
Towards Java-based HPC using the MVAPICH2 Library

9th MVAPICH User Group (MUG) Meeting '21

Follow us on

https://twitter.com/mvapich

Aamir Shafi

The Ohio State University
shafi.16@osu.edu

https://cse.osu.edu/people/shafi.16

https://twitter.com/mvapich
https://twitter.com/mvapich
mailto:shafi.16@osu.edu
https://cse.osu.edu/people/shafi.16

MUG ‘21 2
Network Based Computing
Laboratory

• Introduction
• Design and Implementation of Java Bindings for

MVAPICH2
• Performance Evaluation
• Summary

Presentation Outline

MUG ‘21 3
Network Based Computing
Laboratory

• Standardization efforts for developing Java bindings for MPI:
– The Java Grande Forum—formed in late 90s—came up with an API called mpiJava

1.2
– The MPJ API followed that is a minor upgrade to the mpiJava 1.2 API

• Existing Java MPI Libraries:
– mpiJava: http://www.hpjava.org/mpiJava.html
– MPJ Express: http://mpjexpress.org/
– FastMPJ: http://gac.udc.es/~rober/fastmpj
– Open MPI Java Bindings: https://www.open-mpi.org/faq/?category=java
– API mismatches between these MPI libraries

Background

http://www.hpjava.org/mpiJava.html
http://mpjexpress.org/
http://gac.udc.es/~rober/fastmpj
https://www.open-mpi.org/faq/?category=java

MUG ‘21 4
Network Based Computing
Laboratory

• Portability
• A popular language in colleges and software industry:

– Large pool of software developers
– A useful educational tool

• Higher programming abstractions including OO features
• One of the largely adopted language by the Big Data community
• Improved compile and runtime checking of the code
• Automatic garbage collection
• Support for multithreading
• Rich collection of support libraries

Why Java?

MUG ‘21 5
Network Based Computing
Laboratory

• This effort aims to produce prototype Java bindings for the MVAPICH2 library
– Initially we plan to roll out support for common MPI functions including:

• Blocking/non-blocking point-to-point functions
• Blocking collective functions
• Strided blocking collective functions
• Communicator and group management functions

– Java bindings in the MVAPICH2 library will initially support Open MPI Java
bindings with slight modifications

– Also included is a test-suite to check correctness of Java bindings
• In a parallel effort, we are also adding support for Java micro-benchmarks in

Ohio Micro-Benchmark (OMB) suite:
– Point-to-point, blocking collectives, and strided blocking collectives

Introduction

MUG ‘21 6
Network Based Computing
Laboratory

Architecture of MVAPICH2 Software Family
High Performance Parallel Programming Models

Message Passing Interface
(MPI)

PGAS
(UPC, OpenSHMEM, CAF, UPC++)

Hybrid --- MPI + X
(MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication Runtime
Diverse APIs and Mechanisms

Point-to-
point

Primitives

Point-to-
point

Primitives
Collectives
Algorithms
Collectives
Algorithms

Energy-
Awareness

Energy-
Awareness

Remote
Memory
Access

Remote
Memory
Access

I/O and
File

Systems

I/O and
File

Systems

Fault
Tolerance

Fault
Tolerance

Virtualizatio
n

Virtualizatio
n

Active
Messages

Active
Messages

Job
Startup

Job
Startup

Introspecti
on &

Analysis

Introspecti
on &

Analysis

Support for Modern Networking Technology
(InfiniBand, iWARP, RoCE, Omni-Path)

Support for Modern Multi-/Many-core Architectures
(Intel-Xeon, OpenPower, Xeon-Phi, ARM, NVIDIA GPGPU)

