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• Big Data has changed the way people understand 
and harness the power of data, both in the 
business and research domains 

• Big Data has become one of the most important 
elements in business analytics

• Big Data and High Performance Computing (HPC) 
are converging to meet large scale data processing 
challenges

• Running High Performance Data Analysis (HPDA) 
workloads in the cloud is gaining popularity
• According to the latest OpenStack survey, 27% of 

cloud deployments are running HPDA workloads
• Sometimes also called Data Science

Introduction to Big Data Analytics and Trends

http://www.coolinfographics.com/blog/tag/data?currentPage=3

http://www.climatecentral.org/news/white-house-brings-together-big-data-and-climate-change-
17194
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• An in-memory data-processing framework 
– Iterative machine learning jobs 
– Interactive data analytics 
– Scala based Implementation
– Standalone, YARN, Mesos

• A unified engine to support Batch, 
Streaming, SQL, Graph, ML/DL workloads

• Scalable and communication intensive
– Wide dependencies between Resilient 

Distributed Datasets (RDDs)
– MapReduce-like shuffle operations to 

repartition RDDs 
– Sockets based communication

The Apache Spark Framework

http://spark.apache.org

Spark

Spark 
Streaming
(real-time)

GraphX
(graph)

…
Spark 
SQL

MLlib
(Machine 
Learning

)

BlinkDB

Standalone Apache Mesos YARN

Caffe, 
TensorFlow, 
BigDL, etc.

(Deep 
Learning)

http://spark.apache.org/
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• Key idea: Resilient Distributed Datasets (RDDs)
– Immutable distributed collections of objects that can be cached in memory across 

cluster nodes
– Created by transforming data in stable storage using data flow operators (map, filter, 

groupBy, …)
– Manipulated through various parallel operators
– Automatically rebuilt on failure

• rebuilt if a partition is lost

• Interface
– Clean language-integrated API in Scala (Python & Java)
– Can be used interactively from Scala and PySpark console

RDD Programming Model in Spark
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RDD Operations
Transformations

(define a new RDD)

map
filter
sample
union
groupByKey
reduceByKey
sortByKey
join
…

Actions 
(return a result to driver)

reduce
collect
count
first
Take
countByKey
saveAsTextFile
saveAsSequenceFile
…

More Information: 
• https://spark.apache.org/docs/latest/programming-guide.html#transformations
• https://spark.apache.org/docs/latest/programming-guide.html#actions 

https://spark.apache.org/docs/latest/programming-guide.html#transformations
https://spark.apache.org/docs/latest/programming-guide.html#actions
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• Parallel and distributed computing: 
– Master, workers, and executors manage 

distributed execution of user applications
• Master communicates with other processes to 

allocate resources and launch executors on 
worker nodes

• The figure illustrates the communication patterns 
of the shuffle phase for a Spark cluster with four 
worker nodes

• The shuffle phase involves data shuffling across 
the network and is a performance bottleneck for 
Spark applications

Apache Spark: Support for Parallel Execution

http://spark.apache.org

http://spark.apache.org/


8Network Based Computing Laboratory  MUG ‘22

• The NIO transport relies on a selector that 
utilizes the event notification API, to 
indicate which, among a set of non-
blocking sockets, are ready for I/O

• Spark uses Netty to communicate RPC and 
shuffle messages
–  It does this through a set of message 

types that are divided into request and 
response message types

Netty: Spark’s Communication Backend
• Netty is an asynchronous event-driven network application framework

– It uses Java New I/O (NIO) transport by default

http://netty.io/

http://netty.io/
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• The overall communication performance of the shuffle phase becomes a significant 
bottleneck in distributed execution of Big Data workloads as a result of relying on 
TCP/IP for communication
– Spark framework fails to exploit high-performance and low latency interconnects provided 

by HPC systems

• The primary motivation for MPI4Spark is to utilize the communication functionality 
provided by production-quality MPI libraries in the Apache Spark framework without 
having to extend the high-level Spark API

• Existing approaches:
– SparkUCX: a new ShuffleManager based on the UCX communication library
– RDMA-Spark: a new BlockTransferService with existing ShuffleManagers

