

Benefits of On-the-Fly Compression on GPU-to-GPU Communication for HPC and Data Science Applications

Presentation at MUG '21

Qinghua Zhou

Network Based Computing Laboratory (NBCL)

Dept. of Computer Science and Engineering , The Ohio State University

Follow us on

zhou.2595@osu.edu

https://twitter.com/mvapich

Outline

- Motivation
- Focus of the Work
- On-the-fly Compression Designs
 - Compression algorithms
 - Framework for GPU-based on-the-fly compression
- Performance Evaluation
- Conclusions and Future Work

Motivation

- For HPC and data science applications on modern GPU clusters
 - With larger problem sizes, applications exchange orders of magnitude more data on the network
 - Leads to significant increase in communication times for these applications on larger scale (AWP-ODC)
 - On modern HPC systems, there is disparity between intra-node and inter-node GPU communication bandwidths that prevents efficient scaling of applications on larger GPU

in International Workshop on Open-POWER for HPC (IWOPH 19) at the 2019 ISC High Performance Conference, 2018. Itory MUG '21

Focus of the Work

- Designing on-the-fly message compression schemes in an MPI library:
 - The first of its kind GPU-based compression design is implemented using MVAPICH2-GDR
- Optimizing the existing GPU based compression algorithms
- Accelerating point-to-point communication performance of transferring large GPU-to-GPU data
- Demonstrating performance benefits for two categories of applications:
 - DASK - AWP-ODC (HPC) [2] https://dask.org

- Dask (Data science) [3] [2] Y. Cui, K. B. Olsen, T. H. Jordan, K. Lee, J. Zhou, P. Small, D. Roten, G. Ely, D. K. Panda, A. Chourasia, J. Levesque, S. M. Day, and P. Maechling, "Scalable earthquake simulation on petascale supercomputers," in SC '10: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, 2010, pp. 1–20. [3] M. Rocklin, "Dask: Parallel computation with blocked algorithms and task scheduling," in Proceedings of the 14th Python in Science Conference, K. Huff and J. Bergstra, Eds., 2015, pp. 130 - 136.

Compression Algorithms for Floating-point Data

- Lossless
 - Fpzip: CPU, supports double (64 bit) & single (32 bit) precision FP, low throughput
 - FPC: CPU, supports double & single precision FP, low throughput
 - ISOBAR: CPU, supports double & single precision FP, low throughput
 - GFC: GPU, supports double precision FP, high throughput
 - MPC [4]: GPU, supports double & single precision FP, high throughput
- Lossy
 - **ZFP** [5]: **GPU**, supports double & single precision FP, **high throughput**
 - SZ: GPU, supports double & single precision FP, high throughput

 ^[4] A. Yang, H. Mukka, F. Hesaaraki, and M. Burtscher, "MPC: A Massively Parallel Compression Algorithm for Scientific Data," in IEEE Cluster Conference, September 2015.
 [5] P. Lindstrom, "Fixed-rate compressed floating-point arrays," IEEE Transactions on Visualization and Computer Graphics, vol. 20, 08 2014.

Framework for GPU-based on-the-fly compression

- Compression
 Compression algorithms MPC and ZFP are integrated into MVAPICH2-GDR with further optimization
- Rendezvous protocol is used to send the header data and compressed data

Sender Framework for GPU-based on-the-fly

[6] Q. Zhou, C. Chu, N. Senthil Kumar, P. Kousha, M. Ghazimirsaeed, H. Subramoni, and D.K. Panda, "Designing High-Performance MPI Libraries with On-the-fly Compression for Modern GPU Clusters", 35th IEEE International Parallel & Distrib Gal Add State State (IPDPS21), May 2021. [Best Paper Finalist]

