22

RDD Operations
Transformations

(define a new RDD)

map
filter
sample
union
groupByKey
reduceByKey
sortByKey
join
…

Actions
(return a result to driver)

reduce
collect
count
first
Take
countByKey
saveAsTextFile
saveAsSequenceFile
…

More Information:
• https://spark.apache.org/docs/latest/programming-guide.html#transformations
• https://spark.apache.org/docs/latest/programming-guide.html#actions

https://spark.apache.org/docs/latest/programming-guide.html#transformations
https://spark.apache.org/docs/latest/programming-guide.html#actions

7Network Based Computing Laboratory MUG ‘22

• Parallel and distributed computing:
– Master, workers, and executors manage

distributed execution of user applications
• Master communicates with other processes to

allocate resources and launch executors on
worker nodes

• The figure illustrates the communication patterns
of the shuffle phase for a Spark cluster with four
worker nodes

• The shuffle phase involves data shuffling across
the network and is a performance bottleneck for
Spark applications

Apache Spark: Support for Parallel Execution

http://spark.apache.org

http://spark.apache.org/

8Network Based Computing Laboratory MUG ‘22

• The NIO transport relies on a selector that
utilizes the event notification API, to
indicate which, among a set of non-
blocking sockets, are ready for I/O

• Spark uses Netty to communicate RPC and
shuffle messages
– It does this through a set of message

types that are divided into request and
response message types

Netty: Spark’s Communication Backend
• Netty is an asynchronous event-driven network application framework

– It uses Java New I/O (NIO) transport by default

http://netty.io/

http://netty.io/

9Network Based Computing Laboratory MUG ‘22

• Background
– Introduction to Spark and Netty

• Motivation and Challenges
• MPI4Spark Design and Implementation
• MPI4Spark Performance Evaluation
• Conclusions and Future Work

Presentation Outline

10Network Based Computing Laboratory MUG ‘22

• The overall communication performance of the shuffle phase becomes a significant
bottleneck in distributed execution of Big Data workloads as a result of relying on
TCP/IP for communication
– Spark framework fails to exploit high-performance and low latency interconnects provided

by HPC systems

• The primary motivation for MPI4Spark is to utilize the communication functionality
provided by production-quality MPI libraries in the Apache Spark framework without
having to extend the high-level Spark API

• Existing approaches:
– SparkUCX: a new ShuffleManager based on the UCX communication library
– RDMA-Spark: a new BlockTransferService with existing ShuffleManagers

Motivation

11Network Based Computing Laboratory MUG ‘22

MPI4Dask vs. Prior Work
Features MPI4Spark RDMA-Spark SparkUCX Spark+MPI Spark-MPI

Support for
multiple
interconnects

 ✓ ✗ ✓ ✓ ✓

Adheres to Spark
API

✓ ✓ ✓ ✗ ✓

Studies with
Existing
Benchmark
Suites

 ✓ ✓ N/A ✓ N/A

Optimization
Technique

MPI-Based
Netty

RDMA-Based
Block
TransferService

UCX-Based
Shuffle
Manager

Offload to shared
memory and use
MPI

N/A

12Network Based Computing Laboratory MUG ‘22

• Launching Spark in an MPI environment
– MPI follows Single Program Model Data

(SPMD) model vs. manual launch (possibly
aided by resource managers) of Spark
processes

– Spark dynamically launches processes
(workers fork executors)

• Event-driven vs. Application-driven
Communication Engines
– Process naming (endpoints/channels/sockets

vs. MPI ranks)

Challenges

Spark Driver

Spark Master

Worker 1 Worker 2

Executor 1 Executor 2

13Network Based Computing Laboratory MUG ‘22

• Background
– Introduction to Spark and Netty

• Motivation and Challenges
• MPI4Spark Design and Implementation
• MPI4Spark Performance Evaluation
• Conclusions and Future Work

Presentation Outline

14Network Based Computing Laboratory MUG ‘22

Overview of the MVAPICH2 Project
• High Performance open-source MPI Library

• Support for multiple interconnects
– InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE), AWS

EFA, Rockport Networks, and Slingshot10/11, Broadcom

• Support for multiple platforms
– x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)

• Started in 2001, first open-source version demonstrated at SC ‘02
• Supports the latest MPI-3.1 standard

• http://mvapich.cse.ohio-state.edu
• Additional optimized versions for different systems/environments:

