
MANJUNATH GORENTLA VENKATA, NVIDIA

DEVENDAR BUREDDY, NVIDIA

UCC AND SHARP

2

UCC Overview
API, Semantics, and Roadmap

SHARP

AGENDA

3

Open-source project to provide an API and library implementation of
collective (group) communication operations

4

OUTLINE

Design challenges

Properties of the solution

API Overview

Reference implementation and project status

Roadmap

5

UCC DESIGN CHALLENGES (1)

Unified collective stack for HPC and DL/ML workloads

Need to support a wide variety of semantics

Need to optimize for different performance sensitives - latency, bandwidth, throughput

Need for flexible resource scheduling and ordering model

Unified collective stack for software and hardware transports

Need for complex resource management - scheduling, sharing, and exhaustion

Need to support multiple semantic differences – reliability, completion

6

UCC DESIGN CHALLENGES (2)

Unify parallelism and concurrency

Concurrency – progress of a collective and the computation

Parallelism – progress of many independent collectives

Unify execution models for CPU, GPU, and DPU collectives

Two-way execution model – control operations are tightly integrated

Do active progress, returns values, errors, and callbacks with less overhead

One-way execution model – control operations are loosely integrated

passive progress, and handle return values (GPU/DPUs)

7

UCC DESIGN PRINCIPLES: PROPERTIES WE WANT

Scalability and performance for key use-cases

Enable efficient implementation for common cases in MPI, OpenSHMEM and AI/ML

Extensible

We cannot possibly cover all the options and features for all use cases

We need the API and semantics that is modular

Opt in-and-out

If for a certain path some semantic is not applicable, we need a way to opt-out

Explicit API and semantics over implicit

Explicit -> implicit is easier than implicit -> explicit

Minimal API surface area

8

UCC’S SOLUTION
Abstractions

Abstract the resources required for collective operations

Local: Library, Context, Endpoints

Global: Teams

Operations

Create/modify/destroy the resources

Build, launch and finalize collectives

Properties

Properties are preferences expressed by the user of the library and what the library actually provides has to be
queried

Explicit way to request for optional features, semantics, and optimizations (opt-in or opt-out model)

Provides an ability to express and request many cross-cutting features

9

API, ABSTRACTIONS, AND
SEMANTICS

10

CONCEPTS

Abstractions for Resources

Collective Library

Communication Context

Teams

Collective Operations

Triggered Operations

11

UCC LIBRARY

Semantics

All UCC operations should be invoked between the init and finalize operations.

The library can be tailored to match the user requirements

The user of the library can be parallel programming models (MPI, PGAS/OpenSHMEM, PyTorch) or applications

Operations

Routines for initializing and finalizing the resources for the library.

An object to encapsulate resources related to the group
communication operations

12

Library Init C Interface

13

Properties:
Collectives LIBRARY

Thread Model

Collective Types

Reduction Types

Synchronization Types

14

PROPERTIES OF LIBRARY: THREAD MODEL

UCC_LIB_THREAD_SINGLE:

The user program cannot be multithreaded

UCC_LIB_THREAD_FUNNELED:

The user program may be multithreaded, however, only one thread should invoke the UCC interfaces

UCC_LIB_THREAD_MULTIPLE:

The user program can be multithreaded, and any any thread may invoke the UCC operations.

15

CONCEPTS

Abstractions for Resources

Collective Library

Communication Context

Teams

Collective Operations

Triggered Operations

16

COMMUNICATION CONTEXT (1)

Context is created by ucc_context_create(), a local operation

Contexts represents a local resource for group operations - injection queue, and/or network parallelism

Example: software injection queues (network endpoints), hardware resources

Context can be coupled with threads, processes or tasks

A single MPI process can have multiple contexts

A single thread (pthread or OMP thread) can be coupled with multiple contexts

An object to encapsulate local resource and express network
parallelism

17

COMMUNICATION CONTEXT (2)

Context can be bound to a specific core, socket, or an accelerator

Provides an ability to express affinity

Context can be used to control resource sharing

Multiple contexts per team (from same thread) can be supported

Software and hardware collectives

Optimize for bandwidth utilization

An object to encapsulate local resource and express network
parallelism

18

Context Create C Interface

19

PROPERTIES OF CONTEXT : CONTEXT TYPE

EXCLUSIVE

The context participates in a single team

So resources are exclusive to a single team

The libraries can implement it as a lock-free implementation

SHARED

The context can participate in multiple teams

Resources are shared by multiple teams

The library might be required to protect critical sections

Customize for resource sharing and utilization

20

CONCEPTS

Abstractions for Resources

Collective Library

Communication Context

Teams

Collective Operations

Triggered Operations

21

TEAMS

Created by processes, threads or tasks by calling ucc_team_create_post()

A collective operation but no explicit synchronization among the processes or threads

Non-blocking operation and only one active call at any given instance.