Receiver

Experimental Environment

Cluster Specs	Frontera Longhorn	Frontera Liquid	Lassen
CPU Processor	Dual-socket IBM POWER9 AC922 2.3GHz, 20 Cores/socket	Dual-socket Intel Xeon E5-2620 2.10GHz, 8 Cores/socket	Dual-sock IBM POWER9 AC922 3.14GHz, 44 Cores/Socket
System Memory	256 GB	384 GB	256 GB
GPU Processor	4 NVIDIA Tesla V100	4 NVIDIA Quadro RTX 5000	4 NVIDIA Tesla V100
GPU Memory	4 x 16 GB	4 x 16 GB	4 x 16 GB
Interconnects between CPU and GPU	NVLink-2 (one-way 75 GB/s)	PCIe Gen3 x16 and x64 switches (one-way 16 GB/s)	NVLink-2 (one-way 75 GB/s)
Interconnects between GPUs	NVLink-2 (one-way 75 GB/s)	PCIe Gen3 x16 and x64 switches (one-way 16 GB/s)	NVLink-2 (one-way 75 GB/s)
Interconnects between nodes	Mellanox InfiniBand EDR (one-way 12.5 GB/s)	Mellanox InfiniBand FDR (one-way 7 GB/s)	Dual-rail Mellanox InfiniBand EDR (one-way 25 GB/s)
Operating System	RHEL 7.6 (4.14.0-115.10.1.1)	CentOS 7.6.1810 (3.10.0- 957.27.2.el7)	RHEL 7.3 (4.14.0- 115.10.1.1)
NVIDIA Driver Version	440.33.01	430.40	418.87.00
CUDA Toolkit Version	10.1.168	10.1.243	10.1.243

Inter-node GPU-GPU latency

- OSU Micro Benchmark for MPC-OPT and ZFP-OPT on RTX5000 and V100 GPU nodes
 - MPC-OPT and ZFP-OPT are optimized and integrated into MVAPICH2-GDR library
- MPC-OPT reduced latency up to 77.1% on RTX5000 and 62.5% on V100 at

Intra-node GPU-GPU latency

- MPC-OPT reduced latency up to 60.6% on RTX5000 at 32Mbytes
 - High-speed NVLink on Longhorn is faster than the MPC compression/decompression
- ZFP-OPT reduced latency up to 79.8% on RTX5000 and 40.5% on V100 at

MUG '21

Frontra-RTX5000, Intra-node D-D

Laboratory

latonov

Longhorn-V100, Intra-node D-D

latency

Collective Operations

- MPI_Bcast MPC-OPT: **57%** benefits on msg_sppm, ZFP-OPT(rate:4): **85%** benefits
- MPI_Allgather MPC-OPT: **30%** benefits on msg_sppm, ZFP-OPT(rate:4): **73%** benefits

Application Results (AWP-ODC)

- Weak-Scaling of HPC application **AWP-ODC** on Lassen cluster (V100 nodes)
- MPC-OPT achieves up to +18% GPU computing flops, -15% runtime per timestep
- ZFP-OPT achieves up to +35% GPU computing flops, -26% runtime per \mathbf{a}^{200000} 70 timestep (rate=8, compression ratio=4) -15% MPC-OP (ms) 60 **1**60000 ZFP-OPT (rate:16) +18% 50 **H**140000 ZFP-OPT (rate:8) Per Timestep -26% **2**20000 40 **0**0000 30 80000 0 60000 40000 20000 +35% 20 Time 10 0 0 \mathbf{O} 0 32 512 16 64 128 256 8 un 32 128 256 512 16 64 **GPUS** Ω GPUS Ē (5

Application Results (Dask)

- Data science framework **Dask** on RI2 cluster (V100 nodes)
- Dask benchmark creates cuPy array and distributes its chunks across Dask workers
- ZFP-OPT achieves up to **1.56x** throughput, **-37%** runtime (rate=8, compression ratio=4)

(cuPy Dims: 10Kx10K, Chunk size: 1K)

Conclusions and Future Work

- Presented on-the-fly compression techniques for optimizing GPU-to-GPU communication in an MPI library
- Enhanced GPU based pt2pt communication in MVAPICH2-GDR with optimized MPC and ZFP
- Benoprassive velopsemotiles (GPU CPU ateMR)_Bcast
 MPI_Allgather

 MPC-OPT
 77.1%
 60.6%
 57%
 30%

 ZFP-OPT
 83.1%
 79.8%
 85%
 73%
- Application-level Benefits
 - AWP-ODC: up to 18% (MPC-OPT on 512 GPUs) and 35% (ZFP-OPT on 128 GPUs) improvement of GPU computing flops
 - Dask: up to 1.56x speedup of throughput and 37% reduced runtime
- Future work
 - Study and incorporate more GPU-based compression algorithms (e.g. cuSZ, NVIDIA nvCOMP, etc.)

Thank You!

Zhou.2595@osu.edu

The High-Performance MPI/PGAS Project http://mvapich.cse.ohio-state.edu/

High-Performance Big Data

The High-Performance Big Data Project <u>http://hibd.cse.ohio-state.edu/</u>

The High-Performance Deep Learning Project http://hidl.cse.ohio-state.edu/

Laboratory