Motivation
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MPI4Dask vs. Prior Work
Features MPI4Spark RDMA-Spark SparkUCX Spark+MPI Spark-MPI

Support for 
multiple 
interconnects

 ✓ ✗ ✓ ✓ ✓

Adheres to Spark 
API

✓ ✓ ✓ ✗ ✓

Studies with 
Existing 
Benchmark 
Suites

 ✓  ✓ N/A  ✓ N/A

Optimization 
Technique

MPI-Based 
Netty

RDMA-Based 
Block 
TransferService

UCX-Based 
Shuffle 
Manager

Offload to shared 
memory and use 
MPI

N/A



12Network Based Computing Laboratory  MUG ‘22

• Launching Spark in an MPI environment
– MPI follows Single Program Model Data 

(SPMD) model vs. manual launch (possibly 
aided by resource managers) of Spark 
processes

– Spark dynamically launches processes 
(workers fork executors)

• Event-driven vs. Application-driven 
Communication Engines
– Process naming (endpoints/channels/sockets 

vs. MPI ranks)

Challenges

Spark Driver

Spark Master

Worker 1 Worker 2

Executor 1 Executor 2
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Overview of the MVAPICH2 Project
• High Performance open-source MPI Library 

• Support for multiple interconnects
– InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE),  AWS 

EFA, Rockport Networks, and Slingshot10/11, Broadcom

• Support for multiple platforms
– x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)

• Started in 2001, first open-source version demonstrated at SC ‘02
• Supports the latest MPI-3.1 standard

• http://mvapich.cse.ohio-state.edu 
• Additional optimized versions for different systems/environments:

– MVAPICH2-X (Advanced MPI + PGAS), since 2011
– MVAPICH2-GDR with support for NVIDIA (since 2014) and AMD (since 2020) GPUs
– MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014
– MVAPICH2-Virt with virtualization support, since 2015
– MVAPICH2-EA with support for Energy-Awareness, since 2015
– MVAPICH2-Azure for Azure HPC IB instances, since 2019
– MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019

• Tools:
– OSU MPI Micro-Benchmarks (OMB), since 2003
– OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

• Used by more than 3,275 organizations in 90 countries

• More than 1.61 Million downloads from the OSU site 
directly

• Empowering many TOP500 clusters (June ‘22 ranking)
– 6th, 10,649,600-core (Sunway TaihuLight) at NSC, China
– 16th, 448, 448 cores (Frontera) at TACC
– 30th, 288,288 cores (Lassen) at LLNL
– 42nd, 570,020 cores (Nurion) in South Korea and many more

• Available with software stacks of many vendors and 
Linux Distros (RedHat, SuSE, OpenHPC, and Spack)

• Partner in the 16th ranked TACC Frontera system

• Empowering Top500 systems for more than 20 years

http://mvapich.cse.ohio-state.edu/
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MVAPICH2-J: Java Bindings to MVAPICH2
• We have recently added Java bindings to the MVAPICH2 library: 

– Allows writing HPC applications in the Java programming language 

• The library currently implements a subset of the MPI API:
– Our bindings follow the same API as Open MPI Java bindings

• MVAPICH2-J currently supports:
– blocking/non-blocking point-to-point functions

– blocking collective functions

– blocking vectored collective functions

• Motivation:
– Enhance communication infrastructure of BigData frameworks, 

written in Scala/Java, using MPI

• MVAPICH2-J 2.3.7 is recently released: 
– Userguide: https://mvapich.cse.ohio-state.edu/userguide/mv2j/ 

K. Al Attar, A. Shafi, H. Subramoni, D. Panda, Towards Java-based HPC using the MVAPICH2 Library: Early Experiences, HIPS '22 (IPDPSW), May 2022.

https://mvapich.cse.ohio-state.edu/userguide/mv2j/
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• The main goal of this work is to utilize the 
communication functionality provided by MVAPICH2 
in the Apache Spark framework