Each process or thread passes local resource object (context)

Achieve global agreement during the create operation

An object to encapsulate the resources required for group operations
such as collective communication operations.

An object to

22

Team Create Interface

23

PROPERTIES: Teams

Ordering : All team members must invoke
collective in the same order?

Yes for MPI and No for TensorFlow and
Persistent collectives

Outstanding collectives

Can help with resource management

Should Endpoints be in a contiguous range ?

Synchronization Model

On_Entry, On_Exit, or On_Both – this
helps with global resource allocation

Datatype

Can be customized for contiguous,
strided, or non-contiguous datatypes

24

CONCEPTS

Abstractions for Resources

Collective Library

Communication Context

Teams

Collective Operations

Triggered Operations

25

COLLECTIVE OPERATIONS: BUILDING BLOCKS

26

COLLECTIVE OPERATIONS: BUILDING BLOCKS (2)

Semantics

Collective operations : ucc_collective_init(…) and ucc_collective_init_and_post(…)

Local operations: ucc_collective_post, test, and finalize

Initialize with ucc_collective_init(…)

Initializes the resources required for a particular collective operation, but does not post the operation

Completion

The test routine provides the status

Finalize

Releases the resources for the collective operation represented by the request

The post and wait operations are invalid after finalize

27

COLLECTIVE OPERATIONS: BUILDING BLOCKS (3)

Blocking collectives:

Can be implemented with Init_and_post and test+finalize

Persistent Collectives:

Can be implemented using the building blocks - init, post, test, and finalize

Split-Phase

Can be implemented with Init_and_post and test+finalize

28

CONCEPTS

Abstractions for Resources

Collective Library

Communication Context

Teams

Collective Operations

Triggered Operations

29

UCC EXECUTION ENGINE, EVENTS, AND TRIGGERED
OPERATIONS

Execution Engine

It is an execution context that supports event-driven network execution on the CUDA streams, CPU threads, and
DPU threads.

Events

Library-generated events

Examples: Completion of operation, launch of collective

User-generated events

Examples: Compute complete, Data-ready

Triggered Operations

Triggered operations enable the posting of operations on an event.

UCC supports triggering collective operations by library-generated and user-generated events.

Team-level customization to enable/disable triggered operations

30

1. Application initializes the collective operation

2. When the application completes the compute, it posts
the UCC_EVENT_COMPUTE_COMPLETE event to the
execution engine.

3. The library thread polls the event queue and triggers
the operations that are related to the compute event.

4. The library posts the UCC_EVENT_POST_COMPLETE
event to the event queue.

5. On completion of the collective operation, the library
posts UCC_EVENT_COLLECTIVE_COMPLETE event to the
completion event queue.

UCC Events: Interaction between a
User Thread and Event-driven UCC

App
Communication

Thread

App
Compute
Thread

UCC
Library
Thread

Execution
Engine with Queues

Execute
Collective

UCC_EVENT_COLLECTIVE_COMPLETE

UCC_EVENT_COLLECTIVE_POST

ucc_ee_set_event
(…UCC_EVENT_COMPUTE_COMPLETE)

Compute

ucc_collective_init()

ucc_collective_triggered_post()

