MVAPICH2 on Azure HPC and AI Clusters

Jithin Jose, Microsoft
jijos@microsoft.com
Agenda

• Overview of Azure HPC
• Azure HBv3, NDv4
• Latest advances
• MVAPICH2-Azure on HBv3
• MVAPICH2-GDR on NDv4
• Performance Highlights
• Conclusion
Azure VM Series

Entry Level VMs
- Dev/Test Workloads

General Purpose VMs
- Common Applications, Web Servers, etc.

Compute Optimized VMs
- Gaming, Analytics

Large Memory VMs
- Large Databases
- >80,000 IOPs
- Premium Storage
 - Low Latency, high throughput applications

Storage Optimized VMs
- No-SQL Databases, Data warehousing

Standard HPC VMs
- HPC Applications

GPU VMs
- Deep Learning, AI workloads

FPGA
- FPGA Microservices – AI/Edge

InfiniBand

Cray Services in Azure
Azure HPC/AI VM Series

Standard HPC VMs
- Standard HPC Applications
- High Compute/Memory + InfiniBand
 - HPC SKUs: H, HB, HC, HBv2, HBv3

GPU VMs
- Deep Learning, AI workloads
- Visualization SKUs: NV series
 - Deep Learning/AI SKUs (InfiniBand): NC, ND series

InfiniBand/RDMA enabled VMs: One VM per Host
Agenda

• Overview of Azure HPC

• Azure HBv3, NDv4
 • Latest advances
 • MVAPIC2-Azure on HBv3
 • MVAPIC2-GDR on NDv4

• Performance Highlights

• Conclusion
Azure HBv3

- VM Specs:
 - AMD Milan (NPS = 2)
 - VM Cores: 120
 - Memory: 448 GB
 - Local Disk: 2 x 900 GB NVMe SSD
 - Network: 200 Gbps HDR (SR-IOV)

HBv3 VM Sizes (one VM per Host):
 - Standard_HB120rs_v3 (all 120 cores)
 - Standard_HB120-96rs_v3 (6 cores per CCD)
 - Standard_HB120-64rs_v3 (4 cores per CCD)
 - Standard_HB120-32rs_v3 (2 cores per CCD)
 - Standard_HB120-16rs_v3 (1 cores per CCD)
Azure NDv4

- VM Specs:
 - AMD Rome (NPS=2)
 - VM Cores: 96 (48 per socket)
 - Memory: 900 GB
 - 8 x NVIDIA A100 GPUs
 - 8 x HDR 200Gbps InfiniBand
 - Local Disk: 6.4 TB local NVMe SSD
Agenda

- Overview of Azure HPC
- Azure HBv3, NDv4
- **Latest advances**
 - MVAPICH2-Azure on HBv3
 - MVAPICH2-GDR on NDv4
- Performance Highlights
- Conclusion
GPUDirect RDMA

- Available on Azure NDv4
- Direct data path b/w A100 GPU and HDR200
- Each NIC/GPU pair gets peak b/w simultaneously
- Combined GPUDirect RDMA b/w of 1.6 Tbps
- Supports *all* GDR capable MPI libraries/middleware (including MVAPICH2-GDR)
SHARP

- Enabled on dedicated NDv4 clusters
- UCX-based Sharp-AM / SharpD communication
- Optimized SHARP tree initialization
- Connection keepalive
- GRH support
Congestion Control

- Available on all VM Series with HDR
- Transparent to customer applications
- Avoids congestion, Improve tail latencies
- Critical in public multi-customer environments
Adaptive Routing

Impact of Adaptive Routing
- Congestion can happen with static routing if a single link is being used by two or more communicating pairs
- AR avoids congestion and offers stable performance
VM Counters, Topology

- NUMA topology
 - NUMA distance
 - L3, L2, PCIe topology info
- VM Performance Counters
 - Select Counters enabled on NDv4
- IB Topology to VMs
 - sharp_cmd topology
 - SLURM topology format
Agenda

• Overview of Azure HPC
• Azure HBv3, NDv4
• Latest advances
• **MVAPICH2-Azure on HBv3**
• **MVAPICH2-GDR on NDv4**
• Performance Highlights
• Conclusion
MVAPICH2-Azure on HBv3 (inter-node)