– MVAPICH2-X (Advanced MPI + PGAS), since 2011
– MVAPICH2-GDR with support for NVIDIA (since 2014) and AMD (since 2020) GPUs
– MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014
– MVAPICH2-Virt with virtualization support, since 2015
– MVAPICH2-EA with support for Energy-Awareness, since 2015
– MVAPICH2-Azure for Azure HPC IB instances, since 2019
– MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019

• Tools:
– OSU MPI Micro-Benchmarks (OMB), since 2003
– OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

• Used by more than 3,275 organizations in 90 countries

• More than 1.61 Million downloads from the OSU site
directly

• Empowering many TOP500 clusters (June ‘22 ranking)
– 6th, 10,649,600-core (Sunway TaihuLight) at NSC, China
– 16th, 448, 448 cores (Frontera) at TACC
– 30th, 288,288 cores (Lassen) at LLNL
– 42nd, 570,020 cores (Nurion) in South Korea and many more

• Available with software stacks of many vendors and
Linux Distros (RedHat, SuSE, OpenHPC, and Spack)

• Partner in the 16th ranked TACC Frontera system

• Empowering Top500 systems for more than 20 years

http://mvapich.cse.ohio-state.edu/

15Network Based Computing Laboratory MUG ‘22

MVAPICH2-J: Java Bindings to MVAPICH2
• We have recently added Java bindings to the MVAPICH2 library:

– Allows writing HPC applications in the Java programming language

• The library currently implements a subset of the MPI API:
– Our bindings follow the same API as Open MPI Java bindings

• MVAPICH2-J currently supports:
– blocking/non-blocking point-to-point functions

– blocking collective functions

– blocking vectored collective functions

• Motivation:
– Enhance communication infrastructure of BigData frameworks,

written in Scala/Java, using MPI

• MVAPICH2-J 2.3.7 is recently released:
– Userguide: https://mvapich.cse.ohio-state.edu/userguide/mv2j/

K. Al Attar, A. Shafi, H. Subramoni, D. Panda, Towards Java-based HPC using the MVAPICH2 Library: Early Experiences, HIPS '22 (IPDPSW), May 2022.

https://mvapich.cse.ohio-state.edu/userguide/mv2j/

16Network Based Computing Laboratory MUG ‘22

• The main goal of this work is to utilize the
communication functionality provided by MVAPICH2
in the Apache Spark framework

• MPI4Spark relies on Java bindings of the MVAPICH2
library

• Spark’s default ShuffleManager relies on Netty for
communication:
– Netty is a Java New I/O (NIO) client/server framework for

event-based networking applications
– The key idea is to utilize MPI-based point-to-point

communication inside Netty

MPI4Spark: Using MVAPICH2 to Optimize Apache Spark

17Network Based Computing Laboratory MUG ‘22

Launching Spark using MPI with Dynamic Process Management

18Network Based Computing Laboratory MUG ‘22

• Modified the Netty NIO selector loop, which polls
for channel state changes based on connection,
read, or write events

• Inside of the selector loop checks were
implemented with MPI non-blocking probing
method (MPI_probe) for MPI_recv calls matching
MPI_sends

• Netty Channels or simply Java sockets were still
being used but only for connection establishment

• Too CPU-intensive, performed badly

MPI4Spark-Basic Design

19Network Based Computing Laboratory MUG ‘22

Message Type Function

StreamRequest A request to stream data from the remote end

StreamResponse* A response to a StreamRequest when the stream has been
successfully opened

RpcRequest A request to perform a generic Remote Procedure Call (RPC)

RpcResponse A response to a RpcRequest for a successful RPC

ChunkFetchRequest A request to fetch a sequence of a single chunk of a stream

ChunkFetchSuccess* A response to ChunkFetchRequest when a chunk exists and has
been successfully fetched

OneWayMessage A RPC that does not expect a reply

Types of Messages Communicated by Spark

20Network Based Computing Laboratory MUG ‘22

• The MPI4Spark-Optimized design avoids the pitfalls of the MPI4Spark-Basic
design and is a lot simpler

• In this design, we only target shuffle messages, Knowing that the shuffle phase
was a performance bottleneck and can account for 80% of total execution time
– non-blocking MPI probes are avoided
– the idea was now to trigger MPI_recv calls by parsing the headers of shuffle

messages inside of ChannelHandlers that reside in ChannelPipelines in Netty

MPI4Spark-Optimized Design

21Network Based Computing Laboratory MUG ‘22

MPI4Spark: Optimizing the Communication (Shuffle) Phase
• Dataflow for two executors