1

2

3 4

5

31

UCC SPECIFICATION

32

UCC SPECIFICATION: INTERFACES AND SEMANTICS FULLY
SPECIFIED

Specification available on the UCC GH

Specification is ahead of the code now

The version 1.0 is agreed by the working group and merged
into the master branch

Over 75 pages of detailed information about the interfaces
and semantics

Doxygen based documentation

Both pdf and html available

33

UCC COMPONENT
ARCHITECTURE AND
IMPLEMENTATION

34

UCC REFERENCE IMPLEMENTATION: COMPONENT DIAGRAM

UCX

UCP
TL

Basic
CL

UCC_TL_internal API

Schedule
Builder

Hierarchy-aware
Task

Schedule
Execution
Engine

Deadline-based
task

Hierarchical
Engine

Reactive
Engine

CONTEXT
Storage

Topology

Algorithm
Primitives

CORE Component

UCC_internal API

UC
C

Open MPI / MPICH OpenSHMEM / UPC /
PGAS PyTorch / Tensor Flow

SHARP/Hardware CollectivesVerbs

Legion / Parsec

Applications

MVAPICH

Shared Memory

NCCL
TL

UCS

UCC Services

OPT
CL

UCG
CL

Vendor
CL

SHARP
TL

SHARED
Memory

TL

NCCL

35

UCC: REFERENCE IMPLEMENTATION STATUS

36

UCC RELEASE ROADMAP

37

UCC V1.0 EXPECTED TO RELEASE Q3 2021
v0.1.0 Early Release (Branched Q1 2021)

Support for most collectives required by parallel programming
models

Many algorithms to support various data sizes, types, and
system configurations

Support for CPU and GPU collectives

Testing infrastructure

Unit tests, profiling, and performance tests

Support for MPI and PyTorch (via Third-party plugin)

v1.0 Stable Release (Expected SC 2021)

Incorporate feedback from v0.1.0 release

Support for OpenSHMEM with one-sided collectives and active
sets

Hardware collectives - support for SHARP

Support for more optimized collectives (hierarchical/
reactive)

Infrastructure for pipelining, task management , and
customization (algorithm selection)

Persistent collectives

v1.x Series: Focus on stability, performance and scalability

Support for DPUs and DPAs

Partitioned collectives

OpenSHMEM Teams and nonblocking collectives

38

CONTRIBUTIONS ARE WELCOME!

What contributions are welcomed ?

Everything from design, documentation, code, testing infrastructure, code reviews …

How to participate ?

WG Meetings : https://github.com/openucx/ucc/wiki/UCF-Collectives-Working-Group

GitHUB: https://github.com/openucx/ucc

Slack channel: Ask for an invite

Mailing list: ucx-group@elist.ornl.gov

mailto:ucx-group@elist.ornl.gov

39

SHARP: IN-NETWORK SCALABLE STREAMING HIERARCHICAL
AGGREGATION AND REDUCTION PROTOCOL

40

IN NETWORK COMPUTING

Offload – Have someone else do the work

Move functionality from the CPU to the network

Co-Design – Re-thinking the boundaries between different components

Move functionality from SW to HW / end node to switches

In-Network Computing – Move traditionally compute operations to the network

A type of Co-Design

Offload, Co-design and In-network Computing

41

SCALABLE HIERARCHICAL AGGREGATION AND REDUCTION
PROTOCOL (SHARP)

In-network Tree based aggregation mechanism

Multiple simultaneous outstanding operations

For HPC (MPI / SHMEM) and Distributed Machine Learning applications

Scalable High Performance Collective Offload

Barrier, Reduce, All-Reduce, Broadcast and more

Sum, Min, Max, Min-loc, max-loc, OR, XOR, AND

Integer and Floating-Point, 16/32/64 bits

Data
Aggregated

Aggregated
Result

Aggregated
Result

Data

Switch Switch

Switch

HostHostHost Host Host

42

SHARP V2SHARP 2.0FEATURES
• SHARP v2.0 HDR Quantum switch

• Support for small vector reductions

• Improved latency reduction for small vectors (LLT – low latency trees)

• Support for large vector reductions – perform reductions at line rate (SAT – streaming aggregation trees)

• Support for two simultaneous streaming operations per switch (limited resource)

• Works together with GPUDirect RDMA

• SAT killer app is distributed, synchronous deep learning workloads

• Distributed stochastic gradient descent

• Limiter is large vector allreduce / bandwidth – gradient averaging between nodes

• Mlperf – v1.0 - Record-Setting NVIDIA Performance with SHARP

• https://developer.nvidia.com/blog/mlperf-v1-0-training-benchmarks-insights-into-a-record-setting-performance/
• etting NVIDIA Performance

https://developer.nvidia.com/blog/mlperf-v1-0-training-benchmarks-insights-into-a-record-setting-performance/

43

SHARP

SHARP for Cloud

UCX for in-band communication between daemons(sharpd/am)

PKEY support

GRH support

Exclusive lock

Event reporting

Connection keep alive between Daemons

Topology API

New Features