Environment parameters: MV2_NUM_QP_PER_PORT=2 MV2_IBA_EAGER_THRESHOLD=66560 MV2_VBUF_TOTAL_SIZE=66560 MV2_RNDV_PROTOCOL=RPUT
MVAPICH2-Azure on HBv3 (intra-node)
Agenda

• Overview of Azure HPC
• Azure HBv3, NDv4
• Latest advances
• MVAPICH2-Azure on HBv3
• MVAPICH2-GDR on NDv4
• Performance Highlights
• Conclusion
MVAPICH2-GDR on NDv4

Environment parameters: MV2_NUM_QP_PER_PORT=4 MV2_IBA_EAGER_THRESHOLD=66560 MV2_VBUF_TOTAL_SIZE=66560 MV2_RNDV_PROTOCOL=RPUT
MV2_CUDA_BLOCK_SIZE=131072 MV2_USE_GPUDIRECT_RDMA=1 MLX5_RELAXED_PACKET_ORDERING_ON=all MV2_GPUDIRECT_LIMIT=4194304 MV2_USE_CUDA=1
MV2_IBA_HCA=mlx5_ib0 CUDA_VISIBLE_DEVICES=0

24.1 GB/s
Azure HPC VM Images

- Optimized VM Images for HPC/AI workloads
- Mellanox OFED
- Pre-configured IPoIB
- InfiniBand based MPI Libraries
 - HPC-X, IntelMPI, MVAPICH2, OpenMPI
- Communication Runtimes
 - Libfabric, OpenUCX
- Optimized HPC libraries
 - Blis, FFTW, Flame, MKL
- Recommended Compilers
- GPU Drivers
- NCCL, NCCL RDMA Sharp Plugin, SharpD
- Other optimizations
Agenda

• Overview of Azure HPC
• Azure HBv3, NDv4
• Latest advances
• MVAPICH2-Azure on HBv3
• MVAPICH2-GDR on NDv4
• Performance Highlights
• Conclusion
NCCL on NDv4

NCCL AllReduce (w/o SHARP)

Message Size (bytes)

Bandwidth (GB/s)

NCCL AlltoAll

Message Size (bytes)

Bandwidth (GB/s)
NCCL at Scale on NDv4

NCCL AllReduce (w/o SHARP)

- 565 nodes (4,520 ranks)
- 1,571 nodes (12,568 ranks)

Message Size vs. Bandwidth (GB/s)

NCCL AllReduce w/ SHARP

- 128 nodes (1,024 ranks)
- 512 nodes (4,096 ranks)
- 998 nodes (7,984 ranks)

Message Size vs. Bandwidth (GB/s)
HBv3 Performance Advantage

OpenFOAM
- Motorbike 28M cells mesh
- Azure HBv3 VM instances (up to 7,680 MPI ranks)

Fluent v19.5
- F1 Race Car – 140 M
- Azure HBv3 VM instances (up to 15,104 MPI ranks)
Agenda

• Overview of Azure HPC
• Azure HBv3, NDv4
• Latest advances
• MVAPICH2-Azure on HBv3
• MVAPICH2-GDR on NDv4
• Performance Highlights

• Conclusion
• Supercomputer on Cloud is real!
• Azure HPC Cloud made into Top500, Graph500
• Cloud democratize Supercomputer
• High Performance middleware such as MVAPICH2 enables cutting edge technology
 • Deliver High Scalability and Performance
Resources

Getting Started
- High Performance Computing (HPC) on Azure

HPC VM Images
- Azure HPC VM Images
- GitHub Repository

HPC VM Series
- Azure VM sizes - HPC - Azure Virtual Machines

HPC VM Deployment
- Sample HPC VM deployment scripts
- Azure CycleCloud
- MUG '20 Tutorial

GPU VM Series
- Azure VM sizes - GPU - Azure Virtual Machines

Azure HPC Blogs
- Azure Compute - Microsoft Tech Community
We are Hiring!

jijos@microsoft.com
Thank you