• MPI4Spark relies on Java bindings of the MVAPICH2 
library

• Spark’s default ShuffleManager relies on Netty for 
communication: 
– Netty is a Java New I/O (NIO) client/server framework for 

event-based networking applications
– The key idea is to utilize MPI-based point-to-point 

communication inside Netty

MPI4Spark: Using MVAPICH2 to Optimize Apache Spark
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Launching Spark using MPI with Dynamic Process Management
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• Modified the Netty NIO selector loop, which polls 
for channel state changes based on connection, 
read, or write events

• Inside of the selector loop checks were 
implemented with MPI non-blocking probing 
method (MPI_probe) for MPI_recv calls matching 
MPI_sends

• Netty Channels or simply Java sockets were still 
being used but only for connection establishment

• Too CPU-intensive, performed badly 

MPI4Spark-Basic Design
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Message Type Function

StreamRequest A request to stream data from the remote end

StreamResponse* A response to a StreamRequest when the stream has been 
successfully opened

RpcRequest A request to perform a generic Remote Procedure Call (RPC) 

RpcResponse A response to a RpcRequest for a successful RPC

ChunkFetchRequest A request to fetch a sequence of a single chunk of a stream

ChunkFetchSuccess* A response to ChunkFetchRequest when a chunk exists and has 
been successfully fetched

OneWayMessage A RPC that does not expect a reply

Types of Messages Communicated by Spark
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• The MPI4Spark-Optimized design avoids the pitfalls of the MPI4Spark-Basic 
design and is a lot simpler

• In this design, we only target shuffle messages, Knowing that the shuffle phase 
was a performance bottleneck and can account for 80% of total execution time
– non-blocking MPI probes are avoided 
– the idea was now to trigger MPI_recv calls by parsing the headers of shuffle 

messages inside of ChannelHandlers that reside in ChannelPipelines in Netty

MPI4Spark-Optimized Design
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MPI4Spark: Optimizing the Communication (Shuffle) Phase 
• Dataflow for two executors

– One of the executors performs a reduce task 
that requires fetching of remote blocks

1. The reduce task starts with reading records 
inside of ShuffleReader

2. ShuffleBlockFetcherIterator is used to fetch 
data blocks locally or remotely

3. When remote fetches take place, the 
ShuffleBlockFetcherIterator will send requests 
to the underlying NettyBlockTransferService

4. MPI-based Netty will then be used to 
communicate the remote data block using the 
ShuffleBlockResolver

1

2

3

4
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• Communication performance of MPI enhancements at the Netty layer
• MPI4Spark vs. Vanilla Spark and RDMA-Spark using two benchmark suites

Performance Evaluation

Specification Frontera Stampede2 Internal Cluster

Number of 
Nodes

18 10 2

Processor Family Xeon Platinum Xeon Platinum Xeon Broadwell

Clock Speed 2.7 GHz 2.1GHz 2.1GHz

Sockets 2 2 2

Cores Per socket 28 28 14

RAM 192 GB 192 GB 128 GB

Hyper-threading  ✗ 2 threads/core  ✗
Interconnect IB-HDR (100G) OPA (100G) IB-EDR (100G) 
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MPI4Spark: Performance of MPI-based Netty
• These figures represent the latency numbers for small and large message sizes 
• The performance was analyzed using a ping pong Netty benchmark
• For small messages, we see a speed-up of 25x at 4K
• For large messages, we see a speed-up of 9x at 4MB

9x

25x

K. Al Attar, A. Shafi, M. Abduljabbar, H. Subramoni, D. Panda, Spark Meets MPI: Towards High-Performance Communication Framework for Spark 
using MPI, IEEE Cluster '22, Sep 2022.
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Benchmark Suite Workload Description Category

Intel HiBench

Support Vector Machine standard method for large-scale classification tasks

     ML

Latent Dirichlet allocation a topic model which infers topics from a collection 
of text documents

Gaussian Mixture Model represents a composite distribution whereby 
points are drawn from one of k Gaussian sub-
distributions

Logistic Regression a popular method to predict a categorical 
response

Repartition This workload benchmarks shuffle performance Micro
Benchmarks

TeraSort A standard benchmark to sort input data

Nweight Computes associations between two vertices that 
are n-hop away 

Graph

OSU HiBD 
Benchmarks (OHB) 

