
Alan Ayala* , Stan Tomov*,
Miroslav Stoyanov+, Azzam Haidar∆,

Jack Dongarra∗+⊡

An Overview of FFT Computation towards Exascale -
Accelerating the Communication Cost of parallel 3-D FFT

* University of Tennessee at Knoxville – Innovative Computing Laboratory

+ Oak Ridge National Laboratory
∆ NVIDIA Corporation

The 9th Annual MVAPICH User Group (MUG) Meeting

⊡University of Manchester

CONTENT
1. Fast Fourier Transform

- Single-device computation
- Parallel algorithm and libraries capabilities
- heFFTe library

2. FFT on large scale systems
- Communication bottleneck
- Scalability
- MPI challenges

- Phase diagrams
- Effect of MPI distribution

3. Performance results and conclusions
1/20

1/20

1. Fast Fourier Transform Computation

2/20

1. Fast Fourier Transform Computation

2/20

Fast Fourier Transform

Let %𝑥 ∈ ℝ) and %𝑦 = 𝐹𝐹𝑇(%𝑥), then:

Cosmology
HACC

Particle Simulations
CoPa

Molecular Dynamics
Exaalt

Deep Learning

Signal processing

PDE solutions

1.1. State-of-the-art: Single-device FFT libraries

Library Language Developer GPU support Open
Source

2D & 3D
support

Stride data
support

CUFFT C NVIDIA ✓ ✓ ✓
ESSL C++ IBM ✓ ✓
FFTE Fortran Riken ✓ ✓ ✓

FFTPACK Fortran NCAR ✓
FFTS C U. Waikato ✓

FFTW3 C MIT ✓ ✓ ✓
FFTX C LBNL ✓ ✓ ✓ ✓
KFR C++ KFR ✓ ✓
KISS C++ Sandia ✓ ✓ ✓

OneMKL C Intel ✓ ✓ ✓
ROCM C++ AMD ✓ ✓ ✓ ✓
VkFFT C++ D. Tolmachev ✓ ✓ ✓ ✓

3/20

1.2. Distributed FFT computation (3-D case)

4/20

1.2. Distributed FFT computation (3-D case)

4/20

3-D FFT parallel algorithm

1: From the computation resources, create grid of
processes (heuristic approach)

2: Distribute data, define shapes at every transpose phase

3: Choose algorithms and define or tune parameters

4: For each direction (x,y,z):
- Compute 1D or 2D FFTs
- Locally transpose data
- Pack data (either in contiguous or stride memory)
- Transfer data (Binary or Collective MPI Communication)

5: At output stage, scale and reorder indices, if required

Kernels need:
- 1D FFT (e.g. FFTW3, CUFFT)
- Packers/Unpackers
- A message passing interface (MPI)

1.2. Distributed FFT computation (3-D case)

4/20

Schematically,
Processor 1 is doing
the following tasks:

1.2. Distributed FFT computation (3-D case)

5/20

Different implementations for parallel FFT computation:

1.3 Distributed FFT libraries

Library Developer Language CPU Backend GPU Backend Real-to-
Complex

Slab
Decomp.

Brick
Decomp.

2DECOMP&FFT NAG Fortran FFTW3, ESSL CUFFT ✓ ✓
AccFFT Georgia Tech C++ FFTW3 CUFFT ✓

Cluster FFT Intel Fortran MKL GenFFT
CRAFFT Cray Fortran FFTW3 ACML ✓

FFTE U. Tsukuba /
Riken Fortran FFTE CUFFT ✓

FFTMPI Sandia C++ FFTW3, MKL,
KISS ✓

FFTMPI-KK Sandia C++ CUFFT
FFTW3 MIT C FFTW3 ✓
heFFTe ICL - UTK C++ FFTW3, MKL,

Stock
CUFFT, ROCM,

OneMKL ✓ ✓ ✓
nb3DFFT RWTH Aachen Fortran ESSL ✓
P3DFFT UC San Diego C++ FFTW3 ✓ ✓
spFFT ETH C++ FFTW3 CUFFT, ROCM ✓ ✓
SWFFT Argonne C++ FFTW3 ✓

7/20

1.4 MPI frameworks on distributed FFT libraries

7/20

FFT Benchmarking Initiative - ICL
At ICL we are working a benchmark harness for evaluating the performance and scalability of state-of-the-art
libraries towards Exascale computing.

Interim Report on Benchmarking FFT Libraries on High Performance Systems
Innovative Computing Laboratory Technical Report, July 2021
University of Tennessee

Refer to:

https://www.icl.utk.edu/publications/interim-report-benchmarking-fft-libraries-high-performance-systems

8/20

ECP
Ecosystem

ExaFELWarpXCoPaCabanaEXAALT HACC

heFFTe v2.1
FFTMPI

SWFFT

CUDA/HIP

MPI

MPI-X

AccFFT

FFTE

P3DFFT cuFFT

rocFFT
MAGMA

Shared
Memory

Accelerators

OpenMP

OneMKL

FFTW

cuBLAS rocBLAS

OneMKL

ExaMPI

FFT-X

LA
libraries ECP Runtime /

Comm. APIs
FFT CPU
libraries

FFT GPU
libraries

bitbucket.org/icl/heffte/ icl.utk.edu/fft/8/20

https://bitbucket.org/icl/heffte/

heFFTe API
1. Definition of input/output processors grids (normally provided by users):

std::array<int,3> proc_i std::array<int,3> proc_o

9/20

If user only has their MPI communicator and number of processors, we provide a routine to generate above grid of processors:
heffte ::proc_setup_min_surface(my_mpi_comm, nprocs);

heFFTe API

std::vector<box3d<index>> inboxes = heffte::split_world(world, proc_i);
std::vector<box3d<index>> outboxes = heffte::split_world(world, proc_o);