Transport Protocols Modern Features

RCRC XR
C

XR
C UDUD DCDC SHARP

2*

SHARP
2*

OD
P

OD
P

SR-
IOV
SR-
IOV

Multi
Rail

Multi
Rail

Transport Mechanisms
Shared
Memor

y

Shared
Memor

y
CM
A

CM
A

IVSHME
M

IVSHME
M

Modern Features
MCDRAM

*

MCDRAM
*

NVLin
k

NVLin
k

CAP
I*

CAP
I*

* Upcoming

XPMEMXPMEM

Java Bindings

MUG ‘21 7
Network Based Computing
Laboratory

• Design adopted by an earlier
Java MPI library (MPJ Express)

• Makes it easier to support new
interconnects

• But higher-level MPI concepts
are fully implemented in Java

• Pure Java communication
devices exhibit poor performance

• Based on this, the current Java
bindings aim to keep Java layer
“as minimal as possible”

Earlier Approaches

Java Virtual Machine (JVM)
Java Native

Interface (JNI) Java Threads Java New I/O
(NIO)

OS, Hardware, APIs, Drivers

MVAPICH2 TCP/IP

The xdev layer

smpdev niodev

hybdev

ibdev

InfiniBand Verbs

Abstract MPJ Device (mpjdev) layer
Native mpjdev Pure Java mpjdev

Java MPI Library
Pt2pt Collectives Groups Communicators

MUG ‘21 8
Network Based Computing
Laboratory

Implementation: Data movement for Blocking
send()/recv()

MPI.COMM_WORLD.Send(sArray, 4, MPI.INT, dest, tag)

Sender Receiver
MPI.COMM_WORLD.Recv(rArray, 4, MPI.INT, dest, tag)

Java Code

Heap Memory
sArray

Java Native Interface

C Code
Native Memory

s_array

MPI_Send(s_array, 4, MPI_INT, dest, tag, ..)

Java Code

Heap Memory
rArray

Java Native Interface

C Code
Native Memory

r_array

MPI_Recv(r_rarray, 4, MPI_INT, dest, tag, ..)

11

22

33

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu

MUG ‘21 9
Network Based Computing
Laboratory

//Blocking Comm.send() method
void send(Object buf …) {
 nativeSend(buf …);
}

Implementation: Passing Data from Java to C
code

Java Code

Heap Memory
array

Java Native Interface

C Code
Native Memory

c_array

//C implementation of nativeSend
JNIEXPORT void JNICALL nativeSend(JNIEnv *env,
 jobject buf …)
{
 void *bufptr = (void *)(*env)->GetIntArrayElements(buf
…) ;
 MPI_Send(bufptr …) ;
 (*env)->ReleaseByteArrayElements(.. bufptr ..);
}

Java Virtual Machine
int[] array = new int[100];
MPI.COMM_WORLD.send(array, 100, MPI.INT, dst, tag);

Application
code

C send()
code invoked

from Java using
JNI

Java send()
code

MUG ‘21 10
Network Based Computing
Laboratory

• MVAPICH2 Java bindings support communication
to/from:
– Java arrays :

• There is 1 extra data copy at sender and receiver each!
– Direct ByteBuffers

• For Java arrays our implementation uses a memory
management library based on the direct ByteBuffers
(inspired from MPJ Express):

• Key takeaway - It is possible to retrieve pointer to direct
ByteBuffer as these are not subject to garbage collection

• To tackle this extra copy, our bindings support
exchanging data from direct ByteBuffers:

Implementation: Our Approach (Direct
ByteBuffers)

Java Code

Heap Memory

Indirect
ByteBuffer

Java Native Interface

C Code
Native Memory

Actual
Memory

Java Virtual Machine

Direct
ByteBuffer

MPI.COMM_WORLD.Send(directByteBuffer, 4, MPI.BYTE, dest, tag)

MUG ‘21 11
Network Based Computing
Laboratory

Preliminary Latency Comparison

MUG ‘21 12
Network Based Computing
Laboratory

Preliminary Bandwidth Comparison
• The bandwidth graph for Buffer vs.

