

Overview of the MVAPICH Project: Latest Status and Future Roadmap

MVAPICH2 User Group (MUG) Conference

by

Dhabaleswar K. (DK) Panda

The Ohio State University

E-mail: panda@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~panda

High-End Computing (HEC): PetaFlop to ExaFlop

Expected to have an ExaFlop system in 2021-2022!

Network Based Computing Laboratory

MVAPICH User Group Conference (MUG) 2021

Supporting Programming Models for Multi-Petaflop and Exaflop Systems: Challenges

Application Kernels/Applications (HPC and DL)

Middleware

Programming Models MPI, PGAS (UPC, Global Arrays, OpenSHMEM), CUDA, OpenMP, OpenACC, Hadoop, Spark (RDD, DAG), TensorFlow, PyTorch, etc.

Communication Library or Runtime for Programming Models Performance **Scalability Energy-**I/O and Fault **Point-to-point Collective Synchronization** Communication Communication and Locks **Awareness File Systems** Tolerance Resilience **Networking Technologies** Multi-/Many-core Accelerators (InfiniBand, Ethernet, **Architectures** (GPU and FPGA) **RoCE, Omni-Path, and Slingshot)**

Co-Design

Opportunities

and Challenges

across Various

Layers

Designing (MPI+X) at Exascale

- Scalability for million to billion processors
 - Support for highly-efficient inter-node and intra-node communication (both two-sided and one-sided)
 - Scalable job start-up
 - Low memory footprint
- Scalable Collective communication
 - Offload
 - Non-blocking
 - Topology-aware
- Balancing intra-node and inter-node communication for next generation nodes (128-1024 cores)
 - Multiple end-points per node
- Support for efficient multi-threading
- Integrated Support for Accelerators (GPGPUs and FPGAs)
- Fault-tolerance/resiliency
- QoS support for communication and I/O
- Support for Hybrid MPI+PGAS programming (MPI + OpenMP, MPI + UPC, MPI + OpenSHMEM, MPI+UPC++, CAF, ...)
- Virtualization
- Energy-Awareness

Overview of the MVAPICH2 Project

- High Performance open-source MPI Library
- Support for multiple interconnects
 - InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE), and AWS EFA
- Support for multiple platforms
 - x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)
- Started in 2001, first open-source version demonstrated at SC '02
- Supports the latest MPI-3.1 standard
- <u>http://mvapich.cse.ohio-state.edu</u>
- Additional optimized versions for different systems/environments:
 - MVAPICH2-X (Advanced MPI + PGAS), since 2011
 - MVAPICH2-GDR with support for NVIDIA GPGPUs, since 2014
 - MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014
 - MVAPICH2-Virt with virtualization support, since 2015
 - MVAPICH2-EA with support for Energy-Awareness, since 2015
 - MVAPICH2-Azure for Azure HPC IB instances, since 2019
 - MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019
- Tools:
 - OSU MPI Micro-Benchmarks (OMB), since 2003
 - OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

- Used by more than 3,200 organizations in 89 countries
- More than 1.43 Million downloads from the OSU site directly
- Empowering many TOP500 clusters (June '21 ranking)
 - 4th, 10,649,600-core (Sunway TaihuLight) at NSC, Wuxi, China
 - 10th, 448, 448 cores (Frontera) at TACC
 - 20th, 288,288 cores (Lassen) at LLNL
 - 31st, 570,020 cores (Nurion) in South Korea and many others
- Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, OpenHPC, and Spack)
- Partner in the 10th ranked TACC Frontera system
- Empowering Top500 systems for more than 15 years

MVAPICH2 Release Timeline and Downloads

Architecture of MVAPICH2 Software Family for HPC and DL/ML

High Performance Parallel Programming Models					
Message Passing Interface	PGAS	Hybrid MPI + X			
(MPI)	(UPC, OpenSHMEM, CAF, UPC++)	(MPI + PGAS + OpenMP/Cilk)			

* Upcoming

Production Quality Software Design, Development and Release

- Rigorous Q&A procedure before making a release
 - Exhaustive unit testing
 - Various test procedures on diverse range of platforms and interconnects
 - Test 19 different benchmarks and applications including, but not limited to
 - OMB, IMB, MPICH Test Suite, Intel Test Suite, NAS, Scalapak, and SPEC
 - Spend about 18,000 core hours per commit
 - Performance regression and tuning
 - Applications-based evaluation
 - Evaluation on large-scale systems
- All versions (alpha, beta, RC1 and RC2) go through the above testing

MVAPICH2 Software Family

Requirements	Library
MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and, RoCE (v1/v2)	MVAPICH2
Optimized Support for Microsoft Azure Platform with InfiniBand	MVAPICH2-Azure
Advanced MPI features/support (UMR, ODP, DC, Core-Direct, SHArP, XPMEM), OSU INAM (InfiniBand Network Monitoring and Analysis),	MVAPICH2-X
Advanced MPI features (SRD and XPMEM) with support for Amazon Elastic Fabric Adapter (EFA)	MVAPICH2-X-AWS
Optimized MPI for clusters with NVIDIA GPUs and for GPU-enabled Deep Learning Applications	MVAPICH2-GDR
Energy-aware MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and, RoCE (v1/v2)	MVAPICH2-EA
MPI Energy Monitoring Tool	OEMT
InfiniBand Network Analysis and Monitoring	OSU INAM
Microbenchmarks for Measuring MPI and PGAS Performance	ОМВ