– One of the executors performs a reduce task
that requires fetching of remote blocks

1. The reduce task starts with reading records
inside of ShuffleReader

2. ShuffleBlockFetcherIterator is used to fetch
data blocks locally or remotely

3. When remote fetches take place, the
ShuffleBlockFetcherIterator will send requests
to the underlying NettyBlockTransferService

4. MPI-based Netty will then be used to
communicate the remote data block using the
ShuffleBlockResolver

1

2

3

4

22Network Based Computing Laboratory MUG ‘22

• Background
– Introduction to Spark and Netty

• Motivation and Challenges
• MPI4Spark Design and Implementation
• MPI4Spark Performance Evaluation
• Conclusions and Future Work

Presentation Outline

23Network Based Computing Laboratory MUG ‘22

• Communication performance of MPI enhancements at the Netty layer
• MPI4Spark vs. Vanilla Spark and RDMA-Spark using two benchmark suites

Performance Evaluation

Specification Frontera Stampede2 Internal Cluster

Number of
Nodes

18 10 2

Processor Family Xeon Platinum Xeon Platinum Xeon Broadwell

Clock Speed 2.7 GHz 2.1GHz 2.1GHz

Sockets 2 2 2

Cores Per socket 28 28 14

RAM 192 GB 192 GB 128 GB

Hyper-threading ✗ 2 threads/core ✗
Interconnect IB-HDR (100G) OPA (100G) IB-EDR (100G)

24Network Based Computing Laboratory MUG ‘22

MPI4Spark: Performance of MPI-based Netty
• These figures represent the latency numbers for small and large message sizes
• The performance was analyzed using a ping pong Netty benchmark
• For small messages, we see a speed-up of 25x at 4K
• For large messages, we see a speed-up of 9x at 4MB

9x

25x

K. Al Attar, A. Shafi, M. Abduljabbar, H. Subramoni, D. Panda, Spark Meets MPI: Towards High-Performance Communication Framework for Spark
using MPI, IEEE Cluster '22, Sep 2022.

25Network Based Computing Laboratory MUG ‘22

Benchmark Suite Workload Description Category

Intel HiBench

Support Vector Machine standard method for large-scale classification tasks

 ML

Latent Dirichlet allocation a topic model which infers topics from a collection
of text documents

Gaussian Mixture Model represents a composite distribution whereby
points are drawn from one of k Gaussian sub-
distributions

Logistic Regression a popular method to predict a categorical
response

Repartition This workload benchmarks shuffle performance Micro
Benchmarks

TeraSort A standard benchmark to sort input data

Nweight Computes associations between two vertices that
are n-hop away

Graph

OSU HiBD
Benchmarks (OHB)

GroupBy RDD-level benchmark to group the values for each
key in the RDD into a single sequence

RDD
Benchmarks

SortBy RDD-level benchmark to sort the the RDD by key

Performance Evaluation with Intel HiBench and OHB

26Network Based Computing Laboratory MUG ‘22

Weak Scaling Evaluation with OSU HiBD Benchmarks (OHB)
OHB GroupByTest OHB SortByTest

• The above are weak-scaling performance numbers of OHB benchmarks (GroupByTest and SortByTest) executed on the TACC Frontera
system

• Speed-ups for the overall total execution time for 448GB with GroupByTest is 3.8x and 2.1x compared to IPoIB and RDMA, and for
SortByTest the speed-ups are 3.4x and 1.7x, respectively

• Speed-ups for the shuffle read stage for 112GB with GroupByTest are 13x compared with IPoIB and 5.6x compared to RDMA, while
for SortByTest the speed-ups are 12.8x and 3.2x, respectively

2.1x

3.8x

1.7x

3.4x

K. Al Attar, A. Shafi, M. Abduljabbar, H. Subramoni, D. Panda, Spark Meets MPI: Towards High-Performance Communication Framework for Spark
using MPI, IEEE Cluster '22, Sep 2022.