GroupBy RDD-level benchmark to group the values for each 
key in the RDD into a single sequence

RDD
Benchmarks

SortBy RDD-level benchmark to sort the the RDD by key 

Performance Evaluation with Intel HiBench and OHB
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Weak Scaling Evaluation with OSU HiBD Benchmarks (OHB)
OHB GroupByTest OHB SortByTest

• The above are weak-scaling performance numbers of OHB benchmarks (GroupByTest and SortByTest) executed on the TACC Frontera 
system

• Speed-ups for the overall total execution time for 448GB with GroupByTest is 3.8x and 2.1x compared to IPoIB and RDMA, and for 
SortByTest the speed-ups are 3.4x and 1.7x, respectively

• Speed-ups for the shuffle read stage for 112GB with GroupByTest are 13x compared with IPoIB and 5.6x compared to RDMA, while 
for SortByTest the speed-ups are 12.8x and 3.2x, respectively

2.1x

3.8x

1.7x

3.4x

K. Al Attar, A. Shafi, M. Abduljabbar, H. Subramoni, D. Panda, Spark Meets MPI: Towards High-Performance Communication Framework for Spark 
using MPI, IEEE Cluster '22, Sep 2022.
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Strong Scaling Evaluation with OSU HiBD Benchmarks (OHB)
OHB GroupByTest OHB SortByTest

• The above are strong-scaling performance numbers of OHB benchmarks (GroupByTest and SortByTest) also executed on the 
TACC Frontera System

• Speed-ups for the overall total execution time for 8 workers with GroupByTest is 3.7x and 2.1x compared to IPoIB and RDMA, 
and for SortByTest the speed-ups are 3.5x and 1.4x, respectively

• Speed-ups for the shuffle read stage for 8 workers GroupByTest between MPI4Spark and IPoIB is 7.6x and between MPI4Spark 
and RDMA is 4x, while for SortByTest the speed-ups are 7.3x and 1.8x, respectively

2.1x

3.7x

1.4x

3.5x

K. Al Attar, A. Shafi, M. Abduljabbar, H. Subramoni, D. Panda, Spark Meets MPI: Towards High-Performance Communication Framework for Spark 
using MPI, IEEE Cluster '22, Sep 2022.
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Performance Evaluation with Intel HiBench Workloads

Intel HiBench ML Workloads - Frontera Intel HiBench Micro/Graph Workloads - Frontera Intel HiBench Micro/ML Workloads - Stampede2

• This evaluation was done on the TACC Frontera (IB) and the TACC Stampede2 (OPA) Systems
• This illustrates the portability of MPI4Spark on different interconnects
• We see a speed-up for the LR machine learning workload on Stampede2 of about 2.2x
• Speed-ups for the LDA machine learning workload on Frontera are 1.7x  for both IPoIB and RDMA

1.4x on average than RDMA-Spark 

K. Al Attar, A. Shafi, M. Abduljabbar, H. Subramoni, D. Panda, Spark Meets MPI: Towards High-Performance Communication Framework for Spark 
using MPI, IEEE Cluster '22, Sep 2022.

1.5x on average than Vanilla Spark 1.4x on average than Vanilla Spark 1.5x on average than Vanilla Spark 
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• Introduced a new design (MPI4Spark) that utilizes MPI communication in the Spark 
framework at the Netty level for HPC

• MPI4Spark outperformed both Vanilla and RDMA Spark by up to 3.8x using OHB 
Benchmarks

• We saw speed-ups of 1.4x and 1.5x on average compared to Vanilla and RDMA Spark 
on Stampede 2 and Frontera using Intel HiBench benchmarks

• The performance evaluation, on TACC’s Frontera and Stampede2, showcased the 
portability of our design on both InfiniBand and Intel Omni-Path interconnects and 
the performance benefits gained through MPI4Spark

• We plan to release MPI4Spark in the near future
• We also plan to incorporate fault-tolerance along with support for GPU 

communication in the future

Conclusions and Future Work
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Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

shafi.16@osu.edu

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

Follow us on

https://twitter.com/mvapich 

http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
mailto:chen.10252@osu.edu
https://twitter.com/mvapich
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