
How to Boost the Performance of your MPI and PGAS Applications 
with MVAPICH2 Libraries? 

A Tutorial at 
 

MVAPICH User Group Meeting 2016 
by 

The MVAPICH Group 

The Ohio State University 

E-mail: panda@cse.ohio-state.edu 

http://mvapich.cse.ohio-state.edu/ 

http://www.cse.ohio-state.edu/%7Epanda


MUG’16 2 Network Based Computing Laboratory 

MVAPICH2 Software Family  
Requirements Library 

MPI with IB, iWARP and RoCE MVAPICH2 

Advanced MPI, OSU INAM, PGAS and MPI+PGAS with IB and RoCE MVAPICH2-X 

MPI with IB & GPU MVAPICH2-GDR 

MPI with IB & MIC MVAPICH2-MIC 

HPC Cloud with MPI & IB MVAPICH2-Virt 

Energy-aware MPI with IB, iWARP and RoCE MVAPICH2-EA 

MPI Energy Monitoring Tool OEMT 

InfiniBand Network Analysis and Monitoring OSU INAM 

Microbenchmarks for Measuring MPI and PGAS Performance OMB 



MUG’16 3 Network Based Computing Laboratory 

• Runtime Optimization and Tuning Flexibility in  
– MVAPICH2 

• Job start-up 

• Point-to-point Inter-node Protocol 

• Transport Type Selection 

• Process Mapping and Point-to-point Intra-node Protocols 

• MPI-3 RMA 

• Collectives 

• OMB 

– MVAPICH2-GDR 

– MVAPICH2-X 

– MVAPICH2-MIC 

– MVAPICH2-EA 

– MVAPICH2-Virt 

• Application Best Practices 

• Overview of Configuration and Debugging Support 

• Conclusions and Final Q&A 

Presentation Overview 



MUG’16 4 Network Based Computing Laboratory 

MVAPICH2 Interfaces (Latest Release 2.2rc2)  

Major Computing Platforms: IA-32, EM64T, OpenPower, Nehalem, Westmere, Sandybridge, 
Ivybridge, Haswell, Opteron, Magny,  ..  

Support for Different PCI/PCIe Interfaces 



MUG’16 5 Network Based Computing Laboratory 

• Released on 08/08/2016 

• Major Features and Enhancements 

– Based on MPICH-3.1.4 

– Enhanced performance for MPI_Comm_split through new bitonic algorithm 

– Enable graceful fallback to Shared Memory if LiMIC2 or CMA transfer fails 

– Enable support for multiple MPI initializations 

– Remove verbs dependency when building the PSM and PSM2 channels 

– Allow processes to request MPI_THREAD_MULTIPLE when socket or NUMA node level affinity is specified 

– Point-to-point and collective performance optimization for Intel Knights Landing 
– Automatic detection and tuning for InfiniBand EDR HCAs 

– Collective tuning for Opal@LLNL, Bridges@PSC, and Stampede-1.5@TACC 

– Tuning and architecture detection for Intel Broadwell processors 

– Warn user to reconfigure library if rank type is not large enough to represent all ranks in job 

– Unify process affinity support in Gen2, PSM and PSM2 channels 

MVAPICH2 2.2rc2 

mailto:Stampede-1.5@TACC


MUG’16 6 Network Based Computing Laboratory 

• Runtime Optimization and Tuning Flexibility in  
– MVAPICH2 

• Job start-up 

• Point-to-point Inter-node Protocol 

• Transport Type Selection 

• Process Mapping and Point-to-point Intra-node Protocols 

• MPI-3 RMA 

• Collectives 

• OMB 

– MVAPICH2-GDR 

– MVAPICH2-X 

– MVAPICH2-MIC 

– MVAPICH2-EA 

– MVAPICH2-Virt 

• Application Best Practices 

• Overview of Configuration and Debugging Support 

• Conclusions and Final Q&A 

Presentation Overview 



MUG’16 7 Network Based Computing Laboratory 

Job-Launchers supported by MVAPICH2 

Job-Launchers supported 
by MVAPICH2 

Core Launchers Wrappers and interfaces 

mpirun_rsh mpiexec.hydra mpiexec mpiexec.mpirun_rsh 

 - Default and preferred   
launcher for all interfaces 

 - Supports scalable 
hierarchical job-startup 
mechanism 

 Developed at ANL by 
the MPICH team 

 To support interfaces 
prescribed by the 
MPI standard 

 Hydra-like interface 
to mpirun_rsh 

SLURM 

TORQUE 

 Compatibility with external 
resource managers 



MUG’16 8 Network Based Computing Laboratory 

• Near-constant MPI and OpenSHMEM 
initialization time at any process count 

• 10x and 30x improvement in startup time 
of  MPI and OpenSHMEM respectively at 
16,384 processes 

• Memory consumption reduced for remote 
endpoint information by O(processes per 
node) 

• 1GB Memory saved per node with 1M 
processes and 16 processes per node 

 

Towards High Performance and Scalable Startup at Exascale 

P M 

O 

Job Startup Performance 

M
em

or
y 

Re
qu

ire
d 

to
 S

to
re

 
En

dp
oi

nt
 In

fo
rm

at
io

n 
a b c d 

e P 

M 

PGAS – State of the art 

MPI – State of the art 

O PGAS/MPI – Optimized 

PMIX_Ring 

PMIX_Ibarrier 

PMIX_Iallgather 

Shmem based PMI 

b 

c 

d 

e 

a 
On-demand  
Connection 

        On-demand Connection Management for OpenSHMEM and OpenSHMEM+MPI.  S. Chakraborty, H. Subramoni, J. Perkins, A. A. Awan, and D K 
Panda, 20th International Workshop on High-level Parallel Programming Models and Supportive Environments (HIPS ’15) 

        PMI Extensions for Scalable MPI Startup. S. Chakraborty, H. Subramoni, A. Moody, J. Perkins, M. Arnold, and D K Panda, Proceedings of the 21st 
European MPI Users' Group Meeting (EuroMPI/Asia ’14) 

               Non-blocking PMI Extensions for Fast MPI Startup. S. Chakraborty, H. Subramoni, A. Moody, A. Venkatesh, J. Perkins, and D K Panda, 15th 
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid ’15) 

        SHMEMPMI – Shared Memory based PMI for Improved Performance and Scalability. S. Chakraborty, H. Subramoni, J. Perkins, and D K Panda, 
16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid ’16) , Accepted for Publication 

a 

b 

c d 

e 



MUG’16 9 Network Based Computing Laboratory 

0

10

20

30

40

50

16 64 256 1K 4K 16K

Ti
m

e 
Ta

ke
n 

fo
r M

PI
_I

ni
t 

(s
ec

on
ds

) 

Number of Processes 

Hello World - MV2-2.0 +
Default SLURM
MPI_Init - MV2-2.0 +
Default SLURM
Hello World - MV2-2.1 +
Optimized SLURM
MPI_Init - MV2-2.1 +
Optimized SLURM

• Address exchange over PMI is the major 
bottleneck in job startup 

• Non-blocking PMI exchange hides this cost 
by overlapping it with application 
initialization and computation 

• New PMI operation PMIX_Allgather for 
improved symmetric data transfer 

 

• Near-constant MPI_Init at any scale 

• MPI_Init is 59 times faster at 8,192 
processes (512 nodes) 

• Hello World (MPI_Init + MPI_Finalize) takes 
5.7 times less time at 8,192 processes 

Non-blocking Process Management Interface (PMI) Primitives for Scalable 
MPI Startup   

Available since MVAPICH2-2.1 and as patch for SLURM-15.08.8 and SLURM-16.05.1 



MUG’16 10 Network Based Computing Laboratory 

• SHMEMPMI allows MPI processes to directly read remote endpoint (EP) information from the process 
manager through shared memory segments 

• Only a single copy per node -  O(processes per node) reduction in memory usage  

• Estimated savings of 1GB per node with 1 million processes and 16 processes per node 

• Up to 1,000 times faster PMI Gets compared to default design 

• Available for MVAPICH2 2.2rc1 and SLURM-15.08.8 and SLURM-16.05.1 

Process Management Interface (PMI) over Shared Memory (SHMEMPMI) 

0
50

100
150
200
250
300

1 2 4 8 16 32

Ti
m

e 
Ta

ke
n 

(m
ill

ise
co

nd
s)

 

Number of Processes per Node 

Time Taken by one PMI_Get 
Default

SHMEMPMI

0.0001
0.001

0.01
0.1

1
10

100
1000

10000

16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1MM

em
or

y 
U

sa
ge

 p
er

 N
od

e 
(M

B)
 

Number of Processes per Job 

Memory Usage for Remote EP Information 
Fence - Default
Allgather - Default
Fence - Shmem
Allgather - Shmem

Estimated 
10

00
x 

Actual 

16x 



MUG’16 11 Network Based Computing Laboratory 

Using SLURM as launcher 
• Use PMI2 

– ./configure --with-pm=slurm --with-pmi=pmi2 

– srun --mpi=pmi2 ./a.out 

• Use PMI Extensions 

– Patch for SLURM 15 and 16 available at 
http://mvapich.cse.ohio-
state.edu/download/mvapich 

– PMI Extensions are automatically detected by 
MVAPICH2 

 

Using mpirun_rsh as launcher 

• MV2_MT_DEGREE 
– degree of the hierarchical tree used by 

mpirun_rsh 

• MV2_FASTSSH_THRESHOLD 
– #nodes beyond which hierarchical-ssh scheme is 

used 

• MV2_NPROCS_THRESHOLD  
– #nodes beyond which file-based communication 

is used for hierarchical-ssh during start up 

 

 

How to Get the Best Startup Performance with MVAPICH2? 

• MV2_HOMOGENEOUS_CLUSTER=1  //Set for homogenous clusters 

• MV2_ON_DEMAND_UD_INFO_EXCHANGE=1 //Enable UD based address exchange 

http://mvapich.cse.ohio-state.edu/download/mvapich/osu-shmempmi-slurm-15.08.8.patch
http://mvapich.cse.ohio-state.edu/download/mvapich/osu-shmempmi-slurm-15.08.8.patch


MUG’16 12 Network Based Computing Laboratory 

• Runtime Optimization and Tuning Flexibility in  
– MVAPICH2 

• Job start-up 

• Point-to-point Inter-node Protocol 

– Eager and Rendezvous Protocols 

– RDMA Fast Path 

• Transport Type Selection 

• Process Mapping and Point-to-point Intra-node Protocols 

• MPI-3 RMA 

• Collectives 

• OMB 

– MVAPICH2-GDR 

– MVAPICH2-X 

– MVAPICH2-MIC 

– MVAPICH2-EA 

– MVAPICH2-Virt 

• Application Best Practices 

• Overview of Configuration and Debugging Support 

• Conclusions and Final Q&A 

Presentation Overview 



MUG’16 13 Network Based Computing Laboratory 

Inter-node Point-to-Point Tuning: Eager Thresholds 

• Switching Eager to Rendezvous transfer 

• Default: Architecture dependent on common platforms, in order to achieve both best performance and 
memory footprint  

• Threshold can be modified by users to get smooth performance across message sizes 

• mpirun_rsh –np  2 –hostfile hostfile MV2_IBA_EAGER_THRESHOLD=32K a.out 

• Memory footprint can increase along with eager threshold 

0

5

10

15

20

25

1 2 4 8 16 32 64 128 256 512 1K 2K 4k 8k 16k 32k

La
te

nc
y 

(u
s)

 

Message Size (Bytes) 

Eager Rendezvous

Eager threshold 

Eager vs Rendezvous 

0
2
4
6
8

10
12
14
16
18

0 1 2 4 8 16 32 64 128256512 1K 2K 4K 8K 16K32K64K

La
te

nc
y 

(u
s)

 

Message Size (Bytes) 

eager_th=1K
eager_th=2K
eager_th=4K
eager_th=8K
eager_th=16K
eager_th=32K

Impact of Eager Threshold 



MUG’16 14 Network Based Computing Laboratory 

0

1

2

3

4

5

6

0 1 2 4 8 16 32 64 128 256 512 1K 2K

La
te

nc
y 

(u
s)

 

Message Size (Bytes) 

RDMA FastPath Send/Recv

Inter-node Point-to-Point Tuning: Number of Buffers and RNDV Protocols 

• RDMA Fast Path has advantages for smaller message range (default is on) 
• Disable: mpirun_rsh –np  2 –hostfile hostfile MV2_USE_RDMA_FASTPATH=0 a.out 

• Adjust the number of RDMA Fast Path buffers (benchmark window size = 64): 
• mpirun_rsh –np 2 –hostfile hostfile MV2_NUM_RDMA_BUFFER=64 a.out 

• Switch between Rendezvous protocols depending on applications: 
• mpirun_rsh –np 2 –hostfile hostfile MV2_RNDV_PROTOCOL=RGET a.out (Default: RPUT)    

Eager: Send/Recv vs RDMA FP 

0

0.5

1

1.5

2

2.5

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2k 1M

M
es

sa
ge

 R
at

e 
(M

/s
) 