27Network Based Computing Laboratory MUG ‘22

Strong Scaling Evaluation with OSU HiBD Benchmarks (OHB)
OHB GroupByTest OHB SortByTest

• The above are strong-scaling performance numbers of OHB benchmarks (GroupByTest and SortByTest) also executed on the
TACC Frontera System

• Speed-ups for the overall total execution time for 8 workers with GroupByTest is 3.7x and 2.1x compared to IPoIB and RDMA,
and for SortByTest the speed-ups are 3.5x and 1.4x, respectively

• Speed-ups for the shuffle read stage for 8 workers GroupByTest between MPI4Spark and IPoIB is 7.6x and between MPI4Spark
and RDMA is 4x, while for SortByTest the speed-ups are 7.3x and 1.8x, respectively

2.1x

3.7x

1.4x

3.5x

K. Al Attar, A. Shafi, M. Abduljabbar, H. Subramoni, D. Panda, Spark Meets MPI: Towards High-Performance Communication Framework for Spark
using MPI, IEEE Cluster '22, Sep 2022.

28Network Based Computing Laboratory MUG ‘22

Performance Evaluation with Intel HiBench Workloads

Intel HiBench ML Workloads - Frontera Intel HiBench Micro/Graph Workloads - Frontera Intel HiBench Micro/ML Workloads - Stampede2

• This evaluation was done on the TACC Frontera (IB) and the TACC Stampede2 (OPA) Systems
• This illustrates the portability of MPI4Spark on different interconnects
• We see a speed-up for the LR machine learning workload on Stampede2 of about 2.2x
• Speed-ups for the LDA machine learning workload on Frontera are 1.7x for both IPoIB and RDMA

1.4x on average than RDMA-Spark

K. Al Attar, A. Shafi, M. Abduljabbar, H. Subramoni, D. Panda, Spark Meets MPI: Towards High-Performance Communication Framework for Spark
using MPI, IEEE Cluster '22, Sep 2022.

1.5x on average than Vanilla Spark 1.4x on average than Vanilla Spark 1.5x on average than Vanilla Spark

29Network Based Computing Laboratory MUG ‘22

• Background
– Introduction to Spark and Netty

• Motivation and Challenges
• MPI4Spark Design and Implementation
• MPI4Spark Performance Evaluation
• Conclusions and Future Work

Presentation Outline

30Network Based Computing Laboratory MUG ‘22

• Introduced a new design (MPI4Spark) that utilizes MPI communication in the Spark
framework at the Netty level for HPC

• MPI4Spark outperformed both Vanilla and RDMA Spark by up to 3.8x using OHB
Benchmarks

• We saw speed-ups of 1.4x and 1.5x on average compared to Vanilla and RDMA Spark
on Stampede 2 and Frontera using Intel HiBench benchmarks

• The performance evaluation, on TACC’s Frontera and Stampede2, showcased the
portability of our design on both InfiniBand and Intel Omni-Path interconnects and
the performance benefits gained through MPI4Spark

• We plan to release MPI4Spark in the near future
• We also plan to incorporate fault-tolerance along with support for GPU

communication in the future

Conclusions and Future Work

31Network Based Computing Laboratory MUG ‘22

Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

shafi.16@osu.edu

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

Follow us on

https://twitter.com/mvapich

http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
mailto:chen.10252@osu.edu
https://twitter.com/mvapich

	MPI4Spark: A High-Performance Communication Framework for Spark
	Presentation Outline
	Introduction to Big Data Analytics and Trends
	The Apache Spark Framework
	RDD Programming Model in Spark
	RDD Operations
	Apache Spark: Support for Parallel Execution
	Netty: Spark’s Communication Backend
	Presentation Outline (2)
	Motivation
	MPI4Dask vs. Prior Work
	Challenges
	Presentation Outline (3)
	Overview of the MVAPICH2 Project
	Slide 15
	MPI4Spark: Using MVAPICH2 to Optimize Apache Spark
	Launching Spark using MPI with Dynamic Process Management
	MPI4Spark-Basic Design
	Types of Messages Communicated by Spark
	MPI4Spark-Optimized Design
	MPI4Spark: Optimizing the Communication (Shuffle) Phase
	Presentation Outline (4)
	Performance Evaluation
	MPI4Spark: Performance of MPI-based Netty
	Performance Evaluation with Intel HiBench and OHB
	Weak Scaling Evaluation with OSU HiBD Benchmarks (OHB)
	Strong Scaling Evaluation with OSU HiBD Benchmarks (OHB)
	Performance Evaluation with Intel HiBench Workloads
	Presentation Outline (5)
	Conclusions and Future Work
	Thank You!

