NVIDIA.

UCC AND SHARP

MANJUNATH GORENTLA VENKATA, NVIDIA
DEVENDAR BUREDDY, NVIDIA

AGENDA

UCC Overview
API, Semantics, and Roadmap

SHARP

Unified Collective
Communication

Open-source project to provide an API and library implementation of
collective (group) communication operations

OUTLINE

Design challenges

Properties of the solution

APl Overview

Reference implementation and project status

Roadmap

4 <A NVIDIA.

UCC DESIGN CHALLENGES (1)

> Unified collective stack for HPC and DL/ML workloads

> Need to support a wide variety of semantics
> Need to optimize for different performance sensitives - latency, bandwidth, throughput
> Need for flexible resource scheduling and ordering model

> Unified collective stack for software and hardware transports

> Need for complex resource management - scheduling, sharing, and exhaustion

> Need to support multiple semantic differences - reliability, completion

5 <A NVIDIA.

UCC DESIGN CHALLENGES (2)

> Unify parallelism and concurrency
> Concurrency - progress of a collective and the computation

> Parallelism - progress of many independent collectives

> Unify execution models for CPU, GPU, and DPU collectives
> Two-way execution model - control operations are tightly integrated
> Do active progress, returns values, errors, and callbacks with less overhead
> One-way execution model - control operations are loosely integrated

> passive progress, and handle return values (GPU/DPUs)

6 <A NVIDIA.

UCC DESIGN PRINCIPLES: PROPERTIES WE WANT

Scalability and performance for key use-cases
> Enable efficient implementation for common cases in MPlI, OpenSHMEM and Al/ML
Extensible

> We cannot possibly cover all the options and features for all use cases

> We need the APl and semantics that is modular
Opt in-and-out

> If for a certain path some semantic is not applicable, we need a way to opt-out
Explicit APl and semantics over implicit

> Explicit -> implicit is easier than implicit -> explicit

Minimal API surface area

7 < NVIDIA.

UCC’S SOLUTION

Abstractions

> Abstract the resources required for collective operations
> Local: Library, Context, Endpoints

> Global: Teams

Operations

> Create/modify/destroy the resources

> Build, launch and finalize collectives

Properties

> Properties are preferences expressed by the user of the library and what the library actually provides has to be
queried

> Explicit way to request for optional features, semantics, and optimizations (opt-in or opt-out model)

> Provides an ability to express and request many cross-cutting features
8 < NVIDIA.

* API, ABSTRACTIONS, AND
gy O~ SEMANTICS

CONCEPTS

» Abstractions for Resources

> Collective Library

> Communication Context

> Teams

> Collective Operations

> Triggered Operations

10 <ANVIDIA.

UCC LIBRARY

An object to encapsulate resources related to the group
communication operations

Semantics

> ALl UCC operations should be invoked between the init and finalize operations.

> The library can be tailored to match the user requirements

> The user of the library can be parallel programming models (MPI, PGAS/OpenSHMEM, PyTorch) or applications

Operations

> Routines for initializing and finalizing the resources for the library.

11 <ANVIDIA.

@ingroup

dparblock
@return
nst ucc_lib_params_t *params,
st ucc_lib_config_h config,

ucc_lib_h *lib_p)

return ucc_init_version(UCC_API_MAJOR, UCC_API_MINOR, params, config,
lib_p);

Library Init C Interface

Properties:
Collectives LIBRARY

@ingroup
Thread Model
@brief

Collective Types

@parblock

Reduction Types

Synchronization Types

@endparblock

typedef struct ucc_lib_params {
uint64 t mask;
ucc_thread_mode_t thread_mode;
uint64_t coll_types;
uint64_t reduction_types;
ucc_coll_sync_type_t sync_type;
ucc_reduction_wrapper_t reduction_wrapper;

} ucc_lib_params_t;

PROPERTIES OF LIBRARY: THREAD MODEL

> UCC_LIB_THREAD_SINGLE:

> The user program cannot be multithreaded

> UCC_LIB_THREAD_FUNNELED:

> The user program may be multithreaded, however, only one thread should invoke the UCC interfaces

> UCC_LIB_THREAD_MULTIPLE:

> The user program can be multithreaded, and any any thread may invoke the UCC operations.

