

RoCEv2 Congestion Control Enhancements for Large Scale Deployments

Hemal V. Shah and Moshe Voloshin

Data Center Solutions Group (DCSG), Broadcom Inc.

Agenda

- Ethernet for HPC
- MPI and Communication Topologies
- PFC Challenges
- RoCEv2 with Congestion Control
- Congestion Control Evaluation
 - OSU Benchmarks
 - HPCG
 - LAMMPS
 - GPCNeT

MPI and Communication Topologies

- MPI is widely used in HPC/ML clusters as the communication layer
- A process group in MPI represents a collection of processes
- The number of processes can be 100s per node
- The number of nodes can scale to 1000s in a cluster
- The communication pattern of processes is represented by a logical topology – Ring, Binary cube, Tree, etc.
- Selection of logical topologies depends on applications and communication libs
- MPI collectives (Gather, Reduce..) can create congestion in the network

Challenges with PFC without Congestion Control

- Priority Flow Control (PFC) is used for lossless service
- PFC is a point-to-point protocol between two Ethernet endpoints
- PFC can result in congestion spreading
- PFC can create PFC storm due to slow receivers
- PFC may result in transport live-lock

Congestion Control (CC) with RoCEv2

- ECN based CC schemes do not require any additional infrastructure support
- Congestion control without PFC can be sufficient for most of the workloads
- CC with PFC addresses PFC storms & live locks and preserves lossless service
- Even w/ large number of competing flows switch egress queue peak levels are low
- Reaction by sender is quick few 10s of micro-seconds due to low queue level
 Even with low marking threshold, network utilization is high
- Low marking threshold delivers low end-to-end latency with minimum interference
- Low marking threshold leaves majority of switch buffer for incast absorption
- Both probabilistic and deterministic marking are possible

RoCEv2 Application Performance Under Congestion

Test Scenario	Overview
OSU Benchmarks	Blocking and non blocking Collective benchmarks for various sizes and with various PPN (Processes Per Node) over 2 to 32 nodes
HPCG	High Performance Conjugate Gradient Benchmark for HPC, with 8, 16, 32 PPN on 8, 16, 32 nodes
LAMMPS	5 benchmarks of Molecular Dynamics with 32,000 atoms per core Scaling efficiency charts relative to CPU time on single core to run 32,000 benchmark Chart title show 1 node 1 PPN loop time in seconds for 32,000 atoms

All tests ran with NIC link BW of 100 gbps in 3 configurations: PFC without CC, PFC with CC and CC without PFC

OSU Benchmarks Results – completion time [uS]

LAMMPS efficiency vs. # processes

BROADCOM[®]

GPCNeT benchmark

GPCNeT	Global Performance and Congestion Network Test
	MPI test designed to measure relative performance under load and congestion
	Designed for large multi-layer switch network
	20% of nodes w/ test tasks: allreduce, p2p latency, random ring neighbor exchange
	80% of nodes assigned with congestor tasks: All2All, incast, RMA put and get
	 Nodes would share switch buffering resources and will cross path between switches

GPCNeT results – Results on 32 Nodes

GPCNeT results – Results on 32 Nodes

Congestion Control (CC) for RoCEv2

- RoCEv2 is designed to scale no inherent limitation at the protocol level
- ROCEv2 demonstrate significant performance advantage over TCP
- RoCEv2 with PFC provides lossless service with a significant interference/blocking

 PFC without congestion control should be avoided
- CC with or without PFC is essential for node and process scaling
 - ECN marking in switches enable Congestion Notifications to minimize congestion
 - CC algorithms are evolving to provide better congestion avoidance & faster congestion reaction
 - CC algorithm that maintains low switch queue level reduces interference/blocking
- CC enhancements in NICs further improve performance & scalability of RoCEv2
 - ECN marking/CNP generation
 - Hardware-based congestion control
 - Deterministic marking policy (DCTCP style)

BROADCOM[®] connecting everything •

OSU Benchmarks Results – completion time [uS]

BROADCOM[®]