MVAPICH2 2.3.6

- Released on 05/11/2021
- Major Features and Enhancements
 - Support collective offload using Mellanox's SHARP for Reduce and Bcast
 - Enhanced tuning framework for Reduce and Bcast using SHARP
 - Enhanced performance for UD-Hybrid code
 - Add multi-rail support for UD-Hybrid code
 - Enhanced performance for shared-memory collectives
 - Enhanced job-startup performance for flux job launcher
 - Add support in mpirun_rsh to use srun daemons to launch jobs
 - Add support in mpirun_rsh to specify processes per node using '-ppn' option
 - Use PMI2 by default when SLURM is selected as process manager
 - Add support to use aligned memory allocations for multi-threaded applications
 - Architecture detection and enhanced point-to-point tuning for Oracle BM.HPC2 cloud shape
 - Enhanced collective tuning for Frontera@TACC and Expanse@SDSC
 - Add support for GCC compiler v11
 - Add support for Intel IFX compiler
 - Update hwloc v1 code to v1.11.14 & hwloc v2 code to v2.4.2

Highlights of MVAPICH2 2.3.6-GA Release

- Support for highly-efficient inter-node and intra-node communication
- Scalable Start-up
- Collective offload using Mellanox's SHARP support
- Performance Engineering with MPI_T

AMD Milan + HDR 200

Intra-Node CPU Point-to-Point

Inter-Node CPU Point-to-Point

AMD EPYC 7V13 64-Core Processor, Mellanox ConnectX-6 HDR HCA

Startup Performance on TACC Frontera

- MPI_Init takes 31 seconds on 229,376 processes on 4,096 nodes
- All numbers reported with 56 processes per node

New designs available since MVAPICH2-2.3.4

Performance of Collectives with SHARP on TACC Frontera

Number of nodes

Message size

Optimized SHARP designs in MVAPICH2-X

Up to 9X performance improvement with SHARP over MVAPICH2-X default for 1ppn MPI_Barrier, **6X** for 1ppn MPI_Reduce and **5X** for 1ppn MPI_Allreduce

B. Ramesh , K. Suresh , N. Sarkauskas , M. Bayatpour , J. Hashmi , H. Subramoni , and D. K. Panda, Scalable MPI Collectives using SHARP: Large Scale Performance Evaluation on the TACC Frontera System, ExaMPI2020 - Workshop on Exascale MPI 2020, Nov 2020.

Optimized Runtime Parameters: MV2_ENABLE_SHARP = 1

Performance Engineering Applications using MVAPICH2 and TAU

- Enhance existing support for MPI_T in MVAPICH2 to expose a richer set of performance and control variables
- Get and display MPI Performance Variables (PVARs) made available by the runtime in TAU
- Control the runtime's behavior via MPI Control Variables (CVARs)
- Introduced support for new MPI_T based CVARs to MVAPICH2
 - MPIR_CVAR_MAX_INLINE_MSG_SZ, MPIR_CVAR_VBUF_POOL_SIZE, MPIR_CVAR_VBUF_SECONDARY_POOL_SIZE
- TAU enhanced with support for setting MPI_T CVARs in a non-interactive mode for uninstrumented applications
- S. Ramesh, A. Maheo, S. Shende, A. Malony, H. Subramoni, and D. K. Panda, *MPI Performance Engineering with the MPI Tool Interface: the Integration of MVAPICH and TAU, EuroMPI/USA '17, Best Paper Finalist*
- More details in Sameer Shende's talk (later today)

Name 🛆	MaxValue	MinValue	MeanValue	Std. Dev.	NumSamples	Total
mv2_total_vbuf_memory (Total amount of memory in bytes used for VBUFs)	3,313,056	3,313,056	3,313,056	0	1	3,313,056
mv2_ud_vbuf_allocated (Number of UD VBUFs allocated)	0	0	0	0	0	0
mv2_ud_vbuf_available (Number of UD VBUFs available)	0	0	0	0	0	0
mv2_ud_vbuf_freed (Number of UD VBUFs freed)	0	0	0	0	0	0
mv2_ud_vbuf_inuse (Number of UD V8UFs inuse)	0	0	0	0	0	0
mv2_ud_vbuf_max_use (Maximum number of UD VBUFs used)	0	0	0	0	0	0
mv2_vbuf_allocated (Number of VBUFs allocated)	320	320	320	0	1	320
mv2_vbuf_available (Number of VBUFs available)	255	255	255	0	1	255
mv2_vbuf_freed (Number of VBUFs freed)	25,545	25,545	25,545	0	1	25,545
mv2_vbuf_inuse (Number of VBUFs inuse)	65	65	65	0	1	65
mv2_vbuf_max_use (Maximum number of VBUFs used)	65	65	65	0	1	65
num_calloc_calls (Number of MPIT_calloc calls)	89	89	89	0	1	85