Message Size (Bytes) 

num_buffers=8
num_buffers=16
num_buffers=32
num_buffers=64
num_buffers=128

Impact of RDMA FP buffers 



MUG’16 15 Network Based Computing Laboratory 

• Runtime Optimization and Tuning Flexibility in  
– MVAPICH2 

• Job start-up 

• Point-to-point Inter-node Protocol 

• Transport Type Selection 

– Shared Receive Queue 

– eXtended Reliable Connect transport protocol 

– UD transport protocol and Hybrid 

– Direct Connected, User Mode Memory Registration and On Demand Paging 

• Process Mapping and Point-to-point Intra-node Protocols 

• MPI-3 RMA 

• Collectives 

• OMB 

– MVAPICH2-GDR 

– MVAPICH2-X 

– MVAPICH2-MIC 

– MVAPICH2-EA 

– MVAPICH2-Virt 

• Overview of Configuration and Debugging Support 

• Conclusions and Final Q&A 

Presentation Overview 



MUG’16 16 Network Based Computing Laboratory 

• SRQ is a hardware mechanism for a process to share receive resources 
(memory) across multiple connections 

– Introduced in InfiniBand specification v1.2 

• 0 < Q << P*((M*N)-1) 

Shared Receive Queue (SRQ) 

Process 

One RQ per connection 

Process 

One SRQ for all connections 

P Q 

(M*N) - 1 



MUG’16 17 Network Based Computing Laboratory 

• SRQ reduces the memory used by 1/6th at 64,000 processes 

Using Shared Receive Queues with MVAPICH2 

Analytical model MPI_Init memory utilization 

0

20

40

60

80

100

120

8 16 32 64 128 256 512

M
em

or
y 

U
se

d 
(M

B)
 

Number of Processes 

MVAPICH2-NO-SRQ

MVAPICH2-SRQ

0

2

4

6

8

10

12

14

M
em

or
y 

U
se

d 
(G

B)
 

Number of Processes 

MVAPICH2-NO-SRQ
MVAPICH2-SRQ

Parameter Significance Default Notes 

MV2_USE_SRQ • Enable / Disable use of SRQ in MVAPICH2  Enabled • Always Enable 

MV2_SRQ_MAX_SIZE • Limits the maximum size of the SRQ 
• Places upper bound on amount of memory used for SRQ 

4096 • Increase to 8192 for large  
  scale runs 

MV2_SRQ_SIZE  
 

• Number of buffers posted to the SRQ 
• Automatically doubled by MVAPICH2 on receiving SRQ  
  LIMIT EVENT from IB HCA 

256 • Upper Bound:  
  MV2_SRQ_MAX_SIZE 
 

• Refer to Shared Receive Queue (SRQ) Tuning section of MVAPICH2 user guide for more information 

• http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.2rc1-userguide.html#x1-1020008.5 



MUG’16 18 Network Based Computing Laboratory 

• Memory usage for 32K processes with 8-cores per node can be 54 MB/process (for connections)  

• NAMD performance improves when there is frequent communication to many peers 

• Enabled by setting MV2_USE_XRC to 1 (Default: Disabled) 

• Requires OFED version > 1.3 

– Unsupported in earlier versions (< 1.3), OFED-3.x and MLNX_OFED-2.0 

– MVAPICH2 build process will automatically disable XRC if unsupported by OFED 

• Automatically enables SRQ and ON-DEMAND connection establishment 

Using eXtended Reliable Connection (XRC) in MVAPICH2 
Memory Usage Performance with NAMD (1024 cores) 

0

100

200

300

400

500

1 4 16 64 256 1K 4K 16KM
em

or
y 

(M
B/

Pr
oc

es
s)

 

Number of Connections 

MVAPICH2-RC
MVAPICH2-XRC

0

0.5

1

1.5

apoa1 er-gre f1atpase jac

N
or

m
al

ize
d 

Ti
m

e 

Dataset 

MVAPICH2-RC MVAPICH2-XRC

• Refer to eXtended Reliable Connection (XRC) section of MVAPICH2 user guide for more information 

• http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.2rc1-userguide.html#x1-1030008.6 



MUG’16 19 Network Based Computing Laboratory 

Using UD Transport with MVAPICH2 

RC (MVAPICH2  2.0b) UD (MVAPICH2 2.0b) 

Number of 
Processes 

Conn. Buffers Struc
t 

Total Buffers Struct Total 

512 22.9 24 0.3 47.2 24 0.2 24.2 

1024 29.5 24 0.6 54.1 24 0.4 24.4 

2048 42.4 24 1.2 67.6 24 0.9 24.9 
0

0.2

0.4

0.6

0.8

1

1.2

128 256 512 1024 2048

N
or

m
al

ize
d 

Ti
m

e 

Number of Processes 

RC UD

• Can use UD transport by configuring MVAPICH2 with the –enable-hybrid 
– Reduces QP cache trashing and memory footprint at large scale 

 

• Refer to Running with scalable UD transport section of MVAPICH2 user guide for more information 

• http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.2rc1-userguide.html#x1-640006.10 

Parameter Significance Default Notes 

MV2_USE_ONLY_UD • Enable only UD transport in hybrid configuration mode Disabled • RC/XRC not used 

MV2_USE_UD_ZCOPY • Enables zero-copy transfers for large messages on UD Enabled • Always Enable when UD enabled 

MV2_UD_RETRY_TIMEOUT • Time (in usec) after which an unacknowledged  
   message will be retried 

500000 • Increase appropriately on large /  
  congested systems 

MV2_UD_RETRY_COUNT • Number of retries before job is aborted 
 

1000 • Increase appropriately on large /  
  congested systems 

Performance with SMG2000 Memory Footprint of MVAPICH2 



MUG’16 20 Network Based Computing Laboratory 

Hybrid (UD/RC/XRC) Mode in MVAPICH2 

• Both UD and RC/XRC have benefits  

• Hybrid for the best of both 

• Enabled by configuring MVAPICH2 with the             
–enable-hybrid 

• Available since MVAPICH2 1.7 as integrated 
interface  

 

 

 

 

0

2

4

6

128 256 512 1024

Ti
m

e 
(u

s)
 

Number of Processes 

UD Hybrid RC

26% 40% 30% 38% 

• Refer to Running with Hybrid UD-RC/XRC section of MVAPICH2 user guide for more information 

• http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.2rc1-userguide.html#x1-650006.11 

Parameter Significance Default Notes 

MV2_USE_UD_HYBRID • Enable / Disable use of UD transport  
   in Hybrid mode 

Enabled • Always Enable 

MV2_HYBRID_ENABLE_THRESHOLD_SIZE • Job size in number of processes beyond 
which hybrid mode will be  enabled 

1024 • Uses RC/XRC connection until  
   job size < threshold 

MV2_HYBRID_MAX_RC_CONN • Maximum number of RC or XRC  
  connections created per process 
• Limits the amount of connection memory 

64 • Prevents HCA QP cache  
  thrashing 

Performance with HPCC Random Ring 



MUG’16 21 Network Based Computing Laboratory 

Minimizing Memory Footprint by Direct Connect (DC) Transport 

N
od

e 
0 P1

 

P0
 

Node 1 

P3 

P2 
Node 3 

P7 

P6 

N
od

e 
2 P5

 

P4
 

IB 
Network 

• Constant connection cost (One QP for any peer) 
• Full Feature Set (RDMA, Atomics etc) 
• Separate objects for send (DC Initiator) and receive (DC Target) 

– DC Target identified by “DCT Number” 
– Messages routed with (DCT Number, LID) 
– Requires same “DC Key” to enable communication 

• Available since MVAPICH2-X 2.2a  

0

0.2

0.4

0.6

0.8

1

1.2

160 320 620

N
or

m
al

ize
d 

Ex
ec

ut
io

n 
Ti

m
e 

Number of Processes 

NAMD - Apoa1: Large data set 

RC DC-Pool UD XRC

10 
22 

47 
97 

1 1 1 
2 

10 10 10 10 

1 1 

3 
5 

1

10

100

80 160 320 640

Co
nn

ec
tio

n 
M

em
or

y 
(K

B)
 

Number of Processes 

Memory Footprint for Alltoall 

RC DC-Pool UD XRC

H. Subramoni, K. Hamidouche, A. Venkatesh, S. Chakraborty and D. K. Panda, Designing MPI Library with Dynamic Connected Transport 
(DCT) of InfiniBand : Early Experiences. IEEE International Supercomputing Conference (ISC ’14) 



MUG’16 22 Network Based Computing Laboratory 

• Introduced by Mellanox to support direct local and remote noncontiguous 
memory access 

– Avoid packing at sender and unpacking at receiver  

• Available since MVAPICH2-X 2.2b 

User-mode Memory Registration (UMR) 

0
50

100
150
200
250
300
350

4K 16K 64K 256K 1M

La
te

nc
y 

 (u
s)

 

Message Size (Bytes) 

Small & Medium Message Latency 

UMR

Default

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

2M 4M 8M 16M

La
te

nc
y 

(u
s)

 

Message Size (Bytes) 

Large Message Latency 

UMR

Default

Connect-IB (54 Gbps): 2.8 GHz Dual Ten-core (IvyBridge) Intel PCI Gen3 with Mellanox IB FDR switch 
M. Li, H. Subramoni, K. Hamidouche, X. Lu and D. K. Panda, High Performance MPI Datatype Support with 
User-mode Memory Registration: Challenges, Designs and Benefits, CLUSTER, 2015 



MUG’16 23 Network Based Computing Laboratory 

• Introduced by Mellanox to support direct remote memory access without pinning 

• Memory regions paged in/out dynamically by the HCA/OS 

• Size of registered buffers can be larger than physical memory  

• Will be available in future MVAPICH2 releases 

On-Demand Paging (ODP) 

Connect-IB (54 Gbps): 2.6 GHz Dual Octa-core (SandyBridge) Intel PCI Gen3 with Mellanox IB FDR switch 

0

200

400

600

800

1000

1200

1400

16 32 64

Pi
n-

do
w

n 
Bu

ffe
r S

ize
 (M

B)
 

Number of Processes 

Graph500 Pin-down Buffer Sizes 

Pin-down ODP

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

16 32 64

Ex
ec

ut
io

n 
Ti

m
e 

(s
) 

Number of Processes 

Graph500 BFS Kernel 

Pin-down ODP



MUG’16 24 Network Based Computing Laboratory 

• Runtime Optimization and Tuning Flexibility in  
– MVAPICH2 

• Job start-up 

• Point-to-point Inter-node Protocol 

• Transport Type Selection 

• Process Mapping and Point-to-point Intra-node Protocols 

– Process to core mapping 

– Shared-memory and LiMIC2/CMA based Communication 

– Architecture-based Tuning 

• MPI-3 RMA 

• Collectives 

• OMB 

– MVAPICH2-GDR 

– MVAPICH2-X 

– MVAPICH2-MIC 

– MVAPICH2-EA 

– MVAPICH2-Virt 

• Application Best Practices 

• Overview of Configuration and Debugging Support 

• Conclusions and Final Q&A 

Presentation Overview 



MUG’16 25 Network Based Computing Laboratory 

Process Mapping support in MVAPICH2 

Process-Mapping support in 
MVAPICH2 

(available since v1.4) 

bunch 
(Default) 

scatter 

core 
(Default) 

socket numanode 

Preset Binding Policies User-defined binding 

MPI rank-to-core binding 

• MVAPICH2 detects processor architecture at job-launch 

 

Policy 

Granularity 



MUG’16 26 Network Based Computing Laboratory 

Preset Process-binding Policies – Bunch 

• “Core” level “Bunch” mapping (Default) 
– MV2_CPU_BINDING_POLICY=bunch 

• “Socket/Numanode” level “Bunch” mapping 
– MV2_CPU_BINDING_LEVEL=socket MV2_CPU_BINDING_POLICY=bunch 



MUG’16 27 Network Based Computing Laboratory 

Preset Process-binding Policies – Scatter 

• “Core” level “Scatter” mapping 
– MV2_CPU_BINDING_POLICY=scatter 

• “Socket/Numanode” level “Scatter” mapping 
– MV2_CPU_BINDING_LEVEL=socket MV2_CPU_BINDING_POLICY=scatter 



MUG’16 28 Network Based Computing Laboratory 

User-Defined Process Mapping 
• User has complete-control over process-mapping 

• To run 4 processes on cores 0, 1, 4, 5: 
– $ mpirun_rsh -np 4 -hostfile hosts MV2_CPU_MAPPING=0:1:4:5 ./a.out 

• Use ‘,’ or ‘-’ to bind to a set of cores: 
– $mpirun_rsh -np 64 -hostfile hosts MV2_CPU_MAPPING=0,2-4:1:5:6 ./a.out 

• Is process binding working as expected? 
– MV2_SHOW_CPU_BINDING=1 

• Display CPU binding information 

• Launcher independent 

• Example 

–  MV2_SHOW_CPU_BINDING=1 MV2_CPU_BINDING_POLICY=scatter 

  -------------CPU AFFINITY------------- 

                      RANK:0  CPU_SET:   0 

                      RANK:1  CPU_SET:   8  

• Refer to Running with Efficient CPU (Core) Mapping section of MVAPICH2 user guide for more information 

• http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.2rc1-userguide.html#x1-560006.5  

http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.0-userguide.html


MUG’16 29 Network Based Computing Laboratory 

Intra-node Communication Support in MVAPICH2  

• Shared-Memory based two-copy intra-node communication 
– Copy from the sender’s user buffer to the shared buffer 
– Copy from the shared buffer to the receiver’s user buffer 

