
OFFLOADING COLLECTIVE OPERATIONS TO THE
BLUEFIELD DATA PROCESSING UNIT
RICH GRAHAM

BLUEFIELD – NVIDIA’S DATA
PROCESSING UNIT

NVIDIA BLUEFIELD-2
HDR Data Center On A Chip

 Offloads and Accelerates Applications and Data Center Infrastructure

Network Bandwidth 200Gb/s

RDMA max msg rate

Compute Cores

215Mpps

8

Compute SPECINT2K6: 70

Memory Bandwidth 17GB/s

NVMe-OF 10M IOPs @ 4KB

NVMe SNAP 5.4M IOPs @ 4KB

ORCHESTRATIO
N

MANAGEMENT

TELEMETRY

SECURITY NETWORKING STORAGE

ACCELERATION LIBRARIES

DOCA

TRADITIONAL SERVER

Infrastructure Management Software Defined Security

Software-defined Storage Software-defined Networking

Acceleration Engines Infrastructure Management

Software-defined Storage

Software-defined Security

Software-defined Networking

Acceleration Engines

DPU ACCELERATED SERVER

NVIDIA DPU with Arm Cores & AcceleratorsNIC

BLUEFIELD DATA PROCESSING UNIT
Software-Defined, Hardware-Accelerated Data Center Infrastructure-on-a-Chip

Isolation Layer

HOST HOST

MPI
Tag MatchingAll-to-All

Data
Reductions

(SHARP)

Self Healing
Network

Programmable
Datapath

Accelerator

Data
processing

units
(Arm cores)

Security / Isolation

IN-NETWORK COMPUTING ACCELERATED SUPERCOMPUTING
Software-Defined, Hardware-Accelerated, InfiniBand Network

High
Throughput

Extremely
Low Latency

RDMA GPUDirect
RDMA

GPUDirect
Storage

Smart
Topologies

Congestion
Control

Adaptive
Routing

High
Message Rate

In-Network ComputingMost Advanced Networking

En
d-

to
-E

nd

En
d-

to
-E

nd
Ad

ap
te

r/D
PU

Sw
itc

h
En

d-
to

-E
nd

COLLECTIVE INFRASTRUCTURE -
UCC

NVIDIA HPC-X
Software Stack

 MPI /SHMEM implementation
 UCX – Unified Communication X
 UCC – Unified Collective Communication
 HCOLL – Hierarchical Collectives (Note: UCC will replace this in the future)
 NCCL/SHARP hardware collectives
 In-network computing infrastructure with SHARP

UCX

UCC HCOLL NCCL

MPI / SHMEM

SHARP
(In-network computing)

HPC Applications

HPC-X Software Stack

Hardware (E.g. network cards, switches, etc)

UNIFIED COLLECTIVE COMMUNICATION (UCC)
Goals

 Unified collective stack for HPC and DL/ML workloads
 Tunable for latency, bandwidth, throughput

 Unified collective stack for software and different networks
 Unify parallelism and concurrency

 Concurrency – progress of a collective and the computation
 Parallelism – progress of many independent collectives

 Unify execution models for CPU, GPU, and DPU collectives
 Extended to supports offloading model for DPUs

 Extensible
 Modular API and new collective algorithms can be implemented

UCS Schedule Execution
Engine

 Schedule Builder

UNIFIED COLLECTIVE COMMUNICATION (UCC)
Architecture

Applications

MVAPICHLegion/ParsecPyTorch/ TFOpenSHMEM/
UPC

Open
MPI/MPICH

CORE Component

Basic CL Hier CL Proprietary CL

UCP
TL

NCCL
TL

SHARP
TL

SHARED
Memory

TL

Proprietar
y
TL

Algorithm
Primitives

Topology

CONTEXT
Storage

UCC
Services

Hierarchical-
aware

Deadline-
based
Task

Hierarchical
Engine

Reactive
Engine

Verbs UCX NCCL SHARP DPU

UC
C

DPU

UCC CONCEPTS & CODE FLOW

UCC KEY CONCEPTS

 Abstractions for Resources
 Collective Library
 Communication Context
 Teams

 Collective Operations
 Properties of Operations

UCC CODE FLOW

 Library Initialization
 Communication Context
 Team
 UCC collective operation
 Library Finalization

Click icon to add picture

UCC Library Initialization

Communication Context
Creation

UCC Library Finalization

UCC Team Creation

UCC collectives operations
(init/post or

init-post/test/finalize)

UCC LIBRARY

 Object that encapsulate resources
 Initialization and finalization routines

 UCC operations should be invoked in between
 Parameters of the library

 Thread model
 Collective types
 Reduction types
 Synchronization types

 UCC API: ucc_init(), ucc_init_version(), ucc_finalize() Click icon to add picture

COMMUNICATION CONTEXT

 Object to encapsulate local resource and express network parallelism
 Local resources

 E.g. Injection queues or network endpoints
 Can be used to specify affinity

 Can be bound to a specific core, socket, accelerator
 Contexts can be created for:

 Processes - E.g. single MPI process can have multiple contexts
 Threads – E.g. a thread can be coupled with multiple contexts
 Tasks

 Controls resource sharing
 EXCLUSIVE

 E.g. single team
 SHARED

 E.g. shared across teams
 UCC API: ucc_context_create()

UCC TEAMS

 Encapsulates the resources required for group of
operations

 Created by processes, threads or tasks
 Each process/thread passes a context (local resource object)

 Properties
 Synchronization Model

 On_Entry, On_Exit or On_Both
 Ordering

 Must invoke collective in the same order (e.g MPI)
 TensorFlow and persistent collectives can be invoked in different

orders
 Datatype

 Can be customized for contiguous, strided or non-contiguous
data types

 UCC API: ucc_team_create_post()
 Non-blocking call
 Only one active call at any given instance
 It is a collective operation

Click icon to add picture

HIERARCHICAL TEAMS
Example of subgrouping

socket socket

node

socket socket

node

socket socket

node

socket leaderssocket leaderssocket leaders

node leaders

UCC COLLECTIVE OPERATIONS

 Collective operations : ucc_collective_init(…) and
ucc_collective_init_and_post(…)

 Local operations: ucc_collective_post, test, and finalize
 Initialize with ucc_collective_init(…)

 Initializes the resources required for a particular collective
operation, but does not post the operation

 Completion
 The test routine provides the status

 Finalize
 Releases the resources for the collective operation

represented by the request
 The post and wait operations are invalid after finalize

 Implementing collectives:
 Blocking collectives:

 Can be implemented with Init_and_post and test+finalize
 Persistent Collectives:

 Can be implemented using the building blocks - init, post, test,
and finalize

 Split-Phase
 Can be implemented with Init_and_post and test+finalize

Building blocks

Click icon to add picture

OFFLOADING CONCEPTS

UCC DPU OFFLOAD MODEL

Host Only Model DPU Offloload Model

UCC

Proc

Host

Proc

Host

UCC

DPU

DESIGN CONSIDERATIONS

 DPU is an asynchronous agent
 Number of host cores is on the order of 10X those of the DPU – need work sharing
 DPU cores less powerful computationally with respect to the host compute engines
 DPU have targeted acceleration engines
 Host and DPU need to be “in sync”
 BlueField enhancements

 Work requests can be posted on behalf of memory that is host-resident – Cross-GVMI memory keys
 Some optimized data paths between the host and the BlueField - GGA Proc

Host

DPU

Memory
Key

(MK)

Work
Request
(XGVMI

MK)

HC
ANetwork

OFFLOAD AND LIBRARY
INFRASTRUCTURE

TERMINOLOGY

• Library/building block
• A set of APIs and the library code that goes with it, not an instantiation
• Does NOT refer to how I use it in an implementation

• Daemon/service process
• An executable binary, based on building blocks, that can be executed on the DPU
• Multiple service processes can run on a single DPU

• Service/service API: everything necessary to extend an existing software component (e.g., UCC) to benefit from DPU
offloading

• Local/remote DPU
• Local DPU: DPU with a PCI physical connection to the core where the rank is running
• Remote DPU: DPU with a IB-only physical connection to the core where the rank is running

• Endpoint (EP): handle from the communication layer to initiate a communication (send, receive, one-sided)

OFFLOAD AND LIBRARY INFRASTRUCTURE

 Goals
 Provide an infrastructure for the offloading of operations to DPUs
 Provide generic APIs, not limited to a programming language
 Currently used in conjunction with Open MPI + UCC for the offloading of MPI collectives

 Model relevant to this presentation
 An offloading service is running on the DPUs
 For offloaded collectives, MPI ranks connect to the service on the DPU
 The offloaded algorithm is split between the MPI/UCC component running on the host; and the service on the DPU

 Key concepts
 Offloading engine
 Execution contexts
 Events and notifications
 Endpoint cache (for X-GVMI)

 What is needed to offload an operation?
 Identify what piece of the algorithm is supposed to run on the DPUs and on the hosts
 Extend the host code to initiate the offloading to the DPU
 Coordinate the flow of the algorithm between the hosts and DPUs using control notifications
 Rely on XGVMI for efficient data path

ARCHITECTURE OVERVIEW

HOST

DPU

Offload daemon

PCI

Rank

HOST

DPU

Offload daemon

PCI

Rank

HOST

DPU

Offload daemon

PCI

Rank

IB IB

OMPI

UCC

UCX

Offloaded operation
• Control path
• Data path

XGVMI key cache

OMPI

UCC

UCX

Offloaded operation
• Control path
• Data path

XGVMI key cache

OMPI

UCC

UCX

Offloaded operation
• Control path
• Data path

XGVMI key cache

OFFLOADING ENGINE

 Required on both DPUs and hosts for the implementation of a service
 Meant to separate offloading service; in our context, only one required
 Option to use a configuration file to specify details about the platform where to run the job
 Highest level handle