VBUF usage with CVAR based tuning as displayed by ParaProf

TAU: ParaProf: Context E	Events for: node 0 - bt-m	z.E.vbuf_pool_16.	1k.ppk			
Name 🛆	MaxValue	MinValue	MeanValue	Std. Dev.	NumSamp	Total
mv2_total_vbuf_memory (Total amount of memory in bytes used for VBUFs)	1,815,056	1,815,056	1,815,056	0	1	1,815,056
mv2_ud_vbuf_allocated (Number of UD VBUFs allocated)	0	0	0	0	0	0
mv2_ud_vbuf_available (Number of UD VBUFs available)	0	0	0	0	0	0
mv2_ud_vbuf_freed (Number of UD VBUFs freed)	0	0	0	0	0	0
mv2_ud_vbuf_inuse (Number of UD VBUFs inuse)	0	0	0	0	0	0
mv2_ud_vbuf_max_use (Maximum number of UD VBUFs used)	0	0	0	0	0	0
mv2_vbuf_allocated (Number of VBUFs allocated)	160	160	160	0	1	160
mv2_vbuf_available (Number of VBUFs available)	94	94	94	0	1	94
mv2_vbuf_freed (Number of VBUFs freed)	5,479	5,479	5,479	0	1	5,479
mv2_vbuf_inuse (Number of VBUFs inuse)	66	66	66	0	1	66

MVAPICH2 Upcoming Features

- Support for Rockport Networks adapter
- Java Binding for MVAPICH2
- Integration with Sandia SST for large-scale network simulation

Inter-node point-to-point Latency and Bandwidth (Rockport Networks)

Small message Latency

Uni-directional Bandwidth

Medium/Large message Latency

Bi-Directional Bandwidth

- MVAPICH2 delivers around 3.0 microsec latency for small messages
- Using multiple QPs gives up to 3.9x reduction in latency

MVAPICH2-4-QP delivers

- 10229 MB/sec peak unidirectional bandwidth
- 20165 MB/Sec peak bidirectional bandwidth

More details on today's talk from Rockport Networks

Java Binding in MVAPICH2: Preliminary Results Bcast Performance (8 processes)

More details in tomorrow's talk by Aamir Shafi

MVAPICH2 + SST Integration - Understanding the impact of topology

- Large scale simulation of MPI_Alltoall using OMB
- Impact of topology on Alltoall collective implemented in MVAPICH2

topology {
name = fat_tree
<pre>leaf_switches_per_subtree = 64</pre>
<pre>agg_switches_per_subtree = 64</pre>
concentration = <mark>6</mark> 4
up_ports_per_leaf_switch = <mark>64</mark>
down_ports_per_agg_switch = <mark>6</mark> 4
num_agg_subtrees = 2
num_core_switches = <mark>6</mark> 4
up_ports_per_agg_switch = <mark>6</mark> 4
<pre>down_ports_per_core_switch = 128</pre>

topology {
<pre>name = dragonfly</pre>
geometry = [32,9]
h = 16
<pre>inter_group = circulant</pre>
concentration = 16
}

More details in tomorrow's talk

By Kaushik Kandadi Suresh

MVAPICH2 Software Family

Requirements	Library
MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and, RoCE (v1/v2)	MVAPICH2
Optimized Support for Microsoft Azure Platform with InfiniBand	MVAPICH2-Azure
Advanced MPI features/support (UMR, ODP, DC, Core-Direct, SHArP, XPMEM), OSU INAM (InfiniBand Network Monitoring and Analysis)	MVAPICH2-X
Advanced MPI features (SRD and XPMEM) with support for Amazon Elastic Fabric Adapter (EFA)	MVAPICH2-X-AWS
Optimized MPI for clusters with NVIDIA GPUs and for GPU-enabled Deep Learning Applications	MVAPICH2-GDR
Energy-aware MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and, RoCE (v1/v2)	MVAPICH2-EA
MPI Energy Monitoring Tool	OEMT
InfiniBand Network Analysis and Monitoring	OSU INAM
Microbenchmarks for Measuring MPI and PGAS Performance	ОМВ

Overview of Some of the MVAPICH2-X Features

- Direct Connect (DC) Transport
- Cooperative Rendezvous Protocol
- Asynchronous Progress
- XPMEM-based Collectives

Impact of DC Transport Protocol on Neuron

Neuron with YuEtAl2012

Overhead of RC protocol for connection establishment and communication

- Up to 76% benefits over MVAPICH2 for Neuron using Direct Connected transport protocol at scale
 - VERSION 7.6.2 master (f5a1284) 2018-08-15
- Numbers taken on bbpv2.epfl.ch
 - Knights Landing nodes with 64 ppn
 - ./x86_64/special -mpi -c stop_time=2000 -c is_split=1 parinit.hoc
 - Used "runtime" reported by execution to measure performance
- Environment variables used
 - MV2_USE_DC=1
 - MV2_NUM_DC_TGT=64
 - MV2_SMALL_MSG_DC_POOL=96
 - MV2_LARGE_MSG_DC_POOL=96
 - MV2_USE_RDMA_CM=0

Available from MVAPICH2-X 2.3rc2 onwards

More details in talk

"Building Brain Circuits: Experiences with shuffling terabytes of data over MPI", by Matthias Wolf at MUG'20

https://www.youtube.com/watch?v=TFi8O3-Hznw

Network Based Computing Laboratory

22

Cooperative Rendezvous Protocols

- Use both sender and receiver CPUs to progress communication concurrently
- Dynamically select rendezvous protocol based on communication primitives and sender/receiver availability (load balancing)
- Up to 2x improvement in large message latency and bandwidth
- Up to 19% improvement for Graph500 at 1536 processes

