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BlueField DPU / Smart NIC Architecture

* BlueField includes the ConnectX6
network adapter and data processing

cores
P, P, Bs e 2 Memory
* System-on-chip containing 64-bit
ARMv8 A72 Host Server
- Why BlueField DPU for Deep Learning? e
* State-of-the-art DPUs bring more &%= | le B
compute power to network 2 L. 1 B I
& ConnectX ARM Cores
BlueField

* Deep Learning training needs all
the available compute power it can
get
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Exploiting DPUs for Deep Neural Network
I a8 9 e several phases in

Deep Neural Network Training

* Different phases can be offloaded to

Fetching Training Data
Data Augmentation
Forward Pass
Backward Pass
Weight Update

Model Validation

DPUs to accelerate the training.
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Offload Naive (O-N): Offloading DL Training using Data

PanalleHaMielism can used to train DNN on DPUs
Data Parallelism Model Replica

f Nodel ‘I
I
|
I
I || Replical | | Replica2 | | Replica3 | | Replicad DPU :
: [Replica9] [Repllcalo] |
- :
|
]
L P
/-' ——————————————————————————————— ~
Node2 *

Replicall| |Replical2| |Replical3| |Replicald DPU
[ReplicalQ] [Replicazo}
Replical5| |Replical6| |Replical?| |Replical8

— o m—— e o o e o E EE mEe mEe EEe e e EEe S e EEe EEe Eme S e e Eme e Eme mme o e

- o o oy

S o o e -

,

A. Jain, N. Alnaasan, A. Shafi, H. Subramoni, D. Panda, “Accelerating CPU-based Distributed DNN Training on Modern HPC Clusters using BlueField-2

Laboeratoiy MUG ‘21 High-Performance Deep Learning



Accelerating DNN Training using Offload-

NaiWeper iteration can be used to
distribute the work (batch size)
between CPU and DPU

* Speedup:
— We report up to 1.03X speedup
— Maximum speedup possible: 1.04X

* Offload-Naive does not give
significant speedup as forward and
backward pass are compute-
intensive tasks and DPUs are not
as powerful as CPUs
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Design 1: Offload Data Augmentation (O-DA)

Initialize two
buffers for a
batch (BufferA
and BufferB)

* Offloads the reading of training data
from memory and data
augmentation on input data to DPUs.

Increase
Iteration

Offloading: Training
data loading and
data augmentation

* Creates two types of processes
— Training processes (on CPU)

Fetch Next Batch

Apply Data
Augmentation

Send Batch

unication

Give batch from
BufferB

Give batch from
BufferA

— Data Augmentation processes (On
DPU)

* Initializes two buffers to enable
asynchronous communication

Com

* FEach training processes has one

- -

data augmentation processes on ety
Yes
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Design 2: Offload Model Validation (O-MV)

 Offloading: model validation

T

* Offloads validation of model after [Startanew]

epoch

each epoch to DPUs. v
—D[ Fetch Next Batch

* Model validation is a less compute- -

intensive task as it has only forward [Augmentat.od
[ )
( J
( J

Validate Model

Forward Pass
pass

Backwarcl Pass

* Creates two types of processes

Welght Update

- ———— == — =

— Training processes (on CPU) No
— Testing processes (On DPU) ¥ Commufication RI
* One communication operation per [ parmetes | S parameters )

epoch o

* Validation data is equally divided
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Design 3: Offload Hybrid (O-Hy)

Forward/Backwa rd Process Offloading: training data loading, data

o Ofﬂoads data aug mentatlon and augmentation, and model validation

. . Initialize two Data Testing
model validation to DPUSs. Redligiles Augmentation  Process
and BufferB) P rocess

Increase
Iteration

* Creates three types of processes
— Training processes (on CPU)

/_:

Irecv(BufferB)

Give batch from
BufferA

— Data Augmentation processes (On
DPU) [ Forward Pass
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Apply Data
Augmentation
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Validate Model

[ Forward Pass

Send Batch

[ Wait on BufferA

* Each Data Augmentation process on | |Cse s
DPU supports multiple training
processes.
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asynchronous communication and Bog o
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Training ResNet-20 on CIFAR-10 Dataset

* Speedup
— Single node: O-DA (13.8%) and O-MV (3.1%)
— Multi-node: Achieves average 13.9% speedup on 1-16 nodes
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Training ResNet-56 on SVHN Dataset

* Speedup
— Single node: O-DA (7%), O-MV (5.5%), and O-Hy (10.1%)
— Multi-node: 9.3% speedup on 16 nodes
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Training ShuffleNet on Tiny ImageNet Dataset

* Speedup
— Single node: O-DA (12.5%), O-MV (1.2%), and O-Hy (8.9%)

— Multi-node: 10.2% speedup on 16 nodes
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Conclusion

Proposed novel offloading designs for DPUs
— Offload Naive
— Offload Data Augmentation
— Offload Model Validation
— Offload Hybrid

* Reported up to 15%, 12.5%, and 11.2% speedup for CIFAR-10, SVHN, and
Tiny ImageNet datasets

* Demonstrated consistent performance gain on multiple nodes.
* Uses Torchvision, PyTorch, Horovod, and MPI for flexibility and scalability
* Future Work

— Use DPUs to accelerate DNN training on GPUs
— Evaluate TransFormer models
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Thank You!

Jain.575@osu.edu

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

High Performance Deep Learning
http://hidl.cse.ohio-state.edu/

MVAPICH

' MPI, PGAS and Hybrid MPI+PGAS Libi
Hfgh'PeI’fOrmance and Rybori + ibrary
Deep Learning

The High-Performance Deep Learning The High-Performance MPI/PGAS Project

Project http://mvapich.cse.ohio-state.edu/
http://hidl.cse.ohio-state.edu/
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