Arrays show that arrays are slower
due to an additional data copy

• It is not possible to acquire bandwidth
numbers with Open MPI Java
bindings because it does not support
communicating Java arrays with non-
blocking send/recv methods:
– Non-blocking methods are used by

OSUBandwidth benchmark to
measure bandwidth

– Communicating Java arrays with non-
blocking MPI methods has been part
of all Java MPI libraries and APIs

Java arrays perform much slower due to extra
copies!

Java arrays perform much slower due to extra
copies!

Should we just use ByteBuffers in applications?Should we just use ByteBuffers in applications?

MUG ‘21 13
Network Based Computing
Laboratory

• Is it beneficial to use ByteBuffers as
compared to Java arrays?
– Will force applications to use

(and store data) in ByteBuffers
– However, while communicating

ByteBuffers is faster than arrays,
reading/writing data from
ByteBuffer is slower than arrays

• Latency comparison with data
validation (used as dummy compute)

Preliminary Latency Comparison with Data Validation

boolean validateDataAfterRecv(byte[] src, byte[] dst, int count) {
 for(int i=0 ; i<count ; i++) {
 if(src[i] != dst[i])
 return false;
 }
 return true;
}

boolean validateDataAfterRecv(byte[] src, byte[] dst, int count) {
 for(int i=0 ; i<count ; i++) {
 if(src[i] != dst[i])
 return false;
 }
 return true;
}

boolean validateDataAfterRecv(ByteBuffer src, ByteBuffer dst, int
count) {
 for(int i=0 ; i<count ; i++) {
 if(src.get() != dst.get())
 return false;
 }
 return true;
}

boolean validateDataAfterRecv(ByteBuffer src, ByteBuffer dst, int
count) {
 for(int i=0 ; i<count ; i++) {
 if(src.get() != dst.get())
 return false;
 }
 return true;
}

MUG ‘21 14
Network Based Computing
Laboratory

Preliminary Bcast Comparison – 8 processes

1.51x better on average (buffer
API)

1.51x better on average (buffer
API)

MUG ‘21 15
Network Based Computing
Laboratory

• The talk presented early experiences of implementing Java bindings
for MVAPICH2:
– Relies on a memory management layer that exploits direct ByteBuffers
– Supported features:

• Blocking/non-blocking point-to-point functions
• Blocking collective functions
• Strided blocking collective functions
• Communicator and group management functions

• Future work:
– Continue further development of Java bindings
– Evaluate performance using benchmarks (NPB) and real-world applications
– Release Java bindings and Java OMB

Summary

MUG ‘21 16
Network Based Computing
Laboratory

Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

shafi.16@osu.edu

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning
Project

http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

Follow us on

https://twitter.com/mvapich

http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
mailto:shafi.16@osu.edu
https://twitter.com/mvapich

MUG ‘21 17
Network Based Computing
Laboratory

• In order copy data (primitive datatype arrays) from Java to C code, the JNI API
provides:
– Method 1: Get<Type>ArrayElements and Release<Type>ArrayElements routines:

• <Type> are primitive Java datatypes like int, byte, float etc.

– Method 2: GetPrimitiveArrayCritical and ReleasePrimitiveArrayCritical routines

• Most Java Virtual Machines (JVMs) today do not support “pinning”:
– Hence passing data from Java to C incurs a true data copy

Implementation: Passing Data from Java to C
code

	Slide 1
	Presentation Outline
	Background
	Why Java?
	Introduction
	Architecture of MVAPICH2 Software Family
	Earlier Approaches
	Implementation: Data movement for Blocking send()/recv()
	Implementation: Passing Data from Java to C code
	Implementation: Our Approach (Direct ByteBuffers)
	Preliminary Latency Comparison
	Preliminary Bandwidth Comparison
	Preliminary Latency Comparison with Data Validation
	Preliminary Bcast Comparison – 8 processes
	Summary
	Thank You!
	Implementation: Passing Data from Java to C code