Cooperative Rendezvous Protocols for Improved Performance and Overlap

S. Chakraborty, M. Bayatpour, J Hashmi, H. Subramoni, and DK Panda,

SC '18 (Best Student Paper Award Finalist)

Platform: 2x14 core Broadwell 2680 (2.4 GHz) Mellanox EDR ConnectX-5 (100 GBps) Baseline: MVAPICH2X-2.3rc1, Open MPI v3.1.0

Available in MVAPICH2-X 2.3rc2

Benefits of the New Asynchronous Progress Design: Broadwell + InfiniBand

P3DFFT

High Performance Linpack (HPL)

Up to 33% performance improvement in P3DFFT application with <u>448 processes</u> Up to 29% performance improvement in HPL application with <u>896 processes</u>

A. Ruhela, H. Subramoni, S. Chakraborty, M. Bayatpour, P. Kousha, and D.K. Panda, "Efficient design for MPI Asynchronous Progress without Dedicated Resources", Parallel Computing 2019

Available since MVAPICH2-X 2.3rc1

Shared Address Space (XPMEM)-based Collectives Design

- "Shared Address Space"-based true zero-copy Reduction collective designs in MVAPICH2
- Offloaded computation/communication to peers ranks in reduction collective operation
- Up to **4X** improvement for 4MB Reduce and up to **1.8X** improvement for 4M AllReduce

J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. Panda, Designing Efficient Shared Address Space Reduction Available since MVAPICH2-X 2.3rc1 Collectives for Multi-/Many-cores, International Parallel & Distributed Processing Symposium (IPDPS '18), May 2018.

Network Based Computing Laboratory

MVAPICH2-X Upcoming Features

- Optimized Derived Datatype Designs
- Exploiting Hardware Tag Matching
- Neighborhood Collectives
- Support for SHARP Streaming Aggregation (SAT)
- Support for AWS Cloud Arm HPC Instances
- Support for Oracle Cloud HPC Shapes

Performance of DDTbench with Optimized Derived Datatype Support

- NASMG: Block length is 8 bytes for X-direction and 256 bytes to 5KB in the Y-direction
- 28% improvement over MVAPICH2 and 2.5X over IntelMPI
- Inputs : A = (256,32,32) B = (512,66,66) C = (2048,66,120) D = (5120,92,120)
 NASMG

- WRF: The datatypes used in WRF are struct of vectors for both X and Y direction
- We see improvements up to 1.75X compared to MVAPICH2 and up to 2.5X improvements over IntelMPI
- Inputs : A = (4,4018,8,4010) B = (4,2060,8,2056) C = (4,6012,8,6008)
 WRF

Performance of MPI_Ialltoall using HW Tag Matching

• Up to 1.8x Performance Improvement, Sustained benefits as system size increases

Optimized Designs for Neighborhood Collectives

• SpMM

• NAS DT

up to 34x speedup

up to 15% improvement

M. Ghazimirsaeed, Q. Zhou, A. Ruhela, M. Bayatpour, H. Subramoni, and DK Panda, "A Hierarchical and Load-Aware Design for Large Message Neighborhood Collectives", SC '20

Optimized MPI_Allreduce Performance with MVAPICH2-X + SHARP SAT

- SHARP provides flat scaling, even for large messages
- Up to 3.95X benefits over MVAPICH2-X-2.3 using SAT + optimized designs

Platform: Intel(R) Xeon(R) Gold 6138 nodes equipped with a dual-socket CPU and InfiniBand HDR-200 Interconnect

Optimized MPI_Reduce Performance with MVAPICH2-X + SHARP SAT

Up to 15.6X benefits over MVAPICH2-X-2.3 using SAT + optimized designs

Platform: Intel(R) Xeon(R) Gold 6138 nodes equipped with a dual-socket CPU and InfiniBand HDR-200 Interconnect

MVAPICH2-X on AWS EFA Arm HPC Instances

• Collective Performance on 32 AWS c6gn.18xlarge instances

MVAPICH2-X Performance on OCI HPC System

• Collective performance evaluation on 8 BM.HPC2 instances

More details in Today's Talk by Shulei Xu

MVAPICH2 Software Family

Requirements	Library
MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and, RoCE (v1/v2)	MVAPICH2
Optimized Support for Microsoft Azure Platform with InfiniBand	MVAPICH2-Azure
Advanced MPI features/support (UMR, ODP, DC, Core-Direct, SHArP, XPMEM), OSU INAM (InfiniBand Network Monitoring and Analysis)	MVAPICH2-X
Advanced MPI features (SRD and XPMEM) with support for Amazon Elastic Fabric Adapter (EFA)	MVAPICH2-X-AWS
Optimized MPI for clusters with NVIDIA GPUs and for GPU-enabled Deep Learning Applications	MVAPICH2-GDR
Energy-aware MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and, RoCE (v1/v2)	MVAPICH2-EA
MPI Energy Monitoring Tool	OEMT
InfiniBand Network Analysis and Monitoring	OSU INAM
Microbenchmarks for Measuring MPI and PGAS Performance	ОМВ