 Enable the creation of one or more execution contexts
 Provides a special execution context for self
 A default notification system, for example for local events
 A buddy buffer system for efficient memory management

 Two functions
 dpu_offload_status_t offload_engine_init(offloading_engine_t **engine);
 void offload_engine_fini(offloading_engine_t **engine);

EXECUTION CONTEXT

 Execution contexts provide all the capabilities for interactions with another execution context
 In charge of bootstrapping, by ensuring

 Two execution contexts connect to each other
 All capabilities related to interaction between execution contexts are initialized and available to users

 Based on client/server concepts to simplify the design of new solutions
 Example

 A server execution context is running on the DPU and client execution contexts running in the context of MPI ranks connects to it
 A series of server/client execution contexts are running on the DPUs to enable the cross-connection of service processes

 APIs
 execution_context_t *client_init(offloading_engine_t *engine, init_params_t *init_params);
 void client_fini(execution_context_t **ctx);
 execution_context_t *server_init(offloading_engine_t *engine, init_params_t *init_params);
 void server_fini(execution_context_t **ctx);
 Get the current phase of the bootstrapping process
GET_ECONTEXT_BOOTSTRAPING_PHASE(execution_context)

 Bootstrapping is asynchronous and does not require any action from users other than progress
 Once bootstrapping completed, the type of the execution context (client or server) is less relevant
 More details in the documentation

EVENTS & NOTIFICATIONS

 Mainly used to implement the control path between hosts and service processes, as well as between service processes
 Available from an execution context

 All execution contexts provide an event/notification system
 On the receive side

1. Choose a unique identifier for your custom notification, called a notification type
2. Register a unique handler for the notification type

 On the sender side
1. Get an event
2. Optionally set the payload
3. Get the destination information
4. Emit the event

 By default
 All events are added to a list for progress
 When an event completes, it is implicitly returned
 If the event is associated to a payload, the payload is released
 When a handler is invoked upon reception of a notification, the buffer is only valid throughout the execution of the said handler

and then released
 Other features

 Manual management of events' lifecycles (not put on the ongoing list, not implicitly returned)
 Possible to specify pool of memories to efficiently use payload buffers with events and notification handlers

 See documentation for more details

OVERVIEW OF THE SOFTWARE STACK

• Offloading libraries
• A set of shared libraries (.so files) with their headers
• A binary to instantiate the offloading service on the DPU

• A modified version of UCC that support offloading for (some) MPI collectives
• A modified version of UCX that support XGVMI

UCX

Offloading library

Open MPI

Host

UCX

Offloading library

DPU

UCC

DPUS & SHADOW ENDPOINTS
What are the local DPUs associated to a MPI rank

• Reminder: all operations are in the context of a group; in the remaining of the slides,
rank means “rank in a group”

• Need to know what are the local DPUs for all ranks in the operation. No limitation on
communication patterns that collective developers can use

• rank-to-rank
• rank-to-DPU
• DPU-to-DPU
• DPU-to-rank

• Concept of ghost endpoints: All the data required to communicate with a local DPUs for
a given rank

• Related functions for the implementation of offloaded operations:
• Find the service process associated to a remote rank

get_sp_id_by_group_rank(engine, group_id, rank, service_proc_idx, &service_proc_id, &ev);
• Find the endpoint for a service process

get_sp_ep_by_id(engine, sp_id, sp_ep, &econtext_comm, &dest_id);
• event_get(*ev_sys, *info, **ev)
• event_channel_emit(**event, type, dest_ep, dest_id, *ctx)

HOST

DPU

Offload daemon

Rank
EP Shadow EP

Rank
EP Shadow EP

EP

PCI

OFFLOAD DATA EXCHANGE – PART OF A COLLECTIVE ALGORITHM
Sender: Rank 0 Receiver: Rank 1

Rank 0 Rank 1 DPU Rank 1Rank 0 DPU

HOST_ARRIVE

DPU_RTS

DPU_ACK

RDMA_READ
with xgvmi

mkey

DPU_DONE

	Offloading Collective Operations to the Bluefield Data Processi
	Slide 2
	NVIDIA BLUEFIELD-2
	BlueField Data processing Unit
	In-Network Computing Accelerated Supercomputing
	Slide 6
	NVIDIA HPC-X
	Unified Collective Communication (UCC)
	Unified Collective Communication (UCC) (2)
	Slide 10
	UCC Key Concepts
	UCC Code Flow
	UCC Library
	Communication Context
	UCC TEAMS
	Hierarchical Teams
	UCC Collective operations
	Slide 18
	UCC DPU Offload model
	Design considerations
	Slide 21
	TERMINOLOGY
	Offload and Library Infrastructure
	Architecture overview
	Offloading engine
	Execution context
	Events & notifications
	Overview of the Software stack
	DPUS & Shadow endpoints
	offload Data exchange – Part of a collective Algorithm
	Slide 31

