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• For HPC and data science applications on modern GPU clusters
– With larger problem sizes, applications exchange orders of magnitude more data on the 

network 
– Leads to significant increase in communication times for these applications on larger scale 

(AWP-ODC)
– On modern HPC systems, there is disparity between intra-node and inter-node GPU 

communication bandwidths that prevents efficient scaling of applications on larger GPU 
systems

– CUDA-Aware MPI libraries saturate the bandwidth of IB network
– Compression can reduce the data size and lower the pressure on network with limited 

bandwidth 

Motivation

(b) Saturated bandwidth at large message size

(a) Disparity between intra-node and inter-node GPU communication on 

Sierra OpenPOWER supercomputer [1]

[1] K. S. Khorassani, C.-H. Chu, H. Subramoni, and D. K. Panda, “Performance Evaluation of MPI Libraries on GPU-enabled OpenPOWER Architectures: Early Experiences”, 

in International Workshop on Open-POWER for HPC (IWOPH 19) at the 2019 ISC High Performance Conference, 2018.
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• Designing on-the-fly message compression schemes 
in an MPI library: 
– The first of its kind GPU-based compression design is 

implemented using MVAPICH2-GDR
• Optimizing the existing GPU based compression 

algorithms
• Accelerating point-to-point communication 

performance of transferring large GPU-to-GPU data
• Demonstrating performance benefits for two 

categories of applications:
– AWP-ODC (HPC) [2]
– Dask (Data science) [3]

Focus of the Work

[2] Y. Cui, K. B. Olsen, T. H. Jordan, K. Lee, J. Zhou, P. Small, D. Roten, G. Ely, D. K. Panda, A. Chourasia, J. Levesque, S. M. Day, and P. Maechling, “Scalable earthquake simulation on 
petascale supercomputers,” in SC ’10: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, 2010, pp. 1–20.
[3] M. Rocklin, “Dask: Parallel computation with blocked algorithms and task scheduling,” in Proceedings of the 14th Python in Science Conference, K. Huff and J. Bergstra, Eds., 2015, pp. 
130 – 136.

https://dask.org
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• Lossless
– Fpzip: CPU, supports double (64 bit) & single (32 bit) precision FP, low 

throughput
– FPC: CPU, supports double & single precision FP, low throughput
– ISOBAR: CPU, supports double & single precision FP, low throughput
– GFC: GPU, supports double precision FP, high throughput
– MPC [4]:  GPU, supports double & single precision FP, high throughput

• Lossy 
– ZFP [5]: GPU, supports double & single precision FP, high throughput
– SZ: GPU, supports double & single precision FP, high throughput

Compression Algorithms for Floating-point 
Data

[4] A. Yang, H. Mukka, F. Hesaaraki, and M. Burtscher, “MPC: A Massively Parallel Compression Algorithm for Scientific Data,” in IEEE Cluster Conference, September 2015.

[5] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE Transactions on Visualization and Computer Graphics, vol. 20, 08 2014.
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• Compression algorithms MPC and ZFP are integrated into MVAPICH2-GDR 
with further optimization 

• Rendezvous protocol is used to send the header data and compressed data

Framework for GPU-based on-the-fly 
compression

Framework for GPU-based on-the-fly 
compression[6][6] Q. Zhou, C. Chu, N. Senthil Kumar, P. Kousha, M. Ghazimirsaeed, H. Subramoni, and D.K. Panda, “Designing High-Performance MPI Libraries with On-the-fly Compression for Modern 

GPU Clusters”, 35th IEEE International Parallel &  Distributed Processing Symposium (IPDPS21), May 2021. [Best Paper Finalist]  
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Experimental Environment
Cluster Specs Frontera Longhorn Frontera Liquid Lassen
CPU Processor Dual-socket IBM POWER9 

AC922
2.3GHz, 20 Cores/socket

Dual-socket Intel Xeon E5-2620
2.10GHz, 8 Cores/socket

Dual-sock IBM POWER9 
AC922 3.14GHz, 44 
Cores/Socket

System Memory 256 GB 384 GB 256 GB

GPU Processor 4 NVIDIA Tesla V100 4 NVIDIA Quadro RTX 5000 4 NVIDIA Tesla V100

GPU Memory 4 x 16 GB 4 x 16 GB 4 x 16 GB

Interconnects between
CPU and GPU

NVLink-2 (one-way 75 GB/s) PCIe Gen3 x16 and x64 switches
(one-way 16 GB/s)

NVLink-2 (one-way 75 GB/s)