MVAPICH2-GDR 2.3.6

- Released on 08/12/2021
- Major Features and Enhancements
 - Based on MVAPICH2 2.3.6
 - Added support for 'on-the-fly' compression of point-to-point messages used for GPU-to-GPU communication
 - Applicable to NVIDIA GPUs
 - Added NCCL communication substrate for various MPI collectives
 - Support for hybrid communication protocols using NCCL-based, CUDA-based, and IB verbsbased primitives
 - MPI_Allreduce, MPI_Reduce, MPI_Allgather, MPI_Allgatherv, MPI_Alltoall, MPI_Alltoallv, MPI_Scatter, MPI_Scatterv, MPI_Gatherv, MPI_Gatherv, and MPI_Bcast
 - Full support for NVIDIA DGX, NVIDIA DGX-2 V-100, and NVIDIA DGX-2 A-100 systems
 - Enhanced architecture detection, process placement and HCA selection
 - Enhanced intra-node and inter-node point-to-point tuning
 - Enhanced collective tuning
 - Introduced architecture detection, point-to-point tuning and collective tuning for ThetaGPU @ANL
 - Enhanced point-to-point and collective tuning for NVIDIA GPUs on Frontera @TACC, Lassen @LLNL, and Sierra @LLNL
 - Enhanced point-to-point and collective tuning for Mi50 and Mi60 AMD GPUs on Corona @LLNL

- Added several new MPI_T PVARs
- Added support for CUDA 11.3
- Added support for ROCm 4.1
- Enhanced output for runtime variable MV2_SHOW_ENV_INFO
- Tested with Horovod and common DL Frameworks
 - TensorFlow, PyTorch, and MXNet
- Tested with MPI4Dask 0.2
 - MPI4Dask is a custom Dask Distributed package with MPI support
- Tested with MPI4cuML 0.1
 - MPI4cuML is a custom cuML package with MPI support

Highlights of some MVAPICH2-GDR Features for HPC and DL

- CUDA-Aware MPI
- Support for AMD GPU
- On-the-fly Compression for GPU-GPU Communication
- Optimized Collective Support for DGX-A100
- High-Performance
 - Deep Learning
 - Machine Learning
 - Data Science with Dask

GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GPU

- Standard MPI interfaces used for unified data movement
- Takes advantage of Unified Virtual Addressing (>= CUDA 4.0)
- Overlaps data movement from GPU with RDMA transfers

MVAPICH2-GDR with CUDA-aware MPI Support

D-to-D Performance on OpenPOWER w/ GDRCopy (NVLink2 + Volta)

Intra-Node Latency (Small Messages)

Intra-node Latency: 0.76 us (with GDRCopy)

Intra-Node Latency (Large Messages)

Intra-Node Bandwidth

Intra-node Bandwidth: 65.48 GB/sec for 4MB (via NVLINK2)

Inter-node Latency: 2.18 us (with GDRCopy 2.0)

Inter-node Bandwidth: **23 GB/sec** for 4MB (via 2 Port EDR)

Platform: OpenPOWER (POWER9-ppc64le) nodes equipped with a dual-socket CPU, 4 Volta V100 GPUs, and 2port EDR InfiniBand Interconnect

AMD ND A100 v4-series (NDv4) + (8 x HDR 200)

Intra-Node GPU Point-to-Point

Inter-Node GPU Point-to-Point

AMD EPYC 7V12 64-Core Processor

CUDA 11.3, NVIDIA A100 GPUs

Mellanox ConnectX-6 HDR HCA

ND A100 v4-series: https://docs.microsoft.com/en-us/azure/virtual-machines/nda100-v4-series **Network Based Computing Laboratory**

ROCm-aware MVAPICH2-GDR - Support for AMD GPUs

on Tuesday (08/24/2021) @ 4:30 PM EDT

Inter-Node Point-to-Point Latency

0

4 %

16

32

64 128 256 512

Message Size (Bytes) Corona Cluster @ LLNL - ROCm-4.3.0 (mi50 AMD GPUs)

4K 8K

1K 2K

Available with MVAPICH2-GDR 2.3.5+ & OMB v5.7+

16K

32K 64K 256K 512K 1M

128K

K. Khorassani, J. Hashmi, C. Chu, C. Chen, H. Subramoni, D. Panda Designing a ROCm-aware MPI Library for AMD GPUs: Early Experiences - ISC HIGH PERFORMANCE 2021, Jun 2021.

Performance with "On-the-fly" Compression Support in MVAPICH2-GDR

- Weak-Scaling of HPC application AWP-ODC on Lassen cluster (V100 nodes) [1] Today's Talk by Qinghua Zhou
- MPC-OPT achieves up to +18% GPU computing flops, -15% runtime per timestep
- ZFP-OPT achieves up to +35% GPU computing flops, -26% runtime per timestep

[1] Q. Zhou, C. Chu, N. Senthil Kumar, P. Kousha, M. Ghazimirsaeed, H. Subramoni, and D.K. Panda, "Designing High-Performance MPI Libraries with On-the-fly Compression for Modern GPU Clusters", 35th IEEE International Parallel & Distributed Processing Symposium (IPDPS), May 2021. [Best Paper Finalist]

More details in

Collectives Performance on DGX2-A100 – Small Message

Network Based Computing Laboratory

MVAPICH2 (MPI)-driven Infrastructure for ML/DL Training

More details available from: http://hidl.cse.ohio-state.edu

Network Based Computing Laboratory

PyTorch, Horovod and DeepSpeed at Scale: Training ResNet-50 on 256 V100 GPUs

- Training performance for 256 V100 GPUs on LLNL Lassen
 - -~10,000 Images/sec faster than NCCL training!