• LiMIC2 on modern multi-core platforms 
– Kernel-level module for achieving single copy intra-node communication 
– LiMIC2 is used for rendezvous protocol message size 
– LiMIC2 module is required 

• CMA (Cross Memory Attach) support 
– Single copy intra-node communication through Linux syscalls 
– Available from Linux kernel 3.2 



MUG’16 30 Network Based Computing Laboratory 

0

2000

4000

6000

8000

10000

12000

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

Ba
nd

w
id

th
 (M

B/
s)

 

Message Size (Bytes) 

Bandwidth (inter-socket) 

inter-Socket-CMA
inter-Socket-Shmem
inter-Socket-LiMIC

0
2000
4000
6000
8000

10000
12000
14000

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

Ba
nd

w
id

th
 (M

B/
s)

 

Message Size (Bytes) 

Bandwidth (intra-socket) 
intra-Socket-CMA
intra-Socket-Shmem
intra-Socket-LiMIC

MVAPICH2 Two-Sided Intra-Node Tuning: 
Shared memory and Kernel-based Zero-copy Support (LiMIC and CMA) 

• LiMIC2: 
• configure the library with ‘--with-limic2’ 
• mpirun_rsh –np 2 –hostfile hostfile a.out (To disable: MV2_SMP_USE_LIMIC2=0)    

• CMA: 
• configure the library with ‘--with-cma’ 
• mpirun_rsh –np 2 –hostfile hostfile a.out (To disable: MV2_SMP_USE_CMA=0) 

• When both ‘--with-limic2’ and ‘--with-cma’ are included at the same time, LiMIC2 is chosen by default 
• When neither ‘--with-limic2’ or ‘--with-cma’ is used during in configuration, shared-memory based design is 

chosen  



MUG’16 31 Network Based Computing Laboratory 

MVAPICH2 Two-Sided Intra-Node Tuning: 
Shared-Memory based Runtime Parameters 

• Adjust eager threshold and eager buffer size: 
• mpirun_rsh –np 2 –hostfile hostfile MV2_SMP_EAGERSIZE=16K MV2_SMPI_LENGTH_QUEUE=64  a.out    
• Will affect the performance of small messages and memory footprint 

• Adjust number of buffers and buffer size for shared-memory based Rendezvous protocol: 
• mpirun_rsh –np 2 –hostfile hostfile MV2_SMP_SEND_BUFFER=32  MV2_SMP_SEND_BUFF_SIZE=8192  a.out 
• Will affect the performance of large messages and memory footprint 

0
0.5

1
1.5

2
2.5

3
3.5

4

1 2 4 8 16 32 64 128256512 1K 2K 4K 8K 16K32K

La
te

nc
y 

(u
s)

 

Message Size (Bytes) 

threshold=2K length=8K
threshold=4K length=16K
threshold=8K length=32K
threshold=16K length=64K
threshold=32K length=128K

0

1000

2000

3000

4000

5000

6000

1K 4K 16K 64K 256K 1M 4M

La
te

nc
y 

(u
s)

 

Message Size (Bytes) 

NUM=32 SIZE=8192

NUM=64 SIZE=16384

NUM=128 SIZE=32768

NUM=256 SIZE=65536



MUG’16 32 Network Based Computing Laboratory 

Impact of Architecture-Specific Tuning 

0

1000

2000

3000

4000

5000

6000

Ba
nd

w
id

th
 (M

B/
s)

 

Message Size (Bytes) 

Bandwidth (Intel Sandy-bridge) 

Default

Tuned

0

1000

2000

3000

4000

5000

6000

Ba
nd

w
id

th
 (M

B/
s)

 

Message Size (Bytes) 

Bi-directional Bandwidth (Sandy-bridge) 

Default

Tuned

0

1000

2000

3000

4000

Ba
nd

w
id

th
 (M

B/
s)

 

Message Size (Bytes) 

Bandwidth (AMD Bulldozer) 

Default

Tuned

0
500

1000
1500
2000
2500
3000
3500

Ba
nd

w
id

th
 (M

B/
s)

 

Message Size (Bytes) 

Bi-directional Bandwidth (AMD Bulldozer) 

Default

Tuned

• Architecture-specific tuning is executed for new architectures and new designs introduced into MV2 

• MV2_SMP_EAGERSIZE and MV2_SMP_SEND_BUFF_SIZE are updated from Default (1.8) to Tuned (1.9) 



MUG’16 33 Network Based Computing Laboratory 

• Runtime Optimization and Tuning Flexibility in  
– MVAPICH2 

• Job start-up 

• Point-to-point Inter-node Protocol 

• Transport Type Selection 

• Process Mapping and Point-to-point Intra-node Protocols 

• MPI-3 RMA 

– InterNode Communication 

– IntraNode Communication 

– MPI-3 RMA Model 

• Collectives 

• OMB 

– MVAPICH2-GDR 

– MVAPICH2-X 

– MVAPICH2-MIC 

– MVAPICH2-EA 

– MVAPICH2-Virt 

• Application Best Practices 

• Overview of Configuration and Debugging Support 

• Conclusions and Final Q&A 

Presentation Overview 



MUG’16 34 Network Based Computing Laboratory 

One-sided Communication Model 
HCA HCA HCA P 1 P 2 P 3 

Write to P2 

Write to P3 

Write Data from P1 

Write data from P2 

Post to HCA 

Post to HCA 

Buffer at P2 Buffer at P3 

Global Region Creation 
(Buffer Info Exchanged) 

Buffer at P1 

HCA Write 

Data to P2 

HCA Write 

Data to P3 



MUG’16 35 Network Based Computing Laboratory 

Internode One-sided Communication: Direct RDMA-based Designs 

• MPI RMA offers one-sided communication 
– Separates communication and synchronization  
– Reduces synchronization overheads  
– Better computation and communication overlap 

• Most MPI libraries implement RMA over send/recv calls 
• MVAPICH2 offers direct RDMA-based implementation 

– Put/Get implemented as RDMA Write/Read 
– Better performance 
– Better computation-communication overlap  

Parameter Significance Default Notes 

MV2_USE_RDMA_ONE_SIDED • Enable / Disable RDMA-
based designs 

1    
(Enabled) 

• Disable only for debugging purposes 

• Refer to MV2_USE_RDMA_ONE_SIDED section of MVAPICH2 user guide for more information 

• http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.2rc1-userguide.html#x1-24700011.87 



MUG’16 36 Network Based Computing Laboratory 

MPI-3 RMA Model: Performance 

Atomics with Flush 

• MVAPICH2-2.1 and OSU micro-benchmarks (OMB v4.1) 
• Better performance for MPI_Compare_and_swap and MPI_Fetch_and_op 

and MPI_Get performance with RDMA-based design 

0

1

2

3

4

5

Compare_and_swap Fetch_and_op

Two sided RDMA

Ti
m

e 
(u

s)
 

0
2
4
6
8

10
12
14
16

1 4 16 64 256 1k 4k 16k

RDMA Two sided

Get with Flush 
Ti

m
e 

(u
s)

 

Message size (byte) Operations 

• RDMA-based and truly one-sided implementation of MPI-3 RMA in progress 



MUG’16 37 Network Based Computing Laboratory 

0
20
40
60
80

100
120

0 10 20 30 40 50 60 70 80 90 100

Ti
m

e 
(u

s)
 

Percentage of Computation 

Fetch_and_op 
Two sided RDMA

0
20
40
60
80

100
120

0 10 20 30 40 50 60 70 80 90 100

Ti
m

e 
(u

s)
 

Percentage of Computation 

Compare_and_swap 

Two sided RDMA

MPI-3 RMA Model: Overlap  

• Process 0 is busy in computation, Process 1 performance atomic operations at P0 
• These benchmarks show the latency of atomic operations. For RDMA based design, 

the atomic latency at P1 remains consistent even as the busy time at P0 increases  



MUG’16 38 Network Based Computing Laboratory 

Performance of AWP-ODC using MPI-3-RMA 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1K 2K 4K 8K

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

on
ds

) 

Processes 

Original

Async-2sided-advanced

Async-1sided

6.6 6.1 

11.3 

6.1 

8.1 
9.5 

12.3 

10.0 

0

2

4

6

8

10

12

14

1K 2K 4K 8K

Pe
rc

en
ta

ge
 Im

pr
ov

em
en

t 

Processes 

• Experiments on TACC Ranger cluster 64x64x64 data grid per process – 25 iterations – 32KB messages 

• On 4K processes 
• 8% with 2sided basic, 11% with 2sided advanced, 12% with RMA 

• On 8K processes 
• 2% with 2sided basic, 6% with 2sided advanced, 10% with RMA 

S. Potluri, P. Lai, K. Tomko, S. Sur, Y. Cui, M. Tatineni, K. Schulz, W. Barth, A. Majumdar and D. K. Panda, 

Quantifying Performance Benefits of Overlap using MPI-2 in a Seismic Modeling Application, ICS ’10. 

http://nowlab.cse.ohio-state.edu/publications/conf-papers/2010/potluri_ics2010.pdf


MUG’16 39 Network Based Computing Laboratory 

• Runtime Optimization and Tuning Flexibility in  
– MVAPICH2 

• Job start-up 

• Point-to-point Inter-node Protocol 

• Transport Type Selection 

• Process Mapping and Point-to-point Intra-node Protocols 

• MPI-3 RMA 

• Collectives 

• Overview of Collective Communication Operations 

• Improved Hardware Based Collectives in MVAPICH2 

• Tuning Collective Communication Operations in MVAPICH2 

• OMB 

– MVAPICH2-GDR 

– MVAPICH2-X 

– MVAPICH2-MIC 

– MVAPICH2-EA 

– MVAPICH2-Virt 

• Application Best Practices 

• Overview of Configuration and Debugging Support 

• Conclusions and Final Q&A 

Presentation Overview 



MUG’16 40 Network Based Computing Laboratory 

• Involves all processes in the communicator 
– Unexpected behavior if some processes do not participate 

• Different types 
– Synchronization 

• Barrier 

– Data movement 
• Broadcast, Scatter, Gather, Alltoall 

– Collective computation 
• Reduction 

• Data movement collectives can use pre-defined (int, float, char…) or user-
defined datatypes (struct, union etc) 

Collective Communication Operations 



MUG’16 41 Network Based Computing Laboratory 

Communicator 

• Broadcast a message from process with rank of "root" to all other processes in 
the communicator 

Sample Collective Communication Routines 

int MPI_Bcast( void *buffer, int count, MPI_Datatype datatype, int root,  MPI_Comm comm ) 

Input-only Parameters 

Parameter Description 

count Number of entries in buffer 

datatype Data type of buffer 

root Rank of broadcast root 

comm Communicator handle 

Input/Output Parameters 

Parameter Description 

buffer Starting address of buffer 

root 



MUG’16 42 Network Based Computing Laboratory 

• Sends data from all processes to all processes 

Sample Collective Communication Routines (Cont’d) 

int MPI_Alltoall (const void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, int recvcount, MPI_Datatype 
recvtype, MPI_Comm comm) 

Input-only Parameters 

Parameter Description 

sendbuf Starting address of send buffer 

sendcount Number of elements to send to each process 

sendtype Data type of send buffer elements 

recvcount Number of elements received from any process 

recvtype Data type of receive buffer elements 

comm Communicator handle 

Input/Output Parameters 

Parameter Description 

recvbuf Starting address of receive buffer 

T1 T2 T3 T4 

Sendbuf (Before) 

1 
2 
3 
4 

5 
6 
7 
8 

9 
10 
11 
12 

13 
14 
15 
16 

T1 T2 T3 T4 

Recvbuf (After) 

1 
5 
9 

13 

2 
6 

10 
14 

3 
7 

11 
15 

4 
8 

12 
16 



MUG’16 43 Network Based Computing Laboratory 

Collective Communication in MVAPICH2 

Run-time flags: 
All shared-memory based collectives :   MV2_USE_SHMEM_COLL (Default: ON) 
Hardware Mcast-based collectives      :   MV2_USE_MCAST (Default : OFF) 

Multi-Core Aware 
Designs 

Collective 
Algorithms in MV2 

Conventional  
(Flat) 

Inter-Node 
Communication 

Intra-Node 
Communication 

Intra-Node 
(Pt-to-Pt) 

Intra-Node 
(Shared-Memory) 

Intra-Node 
(Kernel-Assisted) 

Inter-Node 
(Pt-to-Pt) 

Inter-Node 
(Hardware-Mcast) 



MUG’16 44 Network Based Computing Laboratory 

Hardware Multicast-aware MPI_Bcast on TACC Stampede 

0
5

10
15
20
25
30
35
40

2 8 32 128 512

La
te

nc
y 

 (u
s)

 

Message Size (Bytes) 

Small Messages (102,400 Cores) 
Default
Multicast

0
50

100
150
200
250
300
350
400
450

2K 8K 32K 128K

La
te

nc
y 

 (u
s)

 

Message Size (Bytes) 

Large Messages (102,400 Cores) 

Default
Multicast

0
5

10
15
20
25
30

La
te

nc
y 

(u
s)

 

Number of Nodes 

16 Byte Message 

Default
Multicast

0

50

100

150

200

La
te

nc
y 

(u
s)

 