1. Definition of input/output processors grids (normally provided by users):

2. Distribute data among processors using box3D objects at input and output :

If user only has their MPI communicator and number of processors, we provide a routine to generate above grid of processors:
heffte ::proc_setup_min_surface(my_mpi_comm, nprocs);

std::array<int,3> proc_i std::array<int,3> proc_o

10/20

heFFTe API
4. Create FFT plan:

auto fft = heffte :: make_fft3d<backend_tag>(inboxes[me], outboxes[me], my_mpi_comm, options);

backend_tag: Corresponds to the FFT library for local computations (e.g., FFTW3, CUFFT, MKL)
options: Contains information from flags set by users

11/20

heFFTe API

fft.forward(output_array, output_array, workspace.data(), scale::full);
fft.backward(output_array, output_array, workspace.data());

4. Create FFT plan:

5. Compute an in-place parallel 3D FFT:

auto fft = heffte :: make_fft3d<backend_tag>(inboxes[me], outboxes[me], my_mpi_comm, options);

backend_tag: Corresponds to the FFT library for local computations (e.g., FFTW3, CUFFT, MKL)
options: Contains information from flags set by users

workspace.data(): Can be given by the user or calculated by heFFTe for stablishing a computation workspace
scale::… : The scaling options are full, none and symmetric

std::complex<my_precision_type> *output_array;

11/20

heFFTe API

fft.forward(output_array, output_array, workspace.data(), scale::full);
fft.backward(output_array, output_array, workspace.data());

4. Create FFT plan:

5. Compute an in-place parallel 3D FFT:

auto fft = heffte :: make_fft3d<backend_tag>(inboxes[me], outboxes[me], my_mpi_comm, options);

backend_tag: Corresponds to the FFT library for local computations (e.g., FFTW3, CUFFT, MKL)
options: Contains information from flags set by users

heffte::add_trace(“Initiating tracing”);

workspace.data(): Can be given by the user or calculated by heFFTe for stablishing a computation workspace
scale::… : The scaling options are full, none and symmetric

6. Tracing functionality can be added within your code to generate a runtime trace for performance analysis.

heffte::add_trace(“Ending tracing”);

---Code to be traced ---

std::complex<my_precision_type> *output_array;

11/20

-D_HEFFTE_ENABLE_TRACE=ON

Experimental Setup

Our experiments were
performed using up to 1,024
Summit nodes, out of a total

of 4,608. Each node
consists of two sockets, each
composed of a 22-core IBM

POWER9 CPU and 3
NVIDIA Volta V100 GPUs.

12/20

12/20

2.1 Performance improvement from CPU to GPU

13/20

2.2 Strong Scalability - Summit

15/20

2.3 Communication bottleneck

16/20

2.3 Communication bottleneck

16/20

3.1 Performance analysis - MPI
Our experiments show that further tuning of MPI parameters and network topologies can
help to get faster computation, specially for small size number of resources.

For the particular case of Summit supercomputer, we see that tuning between MPI
distributions can help us to approach to the bandwidth peak of ~23.5 GB/s.

15/20

3.2 Impact of MPI on scaling

15/20

Spectrum MPI 10.3 MVPICH-GDR 2.3.5 OpenMPI + UCX

In the following figures we explore the scalability of MPI_AlltoAllv via a heFFTe experiment on a 10243

complex-to-complex 3-D FFT, using 6 NVIDIA V100GPUs per node.

3.2 Impact of MPI on scaling

15/20

Up to 64 nodes (192 GPUs) From 128 to 1024 nodes (6144 GPUs)

3.2 Impact of MPI on scaling

15/20

Up to 64 nodes (192 GPUs) From 128 to 1024 nodes (6144 GPUs)

MVAPICH is around 10-20% faster than SpectrumMPI 10.3

3.2 Impact of MPI on scaling

15/20

Up to 64 nodes (192 GPUs) From 128 to 1024 nodes (6144 GPUs)

MVAPICH is around 10-20% faster than SpectrumMPI 10.3 No much difference for large number of nodes

3.3 Performance analysis
In the following figure we compare the runtime to compute a 3-D transform of size 10243,
using double-precision complex random input.

18/20

In the following figure we compare the runtime to compute a 3-D transform of size 10243,
using double-precision complex random input.

19/20

3.3 Performance analysis

Conclusions
- We presented an analysis of performance and scalability for 3-D

parallel FFT libraries and analyzed the computation on upcoming
large scale systems.

- Scalability of FFTs is highly impacted by how libraries handle
communication for a large number of process units.

- Tuning can help to further accelerate the performance of current
FFT software. The choice of the MPI distribution can help to
further speedup; however, this is architecture dependent.

- Scalability towards Exascale would require (auto) tuning of
algorithmic parameters and bandwidth management.