Distributed Framework	Torch.distributed		Horovod		DeepSpeed	
Images/sec on 256 GPUs	61,794	72,120	74,063	84,659	80,217	88,873
Communication Backend	NCCL	MVAPICH2-GDR	NCCL	MVAPICH2-GDR	NCCL	MVAPICH2-GDR

Exploiting Model Parallelism in AI-Driven Digital Pathology

- Pathology whole slide image (WSI)
 - Each WSI = 100,000 x 100,000 pixels
 - Can not fit in a single GPU memory
 - Tiles are extracted to make training possible
- Two main problems with tiles
 - Restricted tile size because of GPU memory limitation
 - Smaller tiles loose structural information
- Can we use Model Parallelism to train on larger tiles to get better accuracy and diagnosis?
- Reduced training time significantly on OpenPOWER + NVIDIA V100 GPUs
 - 32 hours (1 node, 1 GPU) -> 7.25 hours (1 node, 4 GPUs) ->

27 mins (32 nodes, 128 GPUs)

A. Jain, A. Awan, A. Aljuhani, J. Hashmi, Q. Anthony, H. Subramoni, D. K. Panda, R. Machiraju, and A. Parwani, "GEMS: GPU Enabled Memory Aware Model Parallelism System for Distributed DNN Training", Supercomputing (SC '20)

More details in Tomorrow's talk by Arpan Jain

WSI - 40x mag - 2.5 billion pixels - 1⁺ million nuclei

Courtesy: <u>https://blog.kitware.com/digital-slide-</u> archive-large-image-and-histomicstk-open-sourceinformatics-tools-for-management-visualization-andanalysis-of-digital-histopathology-data/

M. Ghazimirsaeed , Q. Anthony , A. Shafi , H. Subramoni , and D. K. Panda, Accelerating GPU-based Machine Learning in Python using MPI Library: A Case Study with MVAPICH2-GDR, MLHPC Workshop, Nov 2020

Benchmark #1: Sum of cuPy Array and its Transpose (RI2)

A. Shafi , J. Hashmi , H. Subramoni , and D. K. Panda, Efficient MPI-based Communication for GPU-Accelerated Dask Applications, CCGrid '21, https://arxiv.org/abs/2101.08878

MPI4Dask 0.2 release

(http://hibd.cse.ohio-state.edu)

MVAPICH2-GDR Upcoming Features for HPC and DL

- On-the-fly Compression for All-to-all Collective
- Scalable Distributed Training with Model-/Hybrid Parallelism for out-of-core DNN Models
- Scaling Single-Image Super-Resolution Training

All-to-All with On-the-Fly Compression

- All-to-All operation with collective level on-the-fly compression design
- ZFP-OPT(rate:4) achieves up to ~87% reduced latency at 16MB on Frontera RTX-5000 and Longhorn V100 nodes (4nodes, 4ppn)

Accelerating Transformers using SUPER

- We propose sub-graph parallelism integrated with data parallelism to accelerate the training of Transformers.
- Approach
 - Data and Sub-Graph Parallelism (D&SP)
 - #-way D&SP (#: number of sub-graphs)
- Setup
 - T5-Large-Mod on WMT Dataset
 - 1024 NVIDIA V100 GPUs
- Speedup
 - Up to 3.05X over Data Parallelism (DP)

Up to 3.05X speedup over Data Parallel designs (LLNL Lassen)

More details in Tomorrow's talk by Arpan Jain

A. Jain, T. moon, T. Benson, H. Subramoni, S. Jacobs, D. Panda, B. Essen, "SUPER: SUb-Graph Parallelism for TransformERs", IPDPS '21

Network Based Computing Laboratory

MVAPICH User Group Conference (MUG) 2021

Single-Image Super-Resolution Training: Performance Improvement

More details in Tomorrow's talk

• Throughput is improved at all scales

by Quentin Anthony

• MPI-Opt performs better than **both** NCCL and default MPI

#GPUs	Throughput (Img/sec)			Percentage Improvement	
#0105	NCCL	MPI	MPI-Opt	(MPI-Opt over default MPI)	
1	11	11	11	≈ 0	
2	20	21	22	2.08	
4	40	41	44	6.28	
8	76	75	83	11.15	
16	142	126	156	24.26	
32	269	242	296	22.32	
64	511	490	588	20.05	
128	989	933	1152	23.49	
256	1807	1675	2185	30.41	
512	3608	3258	4116	26.33	

Q. Anthony, L. Xu, H. Subramoni, and D. K. Panda, Scaling Single-Image Super-Resolution Training on Modern HPC Clusters: Early Experiences, ScaDL Workshop, in conjunction with IPDPS '21, May 2021