14 <A NVIDIA.

CONCEPTS

> Abstractions for Resources
> Collective Library

> Communication Context

> Teams

> Collective Operations

> Triggered Operations

15 <ANVIDIA.

COMMUNICATION CONTEXT (1)

An object to encapsulate local resource and express network
parallelism

> Context is created by ucc_context_create(), a local operation
> Contexts represents a local resource for group operations - injection queue, and/or network parallelism
> Example: software injection queues (network endpoints), hardware resources

> Context can be coupled with threads, processes or tasks

> A single MPI process can have multiple contexts

> A single thread (pthread or OMP thread) can be coupled with multiple contexts

16 <A NVIDIA.

COMMUNICATION CONTEXT (2)

An object to encapsulate local resource and express network
parallelism

> Context can be bound to a specific core, socket, or an accelerator
> Provides an ability to express affinity

> Context can be used to control resource sharing

> Multiple contexts per team (from same thread) can be supported
> Software and hardware collectives

> Optimize for bandwidth utilization

17 <A NVIDIA.

@ingroup

@parblock

@endparblock

@return

ucc_status_t ucc_context_create(ucc_lib_h 1ib_handle,

const ucc_context_params_t *params,
const ucc_context_config_h config,
ucc_context_h xcontext);

Context Create C Interface

PROPERTIES OF CONTEXT : CONTEXT TYPE

Customize for resource sharing and utilization

EXCLUSIVE
> The context participates in a single team
> So resources are exclusive to a single team
> The libraries can implement it as a lock-free implementation
SHARED
> The context can participate in multiple teams
> Resources are shared by multiple teams

> The library might be required to protect critical sections

19 <ANVIDIA.

CONCEPTS

> Abstractions for Resources
> Collective Library
> Communication Context

> Teams

> Collective Operations

> Triggered Operations

20 <ANVIDIA.

TEAMS

An object to encapsulate the resources required for group operations
such as collective communication operations.

> Created by processes, threads or tasks by calling ucc_team_create_post()

> A collective operation but no explicit synchronization among the processes or threads
> Non-blocking operation and only one active call at any given instance.
> Each process or thread passes local resource object (context)

> Achieve global agreement during the create operation

21 <ANVIDIA.

@ingroup

dparblock
eturn

ucc_status_t ucc_team_create_post(ucc_context_h *contexts,
uint32_t num_contexts,
const ucc_team_params_t *xteam_params,
ucc_team_h *new_team);

Team Create Interface

PROPERTIES: Teams

Ordering : All team members must invoke
collective in the same order?

Yes for MPl and No for TensorFlow and
Persistent collectives

Outstanding collectives

Can help with resource management
Should Endpoints be in a contiguous range ?
Synchronization Model

On_Entry, On_Exit, or On_Both - this
helps with global resource allocation

Datatype

Can be customized for contiguous,
strided, or non-contiguous datatypes

typedef struct ucc_team_params {

uinted t
ucc_post_ordering_t
uinte4 t

uinte4 t

uintée4 _t
ucc_ep_range_type_t
uinte4 t
ucc_coll_sync_type_t
ucc_team_oob coll t
ucc_team_p2p_conn_t
ucc_mem_map_params_t
ucc_ep_map_t
uintée4 t

} ucc_team_params_t;

mask;

ordering;
outstanding_colls;
€P;

xep_list;
ep_range;

team _size;
sync_type;
oob;
p2p_conn;
mem_params;
€p_map,

id;

CONCEPTS

> Abstractions for Resources
> Collective Library
> Communication Context

> Teams

> Collective Operations

> Triggered Operations

24 <A NVIDIA.

COLLECTIVE OPERATIONS: BUILDING BLOCKS

ucc_status_t ucc_collective_init(ucc_coll _op_args_tx coll_args,
ucc_coll _reqg_hx request, ucc_team_h team);

ucc_status_t ucc_collective post(ucc_coll _req _h request);

ucc_status_t ucc_collective_init_and_post(ucc_coll _op_args_tx coll_args,
ucc_coll_req_hx request,
ucc_team_h team);

ucc_status_t ucc_collective_finalize(ucc_coll _req_h request);

25 <A NVIDIA.