Number of Nodes 

32 KByte Message 

Default
Multicast

• MCAST-based  designs improve latency of MPI_Bcast by up to  85% 

• Use MV2_USE_MCAST=1 to enable MCAST-based designs 

80% 

85% 



MUG’16 45 Network Based Computing Laboratory 

MPI_Scatter - Benefits of using Hardware-Mcast 

0
2
4
6
8

10
12
14
16
18
20

1 2 4 8 16

La
te

nc
y 

(u
se

c)
 

Message Length (Bytes) 

512 Processes 
Scatter-Default Scatter-Mcast

0

5

10

15

20

25

30

1 2 4 8 16

La
te

nc
y 

(u
se

c)
 

Message Length (Bytes) 

1,024 Processes 

• Enabling MCAST-based designs for MPI_Scatter improves small message up to 75% 

• Use MV2_USE_MCAST=1 to enable MCAST-based designs 

57% 
75% 



MUG’16 46 Network Based Computing Laboratory 

Shared-memory Aware Collectives  
 

0
20
40
60
80

100
120
140
160

0 4 8 16 32 64 128 256 512

La
te

nc
y 

(u
s)

 

Message Size (Bytes) 

MPI_Reduce (4096 cores) 

Original

Shared-memory

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0 4 8 16 32 64 128256512 1K 2K 4K 8K

La
te

nc
y 

(u
s)

 

Message Size (Bytes) 

MPI_ Allreduce (4096 cores) 

Original

Shared-memory

          MV2_USE_SHMEM_REDUCE=0/1                                                   MV2_USE_SHMEM_ALLREDUCE=0/1 

0
20
40
60
80

100
120
140

128 256 512 1024

La
te

nc
y 

(u
s)

 

Number of Processes 

Pt2Pt Barrier Shared-Mem Barrier

• MVAPICH2 Reduce/Allreduce  with 4K cores on TACC Ranger (AMD Barcelona, SDR IB) 

• MVAPICH2 Barrier with 1K  Intel 
Westmere cores ,  QDR IB  

          
MV2_USE_SHMEM_BARRIER=0/1 

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu


MUG’16 47 Network Based Computing Laboratory 

• Application processes schedule collective operation 

• Check periodically if operation is complete 

• Overlap of computation and communication => Better Performance 

• Catch: Who will progress communication  

Concept of Non-blocking Collectives 
Application 

 Process 
Application 

 Process 
Application 

 Process 
Application 

 Process 

Computation 

Communication 

Communication 
 Support Entity 

Communication 
 Support Entity 

Communication 
 Support Entity 

Communication 
 Support Entity 

Schedule 
Operation 

Schedule 
Operation 

Schedule 
Operation 

Schedule 
Operation 

Check if 
Complete 

Check if 
Complete 

Check if 
Complete 

Check if 
 Complete 

Check if 
Complete 

Check if 
Complete 

Check if 
Complete 

Check if 
 Complete 



MUG’16 48 Network Based Computing Laboratory 

• Enables overlap of computation with communication 

• Non-blocking calls do not match blocking collective calls 
– MPI  may use different algorithms for blocking and non-blocking collectives 

– Blocking collectives: Optimized for latency 

– Non-blocking collectives: Optimized for overlap 

• A process calling a NBC operation 
– Schedules collective operation and immediately returns 

– Executes application computation code 

– Waits for the end of the collective  

• The communication progress by 
– Application code through MPI_Test 

– Network adapter (HCA) with hardware support 

– Dedicated processes / thread in MPI library 

• There is a non-blocking equivalent for each blocking operation  
– Has an “I” in the name 

• MPI_Bcast -> MPI_Ibcast; MPI_Reduce  -> MPI_Ireduce 

 
 

Non-blocking Collective (NBC) Operations 



MUG’16 49 Network Based Computing Laboratory 

Strong Overlap Example Benchmarks 
 • Pure case = Igatherv+Wait 

• Overlapped case = Igatherv+compute+Wait 

• Igather and Igatherv show good overlap due to combination of use of eager protocol and 
one-sided designs through InfiniBand 

0

20

40

60

80

100

1 2 4 8 16 32 64 128 256 512 1K 2K 4K

O
ve

rla
p 

(%
) 

Message size (bytes) 

Igatherv 

8-process

32-process

128-process

0

10

20

30

40

50

60

70

1 2 4 8 16 32 64 128 256 512 1K 2K 4K

O
ve

rla
p 

(%
) 

Message size (bytes) 

Igather 

8-process

32-process

128-process



MUG’16 50 Network Based Computing Laboratory 

void main() 

{ 

 MPI_Init() 

 ….. 

 MPI_Ialltoall(…) 

 Computation that does not depend on result of Alltoall 

 MPI_Test(for Ialltoall) /* Check if complete (non-blocking) */ 

 Computation that does not depend on result of Alltoall 

 MPI_Wait(for Ialltoall) /* Wait till complete (Blocking) */ 

 … 

 MPI_Finalize() 

} 

How do I write applications with NBC? 



MUG’16 51 Network Based Computing Laboratory 

Application 

Collective Offload Support in ConnectX InfiniBand Adapter (Recv followed by 
Multi-Send) 

• Sender creates a task-list consisting of only send and wait 
WQEs 

– One send WQE is created for each registered receiver and is 
appended to the rear of a singly linked task-list 

– A wait WQE is added to make the ConnectX-2 HCA wait for ACK 
packet from the receiver 

InfiniBand HCA 

Physical Link 

Send Q 

Recv Q 

Send CQ 

Recv CQ 

Data Data 

M
CQ

 MQ 

Task List 
Send Wait Send Send Send Wait 

• Available in MVAPICH2-X 2.2rc1 



MUG’16 52 Network Based Computing Laboratory 

• Runtime Optimization and Tuning Flexibility in  
– MVAPICH2 

• Job start-up 

• Point-to-point Inter-node Protocol 

• Transport Type Selection 

• Process Mapping and Point-to-point Intra-node Protocols 

• MPI-3 RMA 

• Collectives 

• MPI_T Support 

• OMB 

– MVAPICH2-GDR 

– MVAPICH2-X 

– MVAPICH2-MIC 

– MVAPICH2-EA 

– MVAPICH2-Virt 

• Application Best Practices 

• Overview of Configuration and Debugging Support 

• Conclusions and Final Q&A 

Presentation Overview 



MUG’16 53 Network Based Computing Laboratory 

• Available since 2004 

• Suite of microbenchmarks to study communication performance of various programming models 

• Benchmarks available for the following programming models 
– Message Passing Interface (MPI) 

– Partitioned Global Address Space (PGAS) 

• Unified Parallel C (UPC) 

• Unified Parallel C++ (UPC++) 

• OpenSHMEM 

• Benchmarks available for multiple accelerator based architectures 
– Compute Unified Device Architecture (CUDA) 

– OpenACC Application Program Interface 

• Part of various national resource procurement suites like NERSC-8 / Trinity Benchmarks 

• Please visit the following link for more information 
– http://mvapich.cse.ohio-state.edu/benchmarks/ 

OSU Microbenchmarks 

http://mvapich.cse.ohio-state.edu/benchmarks/


MUG’16 54 Network Based Computing Laboratory 

• Released on 08/08/16 

• Introduce new UPC++ Benchmarks 
– osu_upcxx_allgather, osu_upcxx_alltoall, osu_upcxx_async_copy_get, osu_upcxx_async_copy_put, osu_upcxx_bcast, osu_upcxx_gather, 

osu_upcxx_reduce, osu_upcxx_scatter 

• Benchmarks for MPI 
– Point-to-Point Benchmarks (blocking and non-blocking) 

– Collective Benchmarks (blocking and non-blocking) 

– One-sided Benchmarks 

– Startup Benchmarks 

• Benchmarks for UPC 
– Point-to-Point Benchmarks  

– Collective Benchmarks 

• Benchmarks for UPC++ 
– Point-to-Point Benchmarks  

– Collective Benchmarks 

• Benchmarks for OpenSHMEM 
– Point-to-Point Benchmarks  

– Collective Benchmarks 

• MPI Benchmarks for CUDA and OpenACC 
– Point-to-Point Benchmarks (blocking and non-blocking) 

– Collective Benchmarks (blocking and non-blocking) 

– One-sided Benchmarks 

OSU Microbenchmarks v5.3.1 



MUG’16 55 Network Based Computing Laboratory 

• Runtime Optimization and Tuning Flexibility in  
– MVAPICH2 

– MVAPICH2-GDR 
• Basic CUDA-Aware Support  

• Support for Efficient Small Message Communication with GPUDirect RDMA 

• Multi-rail Support  

• Support for Efficient Intra-node Communication using CUDA IPC 

• MPI Datatype Support 

• Support for OpenACC Constructs 

• CUDA Support in OMB 

– MVAPICH2-X 

– MVAPICH2-MIC 

– MVAPICH2-EA 

– MVAPICH2-Virt 

• Application Best Practices 

• Overview of Configuration and Debugging Support 

• Conclusions and Final Q&A 

Presentation Overview 



MUG’16 56 Network Based Computing Laboratory 

At Sender: 
   
 
At Receiver: 
    MPI_Recv(r_devbuf, size, …); 
 

inside 
MVAPICH2 

• Standard MPI interfaces used for unified data movement 

• Takes advantage of Unified Virtual Addressing (>= CUDA 4.0)  

• Overlaps data movement from GPU with RDMA transfers  

 

High Performance and High Productivity 

 

   MPI_Send(s_devbuf, size, …); 

GPU-Aware MPI Library: MVAPICH2-GPU  



MUG’16 57 Network Based Computing Laboratory 

• OFED with support for GPUDirect RDMA is 
developed by NVIDIA and Mellanox 

• OSU has a design of MVAPICH2 using  

      GPUDirect RDMA 
– Hybrid design using GPU-Direct RDMA 

• GPUDirect RDMA and Host-based pipelining 

• Alleviates P2P bandwidth bottlenecks on SandyBridge and IvyBridge 

– Support for communication using multi-rail 

– Support for Mellanox Connect-IB and ConnectX VPI adapters 

– Support for RoCE with Mellanox ConnectX VPI adapters 

 
 

GPU-Direct RDMA (GDR) with CUDA  

 

 

IB Adapter 

System 
Memory 

GPU 
Memory 

GPU 

CPU 

Chipset 

P2P write: 5.2 GB/s 
P2P read: < 1.0 GB/s  

SNB E5-2670 

P2P write: 6.4 GB/s 
P2P read:  3.5 GB/s  

IVB E5-2680V2 

SNB E5-2670 / 

IVB E5-2680V2 



MUG’16 58 Network Based Computing Laboratory 

CUDA-Aware MPI: MVAPICH2-GDR 1.8-2.2 Releases 

• Support for MPI communication from NVIDIA GPU device memory 

• High performance RDMA-based inter-node point-to-point communication (GPU-GPU, 
GPU-Host and Host-GPU) 

• High performance intra-node point-to-point communication for multi-GPU 
adapters/node (GPU-GPU, GPU-Host and Host-GPU) 

• Taking advantage of CUDA IPC (available since CUDA 4.1) in intra-node communication 
for multiple GPU adapters/node 

• Optimized and tuned collectives for GPU device buffers 

• MPI datatype support for point-to-point and collective communication from GPU 
device buffers 



MUG’16 59 Network Based Computing Laboratory 

• Runtime Optimization and Tuning Flexibility in  
– MVAPICH2 

– MVAPICH2-GDR 
• Basic CUDA-Aware Support  

• Support for Efficient Small Message Communication with GPUDirect RDMA 

• Multi-rail Support  

• Support for Efficient Intra-node Communication using CUDA IPC 

• MPI Datatype Support 

• Support for OpenACC Constructs 

• CUDA Support in OMB 

– MVAPICH2-X 

– MVAPICH2-MIC 

– MVAPICH2-EA 

– MVAPICH2-Virt 

• Application Best Practices 

• Overview of Configuration and Debugging Support 

• Conclusions and Final Q&A 

Presentation Overview 



MUG’16 60 Network Based Computing Laboratory 

Pipelined Data Movement in MVAPICH2-GDR: Tuning 

Parameter Significance Default Notes 

MV2_USE_CUDA • Enable / Disable GPU designs 0    
(Disabled) 

• Disabled to avoid pointer checking   
   overheads for host communication 
• Always enable to support MPI  
  communication from GPU Memory 

MV2_CUDA_BLOCK_SIZE • Controls the pipeline 
blocksize 

256 KByte • Tune for your system and  
  application  
• Varies based on  
       - CPU Platform, IB HCA and GPU 
       - CUDA driver version  
       - Communication pattern 
         (latency/bandwidth) 

• Refer to Tuning and Usage Parameters section of MVAPICH2-GDR user guide for more information 

• http://mvapich.cse.ohio-state.edu/userguide/gdr/#_tuning_and_usage_parameters 



MUG’16 61 Network Based Computing Laboratory 

• Runtime Optimization and Tuning Flexibility in  
– MVAPICH2 

– MVAPICH2-GDR 
• Basic CUDA-Aware Support  

• Advanced Support for GPUDirect RDMA 
– Designs for Enhanced Small Message Performance 