Interconnects between
GPUs

NVLink-2 (one-way 75 GB/s) PCIe Gen3 x16 and x64 switches
(one-way 16 GB/s)

NVLink-2 (one-way 75 GB/s)

Interconnects between
nodes

Mellanox InfiniBand EDR 
(one-way 12.5 GB/s )

Mellanox InfiniBand FDR (one-way 7 
GB/s)

Dual-rail Mellanox InfiniBand 
EDR (one-way 25 GB/s)

Operating System RHEL 7.6 (4.14.0-115.10.1.1) CentOS 7.6.1810 (3.10.0-
957.27.2.el7)

RHEL 7.3 (4.14.0-
115.10.1.1)

NVIDIA Driver Version 440.33.01 430.40 418.87.00

CUDA Toolkit Version 10.1.168 10.1.243 10.1.243
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• OSU Micro Benchmark for MPC-OPT and ZFP-OPT on RTX5000 and V100 GPU 
nodes 
– MPC-OPT and ZFP-OPT are optimized and integrated into MVAPICH2-GDR library 

• MPC-OPT reduced latency up to 77.1% on RTX5000 and 62.5% on V100 at 
32Mbytes

• ZFP-OPT reduced latency up to 83.1% on RTX5000 and 78.3% on V100 at 
32Mbytes 

Inter-node GPU-GPU latency
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• MPC-OPT reduced latency up to 60.6% on RTX5000 at 32Mbytes
– High-speed NVLink on Longhorn is faster than the MPC compression/decompression 

• ZFP-OPT reduced latency up to 79.8% on RTX5000 and 40.5% on V100 at 
32Mbytes

Intra-node GPU-GPU latency

256K 512K 1M 2M 4M 8M 16M 32M
10

100

1000

10000 Baseline 
MPC-OPT
ZFP-OPT (rate:16)
ZFP-OPT (rate:8)
ZFP-OPT (rate:4)

Message Size (Byte)

La
te

nc
y(

us
)

60.6%79.8%

256K 512K 1M 2M 4M 8M 16M 32M
10

100

1000

10000 Baseline 
MPC-OPT
ZFP-OPT (rate:16)
ZFP-OPT (rate:8)
ZFP-OPT (rate:4)

Message Size (Byte)

La
te

nc
y(

us
) 40.5

%

Frontra-RTX5000, Intra-node D-D 
latency

Longhorn-V100, Intra-node D-D 
latency



 MUG ‘21 10
Network Based Computing 
Laboratory

• MPI_Bcast        MPC-OPT: 57% benefits on msg_sppm, ZFP-OPT(rate:4): 85% benefits

• MPI_Allgather MPC-OPT: 30% benefits on msg_sppm, ZFP-OPT(rate:4): 73% benefits
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• Weak-Scaling of HPC application AWP-ODC on Lassen cluster (V100 nodes) 
• MPC-OPT achieves up to +18% GPU computing flops, -15% runtime per 

timestep
• ZFP-OPT achieves up to +35% GPU computing flops, -26% runtime per 

timestep (rate=8, compression ratio=4)

Application Results (AWP-ODC)
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• Data science framework Dask on RI2 cluster (V100 nodes)
• Dask benchmark creates cuPy array and distributes its chunks across Dask workers
• ZFP-OPT achieves up to 1.56x throughput, -37% runtime (rate=8, compression ratio=4)

Application Results (Dask)
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• Presented on-the-fly compression techniques for optimizing GPU-to-GPU 
communication in an MPI library

• Enhanced GPU based pt2pt communication in MVAPICH2-GDR with optimized MPC 
and ZFP

• Benchmark-level Benefits (GPU-GPU Latency)

• Application-level Benefits
– AWP-ODC: up to 18% (MPC-OPT on 512 GPUs) and 35% (ZFP-OPT on 128 GPUs) 

improvement of GPU computing flops
– Dask: up to 1.56x speedup of throughput and 37% reduced runtime

• Future work
– Study and incorporate more GPU-based compression algorithms (e.g. cuSZ, NVIDIA nvCOMP, 

etc.) 
– Exploit on-the-fly compression for various collective operations and DL applications

Conclusions and Future Work

Compression Inter-node Intra-node MPI_Bcast MPI_Allgather
MPC-OPT 77.1% 60.6% 57% 30%
ZFP-OPT 83.1% 79.8% 85% 73%



 MUG ‘21 14
Network Based Computing 
Laboratory

Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

Zhou.2595@osu.edu  

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning 
Project

http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

Follow us on

https://twitter.com/mvapich 
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http://nowlab.cse.ohio-state.edu/
mailto:panda@cse.ohio-state.edu
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