COLLECTIVE OPERATIONS: BUILDING BLOCKS (2)

Semantics

> Collective operations : ucc_collective_init(...) and ucc_collective_init_and_post(...)

>

>

>

Local operations: ucc_collective_post, test, and finalize

Initialize with wucc_collective_init(...)

>

Initializes the resources required for a particular collective operation, but does not post the operation

Completion

>

The test routine provides the status

Finalize

>

>

Releases the resources for the collective operation represented by the request

The post and wait operations are invalid after finalize

26

<A NVIDIA.

COLLECTIVE OPERATIONS: BUILDING BLOCKS (3)

> Blocking collectives:

> Can be implemented with Init_and_post and test+finalize

> Persistent Collectives:

> Can be implemented using the building blocks - init, post, test, and finalize
> Split-Phase

> Can be implemented with Init_and_post and test+finalize

27 <A NVIDIA.

CONCEPTS

> Abstractions for Resources
> Collective Library
> Communication Context

> Teams

> Collective Operations

> Triggered Operations

28 <ANVIDIA.

UCC EXECUTION ENGINE, EVENTS, AND TRIGGERED
OPERATIONS

Execution Engine

> |t is an execution context that supports event-driven network execution on the CUDA streams, CPU threads, and
DPU threads.

Events

> Library-generated events
> Examples: Completion of operation, launch of collective
> User-generated events
> Examples: Compute complete, Data-ready
Triggered Operations
> Triggered operations enable the posting of operations on an event.

> UCC supports triggering collective operations by library-generated and user-generated events.

> Team-level customization to enable/disable triggered operations

29 <A NVIDIA.

App App UuccC

. . Compute ot :
UCC Events: Interaction between a Theag COTimunication Lorary
User Thread and Event-driven UCC] 1 I
1. Application initializes the collective operation o, A @
omplte
2. When the application completes the compute, it posts \> o
the UCC_EVENT_COMPUTE_COMPLETE event to the @ | | Iy
execution engine' (...ucc_EvEri‘;:?é:ne;_L Eilco LETE) | _ _
3. The library thread polls the event queue and triggers
the operations that are related to the compute event. N
4. The library posts the UCC_EVENT_POST_COMPLETE QCCE"ENT°°LLE°T“’”°ST

" event to the event queue.
q @ Execujce @
5. On completion of the collective operation, the library Cpllective
posts UCC_EVENT_COLLECTIVE_COMPLETE event to the - N

comp letion event queue |\@/ENTCOLLECTIVECOMPLETE
4/ @

Execution
Engine with Queues

UCC SPECIFICATION

L
- o > f
o N h @ Gk P
> A b ke e
- = \q o Sy
- . - oy -
N Y - o

i

- ._...l._ S i

T .
SRR
-

AJ.-.' -

R

UCC SPECIFICATION: INTERFACES AND SEMANTICS FULLY

SPECIFIED

Specification available on the UCC GH
Specification is ahead of the code now

The version 1.0 is agreed by the working group and merged
into the master branch

Over 75 pages of detailed information about the interfaces
and semantics

Doxygen based documentation

Both pdf and html available

(JON)
Oy & | &

=/ ucc.pdf (page 2 of 75) v

ﬁ 3 B [

Unified Collective Communications (UCC) Library Specification 1
Design 2
2.0.1 ‘ComponentDiagramy = : : wm s : m o : s m i @@ s s @8 F BB B E S EEE L EE DS 2
Library Initialization and Finalization 3
Communication Context 4
Teams 5
Starting and Completing the Collectives 7
Execution Engine and Events 10
70:1 Triggered ‘Operations w : : w5 5 m ¢ 2 6 5 5 5 S ¢ 5 G & 2 ME S s F HE Sy 10
7.0.2 Interaction between an User Thread and Event-driven UCC 10
Module Documentation 12
8.1 Library initialization data-structures 12
8.1:1 Detailed Deseription:: = « : wm = 2 3 ¢ 5 65 28 @@ 5 & < F @@ EE P L @@ EE L 14
8.1.2 Data Structure Documentation 14
81:2:1. structiucc lib. params : = s : ¢ mos : mm i s me s mm i s m e ME S EE L 14