– Support for MPI-3 RMA 

– Multi-rail Support  

• Support for Efficient Intra-node Communication using CUDA IPC 

• MPI Datatype Support 

• Support for OpenACC Constructs 

• CUDA Support in OMB 

– MVAPICH2-X 

– MVAPICH2-MIC 

– MVAPICH2-EA 

– MVAPICH2-Virt 

• Application Best Practices 

• Overview of Configuration and Debugging Support 

• Conclusions and Final Q&A 

Presentation Overview 



MUG’16 62 Network Based Computing Laboratory 

• OFED with support for GPUDirect RDMA is developed by NVIDIA and 
Mellanox 

• OSU has a design of MVAPICH2 using GPUDirect RDMA 

– Hybrid design using GPU-Direct RDMA 
• GPUDirect RDMA and Host-based pipelining 

• Alleviates P2P bandwidth bottlenecks on SandyBridge and IvyBridge 

• Similar bottlenecks on Haswell 

– Support for communication using multi-rail 

– Support for Mellanox Connect-IB and ConnectX VPI adapters 

– Support for RoCE with Mellanox ConnectX VPI adapters 

 

 

GPU-Direct RDMA (GDR) with CUDA  

 

 

IB Adapter 

System 
Memory 

GPU 
Memory 

GPU 

CPU 

Chipset 

SNB E5-2670 IVB E5-2680V2 

SNB E5-2670 / 

IVB E5-2680V2 

Intra-socket Inter-sockets Intra-socket Inter-sockets 

P2P read <1.0 GBs <300 MBs 3.5 GBs <300 MBs 

P2P write 5.2 GBs <300 MBs 6.4 GBs <300 MBs 



MUG’16 63 Network Based Computing Laboratory 

Tuning GPUDirect RDMA (GDR) Designs in MVAPICH2-GDR 

Parameter Significance Default Notes 

MV2_USE_GPUDIRECT • Enable / Disable GDR-based   
   designs 

1    
(Enabled) 

• Always enable  

MV2_GPUDIRECT_LIMIT • Controls messages size until  
   which GPUDirect RDMA is     
   used 

8 KByte • Tune for your system  
• GPU type, host architecture 
and  
  CUDA version: impact pipelining  
  overheads and P2P bandwidth  
  bottlenecks 

MV2_USE_GPUDIRECT_
RECEIVE_LIMIT 

• Controls messages size until  
   which 1 hop design is used  
(GDR Write at the receiver) 
 

256KBytes • Tune for your system  
•  GPU type, HCA type and 
configuration  
 

• Refer to Tuning and Usage Parameters section of MVAPICH2-GDR user guide for more information 

• http://mvapich.cse.ohio-state.edu/userguide/gdr/#_tuning_and_usage_parameters 



MUG’16 64 Network Based Computing Laboratory 

• Can eager protocol be supported to improve performance for small messages? 

Host Memory 

GPU Memory 

Host Buf 

GPU Buf 

HCA PCI-E 

 Enhanced MPI Design with GPUDirect RDMA 

• CudaMemcpy: Default Scheme 

• Big overhead for small message  

• Loopback-based design:  Uses GDR feature 

• Process establishes self-connection 

• Copy H-D ⇒ RDMA write (H, D) 

• Copy D-H ⇒ RDMA write (D, H) 

• P2P bottleneck ⇒ good for small and  

 medium sizes 

• GDRCOPY-based design: New module for fast copies 

• Involves GPU PCIe BAR1 mapping  

• CPU performing the copy ⇒ block until completion 

• Very good performance for H-D for small and medium sizes  

• Very good performance for D-H only for very small sizes   

 



MUG’16 65 Network Based Computing Laboratory 

Tuning GDRCOPY Designs in MVAPICH2-GDR 

Parameter Significance Default Notes 

MV2_USE_GPUDIRECT_
GDRCOPY 

• Enable / Disable GDRCOPY-
based designs 

1    
(Enabled) 

• Always enable  

MV2_GPUDIRECT_GDR
COPY_LIMIT 

• Controls messages size until  
   which GDRCOPY is     
   used 

8 KByte • Tune for your system  
• GPU type, host architecture. 
Impacts the eager performance  

MV2_GPUDIRECT_GDR
COPY_LIB 

•  Path to the GDRCOPY 
library 

Unset • Always set  

MV2_USE_GPUDIRECT_
D2H_GDRCOPY_LIMIT 

• Controls messages size until  
 which GDRCOPY is used at 
sender  
 

16Bytes • Tune for your systems  
• CPU and GPU type  

• Refer to Tuning and Usage Parameters section of MVAPICH2-GDR user guide for more information 

• http://mvapich.cse.ohio-state.edu/userguide/gdr/#_tuning_and_usage_parameters 



MUG’16 66 Network Based Computing Laboratory 

Tuning Loopback Designs in MVAPICH2-GDR 

Parameter Significance Default Notes 

MV2_USE_GPUDIRECT_
LOOPBACK 

• Enable / Disable 
LOOPBACK-based designs 

1    
(Enabled) 

• Always enable  

MV2_GPUDIRECT_LOO
PBACK_LIMIT 

• Controls messages size until  
   which LOOPBACK is     
   used 

8 KByte • Tune for your system  
• GPU type, host architecture and 
HCA. Impacts the eager 
performance 
•Sensitive to the P2P issue   

• Refer to Tuning and Usage Parameters section of MVAPICH2-GDR user guide for more information 

• http://mvapich.cse.ohio-state.edu/userguide/gdr/#_tuning_and_usage_parameters 



MUG’16 67 Network Based Computing Laboratory 

0
500

1000
1500
2000
2500
3000
3500

1 4 16 64 256 1K 4K

MV2-GDR2.2rc1
MV2-GDR2.0b
MV2 w/o GDR

GPU-GPU Internode Bi-Bandwidth 

Message Size (bytes) 

Bi
-B

an
dw

id
th

 (M
B/

s)
 

0

5

10

15

20

25

30

0 2 8 32 128 512 2K

MV2-GDR2.2rc1 MV2-GDR2.0b MV2 w/o GDR

GPU-GPU  internode latency 

Message Size (bytes) 

La
te

nc
y 

(u
s)

 

 

MVAPICH2-GDR-2.2rc1 
Intel Ivy Bridge (E5-2680 v2) node - 20 cores 

NVIDIA Tesla K40c GPU 
Mellanox Connect-X4 EDR HCA 

CUDA 7.5 
Mellanox OFED 3.0 with GPU-Direct-RDMA 

10x 
2X 

11x 

Performance of MVAPICH2-GPU with GPU-Direct RDMA (GDR)  

2.18us 
0

500

1000

1500

2000

2500

3000

1 4 16 64 256 1K 4K

MV2-GDR2.2rc1

MV2-GDR2.0b

MV2 w/o GDR

GPU-GPU Internode Bandwidth 

Message Size (bytes) 

Ba
nd

w
id

th
 (M

B/
s)

 

11X 

2X 

3X 



MUG’16 68 Network Based Computing Laboratory 

    

•  Platform: Wilkes (Intel Ivy Bridge + NVIDIA Tesla K20c + Mellanox Connect-IB) 
•  HoomdBlue Version 1.0.5  

•  GDRCOPY enabled: MV2_USE_CUDA=1 MV2_IBA_HCA=mlx5_0 MV2_IBA_EAGER_THRESHOLD=32768 
MV2_VBUF_TOTAL_SIZE=32768 MV2_USE_GPUDIRECT_LOOPBACK_LIMIT=32768 
MV2_USE_GPUDIRECT_GDRCOPY=1 MV2_USE_GPUDIRECT_GDRCOPY_LIMIT=16384 
 

Application-Level Evaluation (HOOMD-blue) 

0

500

1000

1500

2000

2500

4 8 16 32

Av
er

ag
e 

Ti
m

e 
St

ep
s p

er
 se

co
nd

 (T
PS

) 

Number of Processes  

MV2 MV2+GDR

0

500

1000

1500

2000

2500

3000

3500

4 8 16 32Av
er

ag
e 

Ti
m

e 
St

ep
s p

er
 se

co
nd

 
(T

PS
) 

Number of Processes  

64K Particles  256K Particles  

2X 2X 

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu


MUG’16 69 Network Based Computing Laboratory 

Performance of MVAPICH2 with GPU-Direct-RDMA: MPI-3 RMA 
GPU-GPU Internode MPI Put latency (RMA put operation Device to Device ) 

MVAPICH2-GDR-2.2rc1 
Intel Ivy Bridge (E5-2680 v2) node with 20 cores 

NVIDIA Tesla K40c GPU, Mellanox Connect-X4 EDR HCA 
CUDA 7.5, Mellanox OFED 3.0 with GPU-Direct-RDMA 

MPI-3 RMA provides flexible synchronization and completion primitives 

0

5

10

15

20

25

30

35

0 2 8 32 128 512 2K 8K

MV2-GDR2.2.rc1 MV2-GDR2.0b

Small Message Latency 

Message Size (bytes) 

La
te

nc
y 

(u
s)

 

2.88 

7X 



MUG’16 70 Network Based Computing Laboratory 

Tuning Multi-rail Support in MVAPICH2-GDR 

Parameter Significance Default Notes 

MV2_RAIL_SHARING_PO
LICY 

• How the Rails are 
bind/selected by processes 

Shared • Sharing gives the best 
performance for pipeline design   

PROCESS_TO_RAIL_MAP
PING 

• Explicit binding of the HCAs 
to the CPU  

First HCA •  Manually select if automatic 
mapping is leading to performance 
issues 

• Refer to Tuning and Usage Parameters section of MVAPICH2-GDR user guide for more information 

• http://mvapich.cse.ohio-state.edu/userguide/gdr/#_tuning_and_usage_parameters 

• Automatic rail and CPU binding depending on the GPU selection 

• User selects the GPU and MVAPICH2-GDR selects the best HCA (avoids the P2P bottleneck) 

• Multi-rail selection for large message size for better Bandwidth utilization (pipeline design)  



MUG’16 71 Network Based Computing Laboratory 

Performance of MVAPICH2-GDR with  GPU-Direct RDMA and Multi-Rail Support 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

MV2-GDR 2.1

MV2-GDR 2.1 RC2

GPU-GPU Internode MPI Uni-Directional Bandwidth 

Message Size (bytes) 

Ba
nd

w
id

th
 (M

B/
s)

 

    

MVAPICH2-GDR-2.2rc1 
Intel Ivy Bridge (E5-2680 v2) node - 20 cores, NVIDIA Tesla K40c GPU 

Mellanox Connect-IB Dual-FDR HCA CUDA 7 
Mellanox OFED 2.4 with GPU-Direct-RDMA 

0

2000

4000

6000

8000

10000

12000

14000

16000

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

MV2-GDR 2.1

MV2-GDR 2.1 RC2

GPU-GPU Internode Bi-directional Bandwidth 

Message Size (bytes) 

Bi
-B

an
dw

id
th

 (M
B/

s)
 

8,759  15,111  

40% 
20% 

 



MUG’16 72 Network Based Computing Laboratory 

• Runtime Optimization and Tuning Flexibility in  
– MVAPICH2 

– MVAPICH2-GDR 
• Basic CUDA-Aware Support  

• Advanced Support for GPUDirect RDMA 

• Support for Efficient Intra-node Communication using CUDA IPC 

• MPI Datatype Support 

• Support for OpenACC Constructs 

• CUDA Support in OMB 

– MVAPICH2-X 

– MVAPICH2-MIC 

– MVAPICH2-EA 

– MVAPICH2-Virt 

• Application Best Practices 

• Overview of Configuration and Debugging Support 

• Conclusions and Final Q&A 

Presentation Overview 



MUG’16 73 Network Based Computing Laboratory 

• Multi-GPU node architectures are becoming common 

• Until CUDA 3.2 

- Communication between processes  staged through the host 

- Shared Memory (pipelined) 

- Network Loopback [asynchronous) 

• CUDA 4.0 and later 

- Inter-Process Communication (IPC) 

- Host bypass 

- Handled by a DMA Engine 

- Low latency and Asynchronous 

- Requires creation, exchange and mapping of memory handles 

- Overhead 

Multi-GPU Configurations 

CPU 

GPU 1 GPU 0 

 

Memory 

 

I/O Hub 

Process 0 Process 1 

HCA 



MUG’16 74 Network Based Computing Laboratory 

Tuning IPC designs in MVAPICH2-GDR 

• Works between GPUs within the same 
socket or IOH 

• Leads to significant benefits in 
appropriate scenarios 

0

10

20

30

1 4 16 64 256 1024

La
te

nc
y 

(u
se

c)
 

Message Size (Bytes) 

Intra-node Small Message Latency 

SHARED-MEM IPC SMP-IPC

Parameter Significance Default Notes 

MV2_CUDA_IPC • Enable / Disable CUDA IPC- 
   based designs 

1    (Enabled) • Always leave set to 1 

MV2_CUDA_SMP_IPC • Enable / Disable CUDA IPC  
   fastpath design for short 
   messages  

0 
(Disabled) 

• Benefits Device-to-Device transfers 
• Hurts Device-to-Host/Host-to-Device  
   transfers 
• Always set to 1 if application involves  
   only Device-to-Device transfers 

MV2_IPC_THRESHOLD • Message size where IPC code path 
will be used  

16 KBytes • Tune for your system  



MUG’16 75 Network Based Computing Laboratory 

• Runtime Optimization and Tuning Flexibility in  
– MVAPICH2 

– MVAPICH2-GDR 
• Basic CUDA-Aware Support  

• Advanced Support for GPUDirect RDMA 

• Support for Efficient Intra-node Communication using CUDA IPC 

• MPI Datatype Support 

• Support for OpenACC Constructs 

• CUDA Support in OMB 

– MVAPICH2-X 

– MVAPICH2-MIC 

– MVAPICH2-EA 

– MVAPICH2-Virt 

• Application Best Practices 

• Overview of Configuration and Debugging Support 

• Conclusions and Final Q&A 

Presentation Overview 



MUG’16 76 Network Based Computing Laboratory 

• Multi-dimensional data 
• Row based organization 
• Contiguous on one dimension  
• Non-contiguous on other dimensions 

• Halo data exchange 
• Duplicate the boundary 
• Exchange the boundary in each 

iteration 

 

Halo data exchange 

Non-contiguous Data Exchange 

 



MUG’16 77 Network Based Computing Laboratory 

MPI Datatype support in MVAPICH2 

• Datatypes support in MPI 
– Operate on customized datatypes to improve productivity 

– Enable MPI library to optimize non-contiguous data 

At Sender:  
 MPI_Type_vector (n_blocks, n_elements, stride, old_type, &new_type); 
 MPI_Type_commit(&new_type); 
       … 
       MPI_Send(s_buf, size, new_type, dest, tag, MPI_COMM_WORLD); 
 

 • Inside MVAPICH2  
- Use datatype specific CUDA Kernels to pack data in chunks 
- Efficiently move data between nodes using RDMA 
- In progress - currently optimizes vector and hindexed datatypes 
- Transparent to the user 
 

H. Wang, S. Potluri, D. Bureddy, C. Rosales and D. K. Panda, GPU-aware MPI on RDMA-Enabled Clusters: Design, Implementation and Evaluation, IEEE Transactions on Parallel 
and Distributed Systems, Accepted for Publication.  