Network Based Computing Laboratory

MVAPICH2 Software Family

Requirements	Library
MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and, RoCE (v1/v2)	MVAPICH2
Optimized Support for Microsoft Azure Platform with InfiniBand	MVAPICH2-Azure
Advanced MPI features/support (UMR, ODP, DC, Core-Direct, SHArP, XPMEM), OSU INAM (InfiniBand Network Monitoring and Analysis)	MVAPICH2-X
Advanced MPI features (SRD and XPMEM) with support for Amazon Elastic Fabric Adapter (EFA)	MVAPICH2-X-AWS
Optimized MPI for clusters with NVIDIA GPUs and for GPU-enabled Deep Learning Applications	MVAPICH2-GDR
Energy-aware MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and, RoCE (v1/v2)	MVAPICH2-EA
MPI Energy Monitoring Tool	ΟΕΜΤ
InfiniBand Network Analysis and Monitoring	OSU INAM
Microbenchmarks for Measuring MPI and PGAS Performance	ОМВ

OSU Microbenchmarks

- Available since 2004
- Suite of microbenchmarks to study communication performance of various programming models
- Benchmarks available for the following programming models
 - Message Passing Interface (MPI)
 - Partitioned Global Address Space (PGAS)
 - Unified Parallel C (UPC), Unified Parallel C++ (UPC++), and OpenSHMEM
- Benchmarks available for multiple accelerator-based architectures
 - Compute Unified Device Architecture (CUDA)
 - OpenACC Application Program Interface
- Part of various national resource procurement suites like NERSC-8 / Trinity Benchmarks
- Continuing to add support for newer primitives and features (latest OMB 5.8)
 - ROCm support
 - NCCL support
- Will be adding Python and Java MPI support in OMB
- Please visit the following link for more information: <u>http://mvapich.cse.ohio-state.edu/benchmarks/</u>

osu_latency inter-node small messages

osu_latency inter-node large messages

- Small Python overhead around 0.5 microseconds.
- Overhead only apparent in smaller message sizes

OMB-Py: Initial GPU Results

osu_latency inter-node small messages

osu_latency inter-node large messages

- Different overheads depending on the CUDA-aware data structure
- Overhead is only apparent in smaller message sizes

To be available with the next OMB release

More details in Tomorrow's Talk by Nawras Alnaasan

Applications-Level Tuning: Compilation of Best Practices

- MPI runtime has many parameters
- Tuning a set of parameters can help you to extract higher performance
- Compiled a list of such contributions through the MVAPICH Website
 - <u>http://mvapich.cse.ohio-state.edu/best_practices/</u>
- Initial list of applications
 - Amber
 - HoomDBlue
 - HPCG
 - Lulesh
 - MILC
 - Neuron
 - SMG2000
 - Cloverleaf
 - SPEC (LAMMPS, POP2, TERA_TF, WRF2)
- Soliciting additional contributions, send your results to mvapich-help at cse.ohio-state.edu.
- We will link these results with credits to you.

MVAPICH2 Libraries available through Spack

- Easy Installation of MVAPICH2 Libraries through Spack
 - MVAPICH2
 - MVAPICH2-X
 - MVAPICH2-GDR
- Detailed Spack-based Installation User Guide is available:

http://mvapich.cse.ohio-state.edu/userguide/userguide_spack/

More details in Tomorrow's Talk by Todd Gamblin (LLNL)

Enabling Auto detection of Underlying features with dlopen

- Use dlopen to identify support available in underlying system
 - Removes dependencies on libraries like
 - ibverbs
 - ibmad
 - ibumad
 - rdmacm
 - xpmem
 - Simplifies installation and deployment
 - No need for multiple configure options
 - One binary can have all necessary support
- Already available with the latest MVAPICH2 releases
- More such functionalities will be added in future releases

MVAPICH2-Next: One Stack to Conquer all Architectures and Interconnects

- Various libraries will be merged into one release
- Simplifies installation and deployment
- Enables utilizing the best advanced features for all architectures

MVAPICH2 – Plans for Exascale

- Performance and Memory scalability toward 1-10M cores
- Hybrid programming (MPI + OpenSHMEM, MPI + UPC, MPI + CAF ...)
 - MPI + Task*
- Enhanced Optimization for GPU Support and Accelerators
- Taking advantage of advanced features of Mellanox InfiniBand
 - Tag Matching*
 - Adapter Memory*
- Enhanced communication schemes for upcoming architectures
 - Intel Optane*
 - CAPI*
- Extended topology-aware collectives
- Extended Energy-aware designs and Virtualization Support
- Extended Support for MPI Tools Interface (as in MPI 3.0)
- Extended FT support
- Support for * features will be available in future MVAPICH2 Releases

Commercial Support for MVAPICH2, HiBD, and HiDL Libraries

- Supported through X-ScaleSolutions (<u>http://x-scalesolutions.com</u>)
- Benefits:
 - Help and guidance with installation of the library
 - Platform-specific optimizations and tuning
 - Timely support for operational issues encountered with the library
 - Web portal interface to submit issues and tracking their progress
 - Advanced debugging techniques
 - Application-specific optimizations and tuning
 - Obtaining guidelines on best practices
 - Periodic information on major fixes and updates
 - Information on major releases
 - Help with upgrading to the latest release
 - Flexible Service Level Agreements
- Support being provided to National Laboratories and International HPC centers

Value-Added Products with Support

- Multiple value-added products with support
 - X-ScaleHPC
 - X-ScaleAI
 - MVAPICH2-DPU (Tutorial and Live Demo yesterday)
 - SCR-Exa

More details in Donglai Dai's Talk (Tomorrow)

Funding Acknowledgments

Funding Support by

Equipment Support by

Network Based Computing Laboratory

Acknowledgments to all the Heroes (Past/Current Students and Staffs)

—

—

Current Students (Graduate)

- N. Alnaasan (Ph.D.)
- Q. Anthony (Ph.D.)
- C.-C. Chun (Ph.D.) _
- N. Contini (Ph.D.) _
- A. Jain (Ph.D.)