8.1.2.2 structucc_lib_attr. 14

8.1.3 Typedef Documentation 14
8131 wucc_lib_params_t 14

8119382 (icCulliD aBERIES: o i o & o s b @ 5 5w s o s s e b G s meR s o s s 15

8133 wcc lib h 15

8:1:3:4° wee. llib ieonfigs hs oz wov i h o i s s s e s s a e a s s e 15

8.1.4 Enumeration Type Documentation 15
8141 wucc_reduction_op_t. 15

8i1:422 wec icoll typeiiti v ¢ s w5 s 5w s mm s BE @A MMk WS 16

8.1.43 ucc_datatype t 16

8144 wucc thredd mode T: : w o 5 s mw i s BE s B e B EE WS 17

8.1.45 ucc_coll _sync_type t. 17

32

<A NVIDIA.

» 2 |
» . ‘
. »
El
2 ® ..

UCC COMPONENT
ARCHITECTURE AND
IMPLEMENTATION

UCC REFERENCE IMPLEMENTATION: COMPONENT DIAGRAM

Applications

[Open MPI / MPICH } [Ope”SHF',\gEA'\g LG } {PyTorch / Tensor Flow} [Legion / Parsec } [MVAPICH }
(UCC_internal API)
CORE Component
(S /
4 N\ \\
Algorithm , -
[Prigmi’:ives } Basic OPT UCG Vendor Ierar_?-ggkaware
CL CL CL CL
P N Schedule
O Topology Builder Deadline-based |
O N J (UCC_TL_internal API) task
(N\
= CONTEXT . N - < . § _ R})
Storage g
N J h
b UCP NCCL SHARP SHARED Al
Memory Schedule Engine
TL TL TL
TL Execution
UCS Engine Reactive
) Engine
(S / (& / (& / (& / N\ /)

A A4 ¥ A 4 A d

Verbs UCX NCCL Shared Memory SHARP/Hardware Collectives

UCC: REFERENCE IMPLEMENTATION STATUS

P master - P2 OO0y Go to file Add file m About @

Unified Communication Collectives
e Sergei-Lebedev Merge pull reguest #224 from Sergei-Lebedeviopic/cu - 2d278bc 17 heurs ago () 504 comemits Library

c TEST: Enabled clang-format (#188) 20 days age @ Readm

github EE: event context ops 3 months age $ BSD .
config UTIL: control profiing per component 6 days ag

docs DOCS: Componenn diagram update (#216) 6 days 80 Releases

$’C MC JOA: fp16 reduce g . ”'__‘ A
test ITIL irol p 3§ m ent G cays ag

tools TOOLS: fixing warmup in perftest 7 days ag p‘ckms

clang-format clang-format: change options for declarations, ¢o erts, and avo) months agoe NS packne

(¥ h your 1rst package
clang-tidy TEST ang t d and clng-lidy 9 months g
grignore TEST: erabled extended ¢ 2 months ag

Contributors 1
CONTRIBUTING.md Update CONTRIBUTING.md 11 months ago

LICENSE Update LICENSE 11 months age . g . ’ '
Makefile.am TEST: Duld mgs tests if mes found 27 days ag ﬁ o

NEWS BUILD: Updates NEWS 3 months ag

README. md Update README md) months ag Languages

avtogen.sh Doxygen: Adding doxygen refated nfrastructure 3 months ag

® Ceoe G0 AaN e C.
. L) 2) N4 2 8% e Cula’
configure.ac UTIL: control profding per component 6 days ago
Shell © 2% ® Makefle C ¢
cuda_it.sh CORE: vector reduction 4 months ag

README md

Unified Collective Communications (UCC)

Unified Collective
Communication

UCC is a collective communication operations AP1 and lbrary that is flexible, complete, and feature-rich for

current and emerging programming medels and runtimes

e Design Goals

a APl

UCC RELEASE ROADMAP

>

UCC V1.0 EXPECTED TO RELEASE Q3 2021

v0.1.0 Early Release (Branched Q1 2021)