MUG’16 78 Network Based Computing Laboratory 

MPI Datatype Processing (Computation Optimization ) 

• Comprehensive support  
• Targeted kernels  for regular datatypes  - vector, subarray, indexed_block 

• Generic kernels for all other irregular datatypes 

• Separate non-blocking stream for kernels launched by MPI library  
• Avoids stream conflicts with application kernels   

• Flexible set of parameters for users to tune kernels 
• Vector  

• MV2_CUDA_KERNEL_VECTOR_TIDBLK_SIZE 

• MV2_CUDA_KERNEL_VECTOR_YSIZE   

• Subarray  
• MV2_CUDA_KERNEL_SUBARR_TIDBLK_SIZE  
• MV2_CUDA_KERNEL_SUBARR_XDIM 
• MV2_CUDA_KERNEL_SUBARR_YDIM  
• MV2_CUDA_KERNEL_SUBARR_ZDIM  

• Indexed_block  
• MV2_CUDA_KERNEL_IDXBLK_XDIM 



MUG’16 79 Network Based Computing Laboratory 

Stencil3D communication kernel on 2 GPUs 
with various X, Y, Z dimensions using 
MPI_Isend/Irecv 
• DT: Direct Transfer, TR: Targeted Kernel  
• Optimized design  gains up to 15%, 15% and 

22% compared to TR, and more than  86% 
compared to DT on X, Y and Z respectively  

0

0.5

1

1.5

2

2.5

1 2 4 8 16 32 64 128 256

La
te

nc
y 

(m
s)

 
Size of DimZ, [16,16,z]  

Performance of Stencil3D (3D subarray) 

0

0.5

1

1.5

2

2.5

1 2 4 8 16 32 64 128 256

La
te

nc
y 

(m
s)

 

Size of DimY, [16,y,16]  

0

0.5

1

1.5

2

2.5

1 2 4 8 16 32 64 128 256

La
te

nc
y 

(m
s)

 

Size of DimX, [x,16,16]  

DT TR Enhanced

86% 



MUG’16 80 Network Based Computing Laboratory 

• Runtime Optimization and Tuning Flexibility in  
– MVAPICH2 

– MVAPICH2-GDR 
• Basic CUDA-Aware Support  

• Advanced Support for GPUDirect RDMA 

• Support for Efficient Intra-node Communication using CUDA IPC 

• MPI Datatype Support 

• Support for OpenACC Constructs 

• CUDA Support in OMB 

– MVAPICH2-X 

– MVAPICH2-MIC 

– MVAPICH2-EA 

– MVAPICH2-Virt 

• Application Best Practices 

• Overview of Configuration and Debugging Support 

• Conclusions and Final Q&A 

Presentation Overview 



MUG’16 81 Network Based Computing Laboratory 

• acc_malloc to allocate device memory 
- No changes to MPI calls 
- MVAPICH2 detects the device pointer and optimizes data movement 

• acc_deviceptr to get device pointer (in OpenACC 2.0) 
- Enables MPI communication from memory allocated by compiler when it is available in OpenACC 2.0 

implementations 
- MVAPICH2 will detect the device pointer and optimize communication 

• Delivers the same performance as with CUDA 

OpenACC-Aware MPI 

A = acc_malloc(sizeof(int) * N); 
…… 
#pragma acc parallel loop deviceptr(A) . . . 
//compute for loop 
 
MPI_Send (A, N, MPI_INT, 0, 1, MPI_COMM_WORLD); 
 
…… 
acc_free(A);   

A = malloc(sizeof(int) * N); 
…… 
#pragma acc data copyin(A) . . .  
{ 
#pragma acc parallel loop . . . 
//compute for loop 
MPI_Send(acc_deviceptr(A), N, MPI_INT, 0, 1, 
MPI_COMM_WORLD); 
} 



MUG’16 82 Network Based Computing Laboratory 

• Runtime Optimization and Tuning Flexibility in  
– MVAPICH2 

– MVAPICH2-GDR 
• Basic CUDA-Aware Support  

• Advanced Support for GPUDirect RDMA 

• Support for Efficient Intra-node Communication using CUDA IPC 

• MPI Datatype Support 

• Support for OpenACC Constructs 

• CUDA Support in OMB 

– MVAPICH2-X 

– MVAPICH2-MIC 

– MVAPICH2-EA 

– MVAPICH2-Virt 

• Application Best Practices 

• Overview of Configuration and Debugging Support 

• Conclusions and Final Q&A 

Presentation Overview 



MUG’16 83 Network Based Computing Laboratory 

CUDA and OpenACC Extensions in OMB 

• OSU Micro-benchmarks are widely used to compare performance of different 
MPI stacks and networks 

• Enhancements to measure performance of MPI communication from GPU 
memory 
– Point-to-point: Latency, Bandwidth and Bi-directional Bandwidth 

– Collectives: Alltoall, Gather and Scatter 

• Support for CUDA and OpenACC 

• Flexible selection of data movement between CPU(H) and GPU(D): D->D, D->H 
and H->D 

• Available from http://mvapich.cse.ohio-state.edu/benchmarks 

• Available in an integrated manner with MVAPICH2-GDR stack  

• Support for CUDA Managed Memory feature 

 

http://mvapich.cse.ohio-state.edu/benchmarks


MUG’16 84 Network Based Computing Laboratory 

• Runtime Optimization and Tuning Flexibility in  
– MVAPICH2 

– MVAPICH2-GDR 

– MVAPICH2-X 

– MVAPICH2-MIC 

– MVAPICH2-EA 

– MVAPICH2-Virt 

• Application Best Practices 
– Amber, MiniAMR, SMG2000, Neuron, HPCCG, LULESH, MILC and HoomDBlue 

• Overview of Configuration and Debugging Support 

• Conclusions and Final Q&A 

Presentation Overview 



MUG’16 85 Network Based Computing Laboratory 

MVAPICH2-X for Hybrid MPI + PGAS Applications 

• Current Model – Separate Runtimes for OpenSHMEM/UPC/UPC++/CAF and MPI 
– Possible deadlock if both runtimes are not  progressed 

– Consumes more network resource 

• Unified communication runtime for MPI, UPC, UPC++, OpenSHMEM, CAF 
– Available with since 2012 (starting with MVAPICH2-X 1.9)  
– http://mvapich.cse.ohio-state.edu 

http://mvapich.cse.ohio-state.edu/overview/mvapich2x


MUG’16 86 Network Based Computing Laboratory 

• Released on 08/08/2016 

• Major Features and Enhancements 

– MPI Features 

• Based on MVAPICH2 2.2rc2 (OFA-IB-CH3 interface) 

• Efficient support for On Demand Paging (ODP) feature of Mellanox for point-to-point and RMA operations 

• Support for Intel Knights Landing architecture 

– UPC Features 

• Support for Intel Knights Landing architecture 

– UPC++ Features 

• Support for Intel Knights Landing architecture 

– OpenSHMEM Features 

• Support for Intel Knights Landing architecture 

– CAF Features  

• Support for Intel Knights Landing architecture 

– Hybrid Program Features  

• Support Intel Knights Landing architecture for hybrid MPI+PGAS applications 

– Unified Runtime Features 

• Based on MVAPICH2 2.2rc2 (OFA-IB-CH3 interface). All the runtime features enabled by default in OFA-IB-CH3 and OFA-IB-RoCE interface of 
MVAPICH2 2.2rc2 are available in MVAPICH2-X 2.2rc2 

MVAPICH2-X 2.2rc2 



MUG’16 87 Network Based Computing Laboratory 

• Compile MPI programs using mpicc 
– $ mpicc -o helloworld_mpi helloworld_mpi.c 

• Compile UPC programs using upcc 
– $ upcc -o helloworld_upc helloworld_upc.c 

• Compile OpenSHMEM programs using oshcc 
– $ oshcc -o helloworld_oshm helloworld_oshm.c 

• Compile CAF programs using OpenUH CAF compiler 
– $ uhcaf --layer=gasnet-mvapich2x -o helloworld_caf helloworld_caft.caf 

• Compile Hybrid MPI+UPC programs using upcc 
– $ upcc -o hybrid_mpi_upc hybrid_mpi_upc.c 

• Compile Hybrid MPI+OpenSHMEM programs using oshcc 
– $ oshcc -o hybrid_mpi_oshm hybrid_mpi_oshm.c 

 

Compiling programs with MVAPICH2-X 



MUG’16 88 Network Based Computing Laboratory 

• MVAPICH2-X programs can be run using  
– mpirun_rsh and mpiexec.hydra (MPI, UPC, OpenSHMEM and hybrid) 
– upcrun (UPC) 
– oshrun (OpenSHMEM) 
– cafrun (CAF) 

• Running using mpirun_rsh/mpiexec.hydra 
– $ mpirun rsh -np 4 -hostfile hosts ./test ---$ mpiexec -f hosts -n 2 ./test  

• Running using upcrun 
– $ export MPIRUN CMD=“<path-to-MVAPICH2-X-install>/bin/mpirun rsh -np %N -hostfile hosts %P %A” 
– $ upcrun -n 2 ./test  

• Running using oshrun 
– $ oshrun -f hosts -np 2 ./test  

• Running using cafrun 
– Export the PATH and LD_LIBRARY_PATH of the GNU version of MVAPICH2-X 
– $ cafrun –n 16 –v ./test  

 

Running Programs with MVAPICH2-X 



MUG’16 89 Network Based Computing Laboratory 

• OpenSHMEM benchmarks 
– osu_oshm_put – Put latency 

– osu_oshm_get – Get latency 

– osu_oshm_put_mr – Put message rate  

– osu_oshm_atomics – Atomics latency 

– osu_oshm_collect – Collect latency 

– osu_oshm_broadcast – Broadcast latency 

– osu_oshm_reduce - Reduce latency 

– osu_oshm_barrier - Barrier latency 

• UPC benchmarks 
– osu upc memput – Put latency 

– osu upc memget - Get latency 

– osu_upc_all_barrier – Barrier latency 

– osu_upc_all_broadcast – Broadcast latency 

 

 

OSU Microbenchmarks – UPC, UPC++ and OpenSHMEM 

– osu_upc_all_exchange – Exchange latency 

– osu_upc_all_gather_all – GatherAll latency 

– osu_upc_all_gather – Gather latency 

– osu_upc_all_reduce – Reduce latency 

– osu_upc_all_scatter – Scatter latency 

• UPC++ benchmarks 
– osu_upcxx_async_copy_put – Put latency 

– osu_upcxx_async_copy_get – Get latency 

– osu_upcxx_allgather – Allgather latency 

– osu_upcxx_bcast – Broadcast latency 

– osu_upcxx_reduce – Reduce latency 

– osu_upcxx_alltoall – Alltoall latency 

– osu_upcxx_gather – Gather latency 

– osu_upcxx_scatter – Scatter latency 

 



MUG’16 90 Network Based Computing Laboratory 

On-demand Connection Management for OpenSHMEM+MPI 

0

5

10

15

20

25

30

35

32 64 128 256 512 1K 2K 4K

Ti
m

e 
Ta

ke
n 

(S
ec

on
ds

) 

Number of Processes 

Breakdown of OpenSHMEM Startup 

Connection Setup

PMI Exchange

Memory Registration

Shared Memory Setup

Other

0

20

40

60

80

100

120

16 32 64 128 256 512 1K 2K 4K 8K

Ti
m

e 
Ta

ke
n 

(S
ec

on
ds

) 

Number of Processes 

Performance of OpenSHMEM 
Initialization and Hello World 
Hello World - Static

Initialization - Static

Hello World - On-demand

Initialization - On-demand

• Static connection establishment wastes memory and takes a lot of time 

• On-demand connection management  improves OpenSHMEM initialization time by 29.6 times  

