Benefits of Streaming Aggregation with SHARPv2 in MVAPICH2

9th MVAPICH User Group (MUG) Conference '21

Bharath Ramesh
The Ohio State University
ramesh.113@osu.edu

Follow us on https://twitter.com/mvapich
Presentation Outline

• Introduction/Background
• Performance Evaluation for MPI_Allreduce and MPI_Reduce
• Summary
Considerations for Accelerating HPC Applications

• MPI collectives using aggregation (Allreduce and Reduce) significant to application run time

• Ideal set of goals
 – Overlap computation and communication
 – Maximally utilize CPU resources
 – Scale-out and Scale-up efficiency
 – Ideally no changes to application code for performance
 – Utilize high levels of parallelism

• Co-design software and hardware elements for best results
What is SHARP?

• Scalable Hierarchical Aggregation and Reduction Protocol
• Advantages
 – Progress, offload computation and communication
 – Focuses on low latency for small messages, maximal bandwidth utilization for large messages
 – Hierarchical Aggregation in a logical tree (LLT) providing low latency for small messages
 – Streaming aggregation with pipelined ring-based algorithms for large messages
• In-Network computing
• Focus on creating groups, which can simultaneously execute operations
SHARP Reduction trees and Streaming Aggregation

Aggregation Tree

Switch-level reduction (radix 16)

Images taken from Graham, Richard et al. Scalable Hierarchical Aggregation and Reduction Protocol (SHARP)™ Streaming-Aggregation Hardware Design and Evaluation. DOI: 10.1007/978-3-030-50743-5_3
Optimized MPI_Allreduce Performance with MVAPICH2-X + SHARP SAT

4 nodes, 1 ppn

16 nodes, 1 ppn

- SHARP provides flat scaling, even for large messages
- Up to 3.95X benefits over MVAPICH2-X-2.3 using SAT + optimized designs

Platform: Intel(R) Xeon(R) Gold 6138 nodes equipped with a dual-socket CPU and InfiniBand HDR-200 Interconnect
Optimized MPI_Reduce Performance with MVAPICH2-X + SHARP SAT

• Comparing max latency for MPI_Reduce as the root is the bottleneck

• Up to 15.6X benefits over MVAPICH2-X-2.3 using SAT + optimized designs

Platform: Intel(R) Xeon(R) Gold 6138 nodes equipped with a dual-socket CPU and InfiniBand HDR-200 Interconnect
Conclusion and Future work

• Conclusion
 − Pure software-based schemes limiting as message size and scale increases
 − SHARP highly effective with good scalability and low latency
 • Flat scaling up to a fixed node count, even with streaming aggregation
 • Close to point-to-point latency

• Future work
 − Comprehensive evaluation with benchmarks and applications at large scales
 − Scaling studies with larger number of processes per node
 − Optimize non-blocking collectives with streaming aggregation
Thank You!

ramesh.113@osu.edu

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

Follow us on
https://twitter.com/mvapich

MVAPICH
MPI, PGAS and Hybrid MPI-PGAS Library

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

HiBD
High-Performance Big Data

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

HiDL
High-Performance Deep Learning

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/