Support for most collectives required by parallel programming
models

Many algorithms to support various data sizes, types, and
system configurations

Support for CPU and GPU collectives
Testing infrastructure
> Unit tests, profiling, and performance tests

Support for MPl and PyTorch (via Third-party plugin)

v1.0 Stable Release (Expected SC 2021)

> Incorporate feedback from v0.1.0 release

> Support for OpenSHMEM with one-sided collectives and active
sets

> Hardware collectives - support for SHARP

> Support for more optimized collectives (hierarchical/
reactive)

> Infrastructure for pipelining, task management , and
customization (algorithm selection)

> Persistent collectives

v1.x Series: Focus on stability, performance and scalability
> Support for DPUs and DPAs

> Partitioned collectives

> OpenSHMEM Teams and nonblocking collectives

37 <A NVIDIA.

CONTRIBUTIONS ARE WELCOME!

> What contributions are welcomed ?

> Everything from design, documentation, code, testing infrastructure, code reviews ...

> How to participate ?
> WG Meetings : https://github.com/openucx/ucc/wiki/UCF-Collectives-Working-Group
> GitHUB: https://github.com/openucx/ucc
> Slack channel: Ask for an invite

> Mailing list: ucx-group@elist.ornl.gov

38 <A NVIDIA.

mailto:ucx-group@elist.ornl.gov

4 Ta_ . . - -
o B 00 0 ° . A 2 $ 3
» » s
. -, y
» . 5 ..0..) ; R ’
.
s @ . b o
..‘ ..‘ *e » " y "
» -
. » 2 » .
-
o ¢ . .. O . -
. .

. -
* .+ SHARP: IN:NETWORK SCALABLE STREAMING HIERARCHICAL

AGGREGATION AND REDUCTION PROTOCOL

IN NETWORK COMPUTING

Offload, Co-design and In-network Computing

» (Offload - Have someone else do the work

> Move functionality from the CPU to the network

> Co-Design - Re-thinking the boundaries between different components

> Move functionality from SW to HW / end node to switches

> In-Network Computing - Move traditionally compute operations to the network

> A type of Co-Design

40 <A NVIDIA.

SCALABLE HIERARCHICAL AGGREGATION AND REDUCTION
PROTOCOL (SHARP)
S ‘AH P

Scalable Hierarchical
Aggregation and

Multiple simultaneous outstanding operations Reduction Protocol

In-network Tree based aggregation mechanism

For HPC (MPI / SHMEM) and Distributed Machine Learning applications

Scalable High Performance Collective Offload Aggregated Aggregated
Data Result

Barrier, Reduce, All-Reduce, Broadcast and more
Switch \ ‘A‘ﬂ P Switch \ ‘A‘ﬂ P

Aggregated
Result

Sum, Min, Max, Min-loc, max-loc, OR, XOR, AND

Integer and Floating-Point, 16/32/64 bits

41 <A NVIDIA.

SHARP 2.0

* SHARP v2.0 HDR Quantum switch

* Support for small vector reductions

* Improved latency reduction for small vectors (LLT - low latency trees)

* Support for large vector reductions - perform reductions at line rate (SAT - streaming aggregation trees)
* Support for two simultaneous streaming operations per switch (limited resource)

* Works together with GPUDirect RDMA

* SAT Kkiller app is distributed, synchronous deep learning workloads
* Distributed stochastic gradient descent

* Limiter is large vector allreduce / bandwidth - gradient averaging between nodes

* Mlperf - v1.0 - Record-Setting NVIDIA Performance with SHARP

NVIDIA.

https://developer.nvidia.com/blog/mlperf-v1-0-training-benchmarks-insights-into-a-record-setting-performance/

SHARP

New Features
SHARP for Cloud

> UCX for in-band communication between daemons(sharpd/am)
> PKEY support

> GRH support
Exclusive lock
Event reporting
Connection keep alive between Daemons

Topology API

43 <A NVIDIA.

NVIDIA.