• Time taken for Hello World reduced by 8.31 times at 8,192 processes 

• Available since MVAPICH2-X 2.1rc1 



MUG’16 91 Network Based Computing Laboratory 

Microbenchmark Level Performance 
Reduce (256 processes) Broadcast (256 processes) 

Collect (256 processes) Barrier 

1

10

100

1000

10000

100000

1000000

10000000

128 256
No. of Processes 

1

10

100

1000

10000

100000

1000000

4 16 64 256 1K 4K 16K 64K 256K

Ti
m

e 
(u

s)
 

Message Size 

1
10

100
1000

10000
100000

1000000
10000000

4 16 64 256 1K 4K 16K 64K 256K
Message Size 

1
10

100
1000

10000
100000

1000000
10000000

4 16 64 256 1K 4K 16K 64K 256K

Ti
m

e 
(u

s)
 

Message Size 

OpenSHMEM-GASNet (Linear)
OpenSHMEM-GASNet (Tree)
OpenSHMEM-OSU



MUG’16 92 Network Based Computing Laboratory 

Hybrid MPI+UPC NAS-FT 

• Modified NAS FT UPC all-to-all pattern using MPI_Alltoall 
• Truly hybrid program 
• For FT (Class C, 128 processes)  

•  34% improvement over UPC-GASNet 
•  30% improvement over UPC-OSU 

 
 

 

 
 

0

5

10

15

20

25

30

35

B-64 C-64 B-128 C-128

Ti
m

e 
(s

) 

NAS Problem Size – System Size 

UPC-GASNet

UPC-OSU

Hybrid-OSU

34% 

J. Jose, M. Luo, S. Sur and D. K. Panda, Unifying UPC and MPI Runtimes: Experience with MVAPICH, Fourth 
Conference on Partitioned Global Address Space Programming Model (PGAS ’10), October 2010 

Hybrid MPI + UPC Support 

Available since 

MVAPICH2-X 1.9 



MUG’16 93 Network Based Computing Laboratory 

Performance Evaluations for One-sided Communication 

0
1000
2000
3000
4000
5000
6000

Ba
nd

w
id

th
 (M

B/
s)

 

Message Size (byte) 

GASNet-IBV
GASNet-MPI
MV2X

0
1000
2000
3000
4000
5000
6000

Ba
nd

w
id

th
 (M

B/
s)

 

Message Size (byte) 

GASNet-IBV
GASNet-MPI
MV2X

0
2
4
6
8

10

GASNet-IBV GASNet-MPI MV2XLa
te

nc
y 

(m
s)

 

0
2
4
6
8

10

GASNet-IBV GASNet-MPI MV2XLa
te

nc
y 

(m
s)

 

0 100 200 300

bt.D.256

cg.D.256

ep.D.256

ft.D.256

mg.D.256

sp.D.256

GASNet-IBV GASNet-MPI MV2X
Time (sec) 

Get NAS-CAF Put 

• Micro-benchmark improvement (MV2X vs. GASNet-IBV, UH CAF test-suite) 
– Put bandwidth: 3.5X improvement on 4KB; Put latency: reduce 29% on 4B 

• Application performance improvement (NAS-CAF one-sided implementation) 
– Reduce the execution time by 12% (SP.D.256), 18% (BT.D.256) 

3.5X 

29% 

12% 

18% 

J. Lin, K. Hamidouche, X. Lu, M. Li and D. K. Panda, High-performance Co-array Fortran support with MVAPICH2-X: Initial 
experience and evaluation, HIPS’15 



MUG’16 94 Network Based Computing Laboratory 

UPC++ Support in MVAPICH2-X 

MPI + {UPC++} Application 

GASNet Interfaces 

UPC++ 
Interface 

Network 

Conduit (MPI) 

MVAPICH2-X 
Unified Communication 

Runtime (UCR) 

MPI + {UPC++} Application 

UPC++ 
Runtime 

MPI 
Interfaces 

• Full and native support for hybrid MPI + UPC++ applications 

• Better performance compared to IBV and MPI conduits 

• OSU Micro-benchmarks (OMB) support for UPC++ 

• Available since MVAPICH2-X (2.2rc1) 

0

5000

10000

15000

20000

25000

30000

35000

40000

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

Ti
m

e 
(u

s)
 

Message Size (bytes) 

GASNet_MPI
GASNET_IBV
MV2-X

14x 

Inter-node Broadcast (64 nodes 1:ppn) 

MPI Runtime 

More Details in Student Poster  

Presentation 



MUG’16 95 Network Based Computing Laboratory 

• Runtime Optimization and Tuning Flexibility in  
– MVAPICH2 

– MVAPICH2-GDR 

– MVAPICH2-X 

– MVAPICH2-MIC 

– MVAPICH2-EA 

– MVAPICH2-Virt 

• Application Best Practices 
– Amber, MiniAMR, SMG2000, Neuron, HPCCG, LULESH, MILC and HoomDBlue 

• Overview of Configuration and Debugging Support 

• Conclusions and Final Q&A 

Presentation Overview 



MUG’16 96 Network Based Computing Laboratory 

MPI Applications on MIC Clusters 

Xeon Xeon Phi 

Multi-core Centric 

Many-core Centric 

MPI 
Program 

MPI 
Program 

Offloaded 
Computation 

MPI 
Program 

MPI Program 

MPI Program 

Host-only 

Offload  
(/reverse Offload) 

Symmetric 

Coprocessor-only 

• Flexibility in launching MPI jobs on clusters with Xeon Phi  



MUG’16 97 Network Based Computing Laboratory 

Data Movement on Intel Xeon Phi Clusters 

CPU CPU 
QPI 

M
IC

 

PC
Ie

 
M

IC
 

M
IC

 

CPU 

M
IC

 

IB 

Node 0 Node 1 1. Intra-Socket 
2. Inter-Socket 
3. Inter-Node 
4. Intra-MIC 
5. Intra-Socket MIC-MIC 
6. Inter-Socket MIC-MIC 
7. Inter-Node MIC-MIC 
8. Intra-Socket MIC-Host 

10. Inter-Node MIC-Host 
9. Inter-Socket MIC-Host 

MPI Process 

11. Inter-Node MIC-MIC with IB adapter  on remote socket 
 

and more . . . 

• Critical for runtimes to optimize data movement, hiding the complexity 

• Connected as PCIe devices – Flexibility but Complexity 



MUG’16 98 Network Based Computing Laboratory 

MVAPICH2-MIC 2.0 Design for Clusters with IB and  MIC 

• Offload Mode  

• Intranode Communication 

• Coprocessor-only and Symmetric Mode  

• Internode Communication  

• Coprocessors-only and Symmetric Mode 

• Multi-MIC Node Configurations 

• Running on three major systems 

• Stampede, Blueridge (Virginia Tech) and Beacon (UTK) 



MUG’16 99 Network Based Computing Laboratory 

MIC-Remote-MIC P2P Communication with Proxy-based Communication 

Bandwidth 

Better 

Be
tt

er
 

Be
tt

er
 

Latency (Large Messages) 

0

1000

2000

3000

4000

5000

8K 32K 128K 512K 2M

L
at

en
cy

 (u
se

c)
 

Message Size (Bytes) 

0

2000

4000

6000

1 16 256 4K 64K 1M

Ba
nd

w
id

th
 (M

B/
se

c)
 

Message Size (Bytes) 

5236 

Intra-socket P2P 

Inter-socket P2P 

0
2000
4000
6000
8000

10000
12000
14000
16000

8K 32K 128K 512K 2M

L
at

en
cy

 (u
se

c)
 

Message Size (Bytes) 

Latency (Large Messages) 

0

2000

4000

6000

1 16 256 4K 64K 1M

Ba
nd

w
id

th
 (M

B/
se

c)
 

Message Size (Bytes) 
Better 

5594 

Bandwidth 



MUG’16 100 Network Based Computing Laboratory 

Optimized MPI Collectives for MIC Clusters (Allgather & Alltoall) 

A. Venkatesh, S. Potluri, R. Rajachandrasekar, M. Luo, K. Hamidouche and D. K. Panda - High Performance 
Alltoall and Allgather designs for InfiniBand MIC Clusters; IPDPS’14, May 2014 

0

5000

10000

15000

20000

25000

1 2 4 8 16 32 64 128 256 512 1K

La
te

nc
y 

(u
se

cs
) 

Message Size (Bytes) 

32-Node-Allgather (16H + 16 M) 
Small Message Latency 

MV2-MIC

MV2-MIC-Opt

0

500

1000

1500

8K 16K 32K 64K 128K 256K 512K 1M

La
te

nc
y 

(u
se

cs
) 

Message Size (Bytes) 

32-Node-Allgather (8H + 8 M) 
Large Message Latency 

MV2-MIC MV2-MIC-Opt

0

200

400

600

800

4K 8K 16K 32K 64K 128K 256K 512K

La
te

nc
y 

(u
se

cs
) 

Message Size (Bytes) 

32-Node-Alltoall (8H + 8 M) 
Large Message Latency 

MV2-MIC

MV2-MIC-Opt

0

10

20

30

40

50

MV2-MIC-Opt MV2-MIC

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

s)
 

32 Nodes (8H + 8M), Size = 2K*2K*1K 

P3DFFT Performance 
Communication

Computation

76% 
58% 

55% 



MUG’16 101 Network Based Computing Laboratory 

Latest Status on MVAPICH2-MIC  

• Running on three major systems 

• Public version of MVAPICH2-MIC 2.0 is released (12/02/14) 
– http://mvapich.cse.ohio-state.edu/downloads/#mv2mic 

• Enhanced version with support for KNL coming soon! 

http://mvapich.cse.ohio-state.edu/downloads/#mv2mic


MUG’16 102 Network Based Computing Laboratory 

• Runtime Optimization and Tuning Flexibility in  
– MVAPICH2 

– MVAPICH2-GDR 

– MVAPICH2-X 

– MVAPICH2-MIC 

– MVAPICH2-EA 

– MVAPICH2-Virt 

• Application Best Practices 
– Amber, MiniAMR, SMG2000, Neuron, HPCCG, LULESH, MILC and HoomDBlue 

• Overview of Configuration and Debugging Support 

• Conclusions and Final Q&A 

Presentation Overview 



MUG’16 103 Network Based Computing Laboratory 

• MVAPICH2-EA 2.1 (Energy-Aware) 
• A white-box approach 
• New Energy-Efficient communication protocols for pt-pt and collective operations 
• Intelligently apply the appropriate Energy saving techniques 
• Application oblivious energy saving 

 
• OEMT 

• A library utility to measure energy consumption for MPI applications 
• Works with all MPI runtimes 
• PRELOAD option for precompiled applications   
• Does not require ROOT permission:  

• A safe kernel module to read only a subset of MSRs  

Energy-Aware MVAPICH2 & OSU Energy Management Tool (OEMT) 



MUG’16 104 Network Based Computing Laboratory 

• An energy efficient runtime that 
provides energy savings without 
application knowledge 

• Uses automatically and 
transparently  the best energy 
lever 

• Provides guarantees on 
maximum degradation with 5-
41% savings at <= 5% 
degradation 

• Pessimistic MPI applies energy 
reduction lever to each MPI call 

MVAPICH2-EA: Application Oblivious Energy-Aware-MPI (EAM) 

A Case for Application-Oblivious Energy-Efficient MPI Runtime A. Venkatesh, A. Vishnu, K. Hamidouche, N. Tallent, D. 