Past Students

- A. Awan (Ph.D.)
- A. Augustine (M.S.) _
- P. Balaji (Ph.D.) _
- M. Bayatpour (Ph.D.) _
- R. Biswas (M.S.)
- S. Bhagvat (M.S.) _
- A. Bhat (M.S.) _
- D. Buntinas (Ph.D.) _
- L. Chai (Ph.D.)
- B. Chandrasekharan (M.S.) _
- S. Chakraborthy (Ph.D.) _
- N. Dandapanthula (M.S.) _
- V. Dhanraj (M.S.)
- C.-H. Chu (Ph.D.)

Past Post-Docs

- D. Banerjee
- X. Besseron
- M. S. Ghazimeersaeed

- K. S. Khorassani (Ph.D.) _ P. Kousha (Ph.D.) _
- B. Michalowicz (Ph.D.) _
- B. Ramesh (Ph.D.) _
- K. K. Suresh (Ph.D.) _
 - T. Gangadharappa (M.S.) _
 - K. Gopalakrishnan (M.S.) _
 - J. Hashmi (Ph.D.) W. Huang (Ph.D.) _
 - W. Jiang (M.S.) _
 - J. Jose (Ph.D.) _

_

- M. Kedia (M.S.) _
- S. Kini (M.S.) _ M. Koop (Ph.D.) _
- K. Kulkarni (M.S.) _
- R. Kumar (M.S.) _
- S. Krishnamoorthy (M.S.) _
- _

J. Lin

_

M. Luo

- K. Kandalla (Ph.D.) _
- M. Li (Ph.D.)
- H.-W. Jin E. Mancini _
 - K. Manian S. Marcarelli

- A. H. Tu (Ph.D.) — S. Xu (Ph.D.) -Q. Zhou (Ph.D.) —
 - K. Al Attar (M.S.)
 - N. Sarkauskas (Ph.D.)
 - P. Lai (M.S.) _
 - J. Liu (Ph.D.) M. Luo (Ph.D.)
 - _ A. Mamidala (Ph.D.) _
 - G. Marsh (M.S.) _
 - V. Meshram (M.S.) _
 - A. Moody (M.S.) _
 - S. Naravula (Ph.D.) _
 - R. Noronha (Ph.D.) _
 - X. Ouyang (Ph.D.) _
 - S. Pai (M.S.) _
 - S. Potluri (Ph.D.) _

A. Ruhela

J. Vienne

H. Wang

K. Raj (M.S.) _

_

_

R. Rajachandrasekar (Ph.D.) _

- **Current Students (Undergrads)** _
- - N. Sarkauskas (B.S.) _

_

_

N. Senthil Kumar (M.S.) _

Current Research Scientists

H. Subramoni

A. Shafi

M. Lieber

D. Shankar (Ph.D.)

G. Santhanaraman (Ph.D.)

L. Xu

- A. Singh (Ph.D.) _
- J. Sridhar (M.S.) _
- S. Srivastava (M.S.) _
- S. Sur (Ph.D.) _
- H. Subramoni (Ph.D.) _
- K. Vaidyanathan (Ph.D.)
- A. Vishnu (Ph.D.) _
- J. Wu (Ph.D.) _
- W. Yu (Ph.D.) _
- J. Zhang (Ph.D.)

Current Software Engineers

- B. Seeds
- N. Shineman

Past Research Scientists

- K. Hamidouche _
- S. Sur _
- X. Lu _

Past Senior Research Associate

J. Hashmi _

Past Programmers

- A. Reifsteck _
- D. Bureddy _
- J. Perkins —

Past Research Specialist

- M. Arnold _
- J. Smith _

Multiple Positions Available in MVAPICH2, BigData and DL/ML Projects in my Group

- Looking for Bright and Enthusiastic Personnel to join as
 - PhD Students
 - Post-Doctoral Researchers
 - MPI Programmer/Software Engineer
 - Spark/Big Data Programmer/Software Engineer
 - Deep Learning, Machine Learning, and Cloud Programmer/Software Engineer
- If interested, please send an e-mail to panda@cse.ohio-state.edu

Thank You!

panda@cse.ohio-state.edu

Network-Based Computing Laboratory <u>http://nowlab.cse.ohio-state.edu/</u>

The High-Performance MPI/PGAS Project <u>http://mvapich.cse.ohio-state.edu/</u> <u>Follow us on Twitter: @mvapich</u>

High-Performance Big Data

The High-Performance Big Data Project <u>http://hibd.cse.ohio-state.edu/</u>

The High-Performance Deep Learning Project <u>http://hidl.cse.ohio-state.edu/</u>