K. Panda, D. Kerbyson, and A. Hoise, Supercomputing ‘15, Nov 2015 [Best Student Paper Finalist] 

1 



MUG’16 105 Network Based Computing Laboratory 

• Runtime Optimization and Tuning Flexibility in  
– MVAPICH2 

– MVAPICH2-GDR 

– MVAPICH2-X 

– MVAPICH2-MIC 

– MVAPICH2-EA 

– MVAPICH2-Virt 

• Application Best Practices 
– Amber, MiniAMR, SMG2000, Neuron, HPCCG, LULESH, MILC and HoomDBlue 

• Overview of Configuration and Debugging Support 

• Conclusions and Final Q&A 

Presentation Overview 



MUG’16 106 Network Based Computing Laboratory 

MVAPICH2-Virt 2.2rc1 

• Released on 07/12/2016 

• Major Features and Enhancements 
– Based on MVAPICH2 2.2rc1 

– High-performance and locality-aware MPI communication with IPC-SHM and CMA 
for containers 

– Support for locality auto-detection in containers 
– Automatic communication channel selection among IPC-SHM, CMA, and HCA 
– Support for easy configuration through runtime parameters 
– Tested with 

• Docker 1.9.1 and 1.10.3 
• Mellanox InfiniBand adapters (ConnectX-3 (56Gbps)) 



MUG’16 107 Network Based Computing Laboratory 

0

50

100

150

200

250

300

350

400

milc leslie3d pop2 GAPgeofem zeusmp2 lu

Ex
ec

ut
io

n 
Ti

m
e 

(s
) 

MV2-SR-IOV-Def

MV2-SR-IOV-Opt

MV2-Native

1% 
9.5% 

0

1000

2000

3000

4000

5000

6000

22,20 24,10 24,16 24,20 26,10 26,16

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

 

Problem Size (Scale, Edgefactor) 

MV2-SR-IOV-Def

MV2-SR-IOV-Opt

MV2-Native
2% 

• 32 VMs, 6 Core/VM  

• Compared to Native, 2-5% overhead for Graph500 with 128 Procs 

• Compared to Native, 1-9.5% overhead for SPEC MPI2007 with 128 Procs 

Application-Level Performance on Chameleon (SR-IOV Support) 

SPEC MPI2007 Graph500 

5% 



MUG’16 108 Network Based Computing Laboratory 

0

500

1000

1500

2000

2500

3000

3500

4000

22, 16 22, 20 24, 16 24, 20 26, 16 26, 20

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

 

Problem Size (Scale, Edgefactor) 

Container-Def

Container-Opt

Native

0

10

20

30

40

50

60

70

80

90

100

MG.D FT.D EP.D LU.D CG.D

Ex
ec

ut
io

n 
Ti

m
e 

(s
)  

Container-Def

Container-Opt

Native

• 64 Containers across 16 nodes, pining 4 Cores per Container  

• Compared to Container-Def, up to 11% and 16% of execution time reduction for NAS and Graph 500 

• Compared to Native, less than 9 % and 4% overhead for NAS and Graph 500 

Application-Level Performance on Chameleon (Containers Support) 

Graph 500 NAS 

11% 

16% 



MUG’16 109 Network Based Computing Laboratory 

• Runtime Optimization and Tuning Flexibility in  
– MVAPICH2 

– MVAPICH2-GDR 

– MVAPICH2-X 

– MVAPICH2-MIC 

– MVAPICH2-EA 

– MVAPICH2-Virt 

• Application Best Practices 
– Amber, MiniAMR, SMG2000, Neuron, HPCCG, LULESH, MILC and HoomDBlue 

• Overview of Configuration and Debugging Support 

• Conclusions and Final Q&A 

Presentation Overview 



MUG’16 110 Network Based Computing Laboratory 

• MPI runtime has many parameters 
• Tuning a set of parameters can help you to extract higher performance 
• Compiled a list of such contributions through the MVAPICH Website 

– http://mvapich.cse.ohio-state.edu/best_practices/ 

• Initial list of applications 
– Amber 
– HoomDBlue 
– HPCG 
– Lulesh 
– MILC 
– Neuron 
– SMG2000 

• Soliciting additional contributions, send your results to mvapich-help at cse.ohio-state.edu. 
• We will link these results with credits to you. 

 
 
 

Applications-Level Tuning: Compilation of Best Practices 

http://mvapich.cse.ohio-state.edu/best_practices/


MUG’16 111 Network Based Computing Laboratory 

Amber: Impact of Tuning Eager Threshold 

0

100

200

300

400

500

64 128 256

Ex
ec

ut
io

n 
Ti

m
e 

(s
) 

Number of Processes 

Default Tuned

19% 

• Tuning the Eager threshold has a significant 
impact on application performance by avoiding 
the synchronization of rendezvous protocol 
and thus yielding better communication 
computation overlap 

• 19% improvement in overall execution time at 
256 processes 

• Library Version: MVAPICH2 2.2b 

• MVAPICH Flags used 
– MV2_IBA_EAGER_THRESHOLD=131072  

– MV2_VBUF_TOTAL_SIZE=131072 

• Input files used  
– Small: MDIN 

– Large: PMTOP 

 

Data Submitted by: Dong Ju Choi @ UCSD 

http://www.sdsc.edu/%7Edchoi/amber/mdin
http://www.sdsc.edu/%7Edchoi/amber/prmtop


MUG’16 112 Network Based Computing Laboratory 

• UD-based transport protocol selection 
benefits the SMG2000 application 

• 22% and 6% on 1,024 and 4,096 cores, 
respectively  

• Library Version: MVAPICH2 2.1 

• MVAPICH Flags used 
– MV2_USE_ONLY_UD=1 

• System Details 
– Stampede@ TACC 

– Sandybridge architecture with dual 8-cores 
nodes and ConnectX-3 FDR network 

SMG2000: Impact of Tuning Transport Protocol 

0
10
20
30
40
50
60
70
80

1024 2048 4096

Ex
ec

ut
io

n 
Ti

m
e 

(s
) 

Number of Processes  

Default Tuned
22% 

Data Submitted by Jerome Vienne @ TACC 



MUG’16 113 Network Based Computing Laboratory 

• UD-based transport protocol selection 
benefits the Neuron application 

• 15% and 27% improvement is seen for 768 and 
1,024 processes respectively 

• Library Version: MVAPICH2 2.2b 

• MVAPICH Flags used 
– MV2_USE_ONLY_UD=1 

• Input File 
– YuEtAl2012 

• System Details 
– Comet@SDSC 

– Haswell nodes with dual 12-cores socket per 
node and Mellanox FDR (56 Gbps) network. 

Neuron: Impact of Tuning Transport Protocol 

0
20
40
60
80

100
120
140

384 512 768 1024

Ex
ec

ut
io

n 
Ti

m
e 

(s
) 

Number of Processes  

Default Tuned

27% 

Data Submitted by Mahidhar Tatineni @ SDSC 

https://senselab.med.yale.edu/modeldb/showModel.cshtml?model=144570&file=%5CYuEtAl2012%5C


MUG’16 114 Network Based Computing Laboratory 

0

0.2

0.4

0.6

0.8

1

1.2

HPCG

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e Default Tuned

• Partial subscription nature of hybrid MPI+OpenMP 
programming requires a new level of collective tuning 

– For PPN=2 (Processes Per Node), the tuned version of MPI_Reduce 
shows 51% improvement on 2,048 cores 

• 24% improvement on 512 cores 
– 8 OpenMP threads per MPI processes 

• Library Version: MVAPICH2 2.1 

• MVAPICH Flags used 
– The tuning parameters for hybrid MPI+OpenMP 

programming models is on by default from MVAPICH2-2.1 
onward 

• System Details 
– Stampede@ TACC 

– Sandybridge architecture with dual 8-cores nodes and 
ConnectX-3 FDR network 

 

HPCG: Impact of Collective Tuning for MPI+OpenMP Programming Model 

24% 

Data Submitted by Jerome Vienne and Carlos Rosales-Fernandez @ TACC 



MUG’16 115 Network Based Computing Laboratory 

• Partial subscription nature of hybrid MPI+OpenMP 
programming requires a new level of collective tuning 

– For PPN=2 (Processes Per Node), the tuned version of MPI_Reduce 
shows 51% improvement on 2,048 cores 

• 4% improvement on 512 cores 
– 8 OpenMP threads per MPI processes 

• Library Version: MVAPICH2 2.1 

• MVAPICH Flags used 
– The tuning parameters for hybrid MPI+OpenMP 

programming models is on by default from MVAPICH2-2.1 
onward 

• System Details 
– Stampede@ TACC 

– Sandybridge architecture with dual 8-cores nodes and 
ConnectX-3 FDR network 

 

LULESH: Impact of Collective Tuning for MPI+OpenMP Programming Model 

0

0.2

0.4

0.6

0.8

1

1.2

Lulesh

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e Default Tuned

4% 

Data Submitted by Jerome Vienne and Carlos Rosales-Fernandez @ TACC 



MUG’16 116 Network Based Computing Laboratory 

• Non-contiguous data processing is very common on HPC 
applications. MVAPICH2 offers efficient designs for MPI 
Datatype support using novel hardware features such as 
UMR 

• UMR-based protocol selection benefits the MILC 
application.  

– 4% and 6% improvement in execution time at 512 and 640 
processors, respectively 

• Library Version: MVAPICH2-X 2.2b 

• MVAPICH Flags used 
– MV2_USE_UMR=1 

• System Details 
– The experimental cluster consists of 32 Ivy Bridge Compute nodes 

interconnected by Mellanox FDR. 

– The Intel Ivy Bridge processors consist of Xeon dual ten-core 
sockets operating at 2.80GHz with 32GB RAM and Mellanox OFED 
version 3.2-1.0.1.1. 

 

MILC: Impact of User-mode Memory Registration (UMR) based tuning 

0

10

20

30

40

50

60

70

128 256 512 640

Ex
ec

ut
io

n 
Ti

m
e 

(s
) 

Number of Processes  

Default Tuned

6% 

Data Submitted by Mingzhe Li @ OSU 



MUG’16 117 Network Based Computing Laboratory 

• HOOMD-blue is a Molecular Dynamics 
simulation using a custom force field. 

• GPUDirect specific features selection and 
tuning significantly benefit the HOOMD-blue 
application. We observe a factor of 2X 
improvement on 32 GPU nodes, with both 64K 
and 256K particles 

• Library Version: MVAPICH2-GDR 2.2b 

• MVAPICH-GDR Flags used 
– MV2_USE_CUDA=1  

– MV2_USE_GPUDIRECT=1  

– MV2_GPUDIRECT_GDRCOPY=1 

• System Details 
– Wilkes@Cambridge 

– 128 Ivybridge nodes, each node is a dual 6-
cores socket with Mellanox FDR 

HOOMD-blue: Impact of GPUDirect RDMA Based Tuning 

0

1000

2000

3000

4 8 16 32

Av
er

ag
e 

Ti
m

e 
St

ep
s 

pe
r s

ec
on

d 
(T

PS
) 

Number of Processes  

256K Particles 
MV2 MV2+GDR

0

1000

2000

3000

4000

4 8 16 32

Av
er

ag
e 

Ti
m

e 
St

ep
s 

pe
r s

ec
on

d 
(T

PS
) 

Number of Processes  

64K Particles 
Default Tuned

2X 

2X 

Data Submitted by Khaled Hamidouche @ OSU 



MUG’16 118 Network Based Computing Laboratory 

• Runtime Optimization and Tuning Flexibility in  
– MVAPICH2 

– MVAPICH2-GDR 

– MVAPICH2-X 

– MVAPICH2-MIC 

– MVAPICH2-EA 

– MVAPICH2-Virt 

• Application Best Practices 

• Overview of Configuration and Debugging Support 
– User Resources 

– Getting help and Bug report detail 

• Conclusions and Final Q&A 

Presentation Overview 



MUG’16 119 Network Based Computing Laboratory 

• MVAPICH2 Quick Start Guide 

• MVAPICH2 User Guide 

– Long and very detailed 

– FAQ 

• MVAPICH2 Web-Site 

– Overview and Features  

– Reference performance 

– Publications 

• Mailing List Support 

– mvapich-discuss 

• Mailing List Archives 

• All above resources accessible from: http://mvapich.cse.ohio-state.edu/ 

User Resources 

http://mvapich.cse.ohio-state.edu/support/mvapich2-2.0a-quick-start.html
http://mvapich.cse.ohio-state.edu/support/
http://mvapich.cse.ohio-state.edu/support/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/overview/mvapich2/
http://mvapich.cse.ohio-state.edu/overview/mvapich2/features.shtml
http://mvapich.cse.ohio-state.edu/performance/
http://mvapich.cse.ohio-state.edu/support/mailing_lists.shtml
http://nowlab.cse.ohio-state.edu/publications/
http://mvapich.cse.ohio-state.edu/support/mailing_lists.shtml
http://mail.cse.ohio-state.edu/pipermail/mvapich-discuss/
http://mvapich.cse.ohio-state.edu/


MUG’16 120 Network Based Computing Laboratory 

• Check the MVAPICH2 FAQ 

• Check the Mailing List Archives 

• Basic System Diagnostics 
– ibv_devinfo -  at least one port should be PORT_ACTIVE 

– ulimit -l - should be “unlimited” on all compute nodes 

– host resolution: DNS or /etc/hosts 

– password-less ssh login  

– run IB perf tests for all the message sizes(-a option) 
• Ib_send_lat, ib_send_bw 

– run system program (like hostname)  and MPI hello world program  

 

Getting Help 

http://mvapich.cse.ohio-state.edu/support/user_guide_mvapich2-2.0a.html
http://mail.cse.ohio-state.edu/pipermail/mvapich-discuss/


MUG’16 121 Network Based Computing Laboratory 

• More diagnostics 
– Already fixed issue: always try with latest release 

– Regression: verifying with previous release 

– Application issue: verify with other MPI libraries 

– Launcher issue: verifying with multiple launchers (mpirun_rsh, mpiexec.hydra) 

– Debug mode 

– Compiler optimization issues: try with different compiler  

 

Getting Help (Cont.) 



MUG’16 122 Network Based Computing Laboratory 

• Subscribe to mvapich-discuss and send problem report 

• Include as much information as possible 

• Run-time issues 
– Config flags (“mpiname –a” output) 

– Exact command used to run the application 

– Run-rime parameters in the environment 

– Standalone reproducer program 

– Information about the IB network 
• OFED version 

• ibv_devinfo 

– Remote system access 
 

 

 

 

Submitting Bug Report 



MUG’16 123 Network Based Computing Laboratory 

• Build and Installation issues 
– MVAPICH2 version 

– Compiler version 

– Platform details ( OS, kernel version..etc) 

– Configure flags 

– Attach Config.log file 

– Attach configure, make and make install step output 
• ./configure {–flags} 2>&1 | tee config.out 

• Make 2>&1 | tee make.out 

• Make install 2>&1 | tee install.out 

 

Submitting Bug Report (Cont.) 



MUG’16 124 Network Based Computing Laboratory 

• Runtime Optimization and Tuning Flexibility in  
– MVAPICH2 

– MVAPICH2-GDR 

– MVAPICH2-X 

– MVAPICH2-MIC 

– MVAPICH2-EA 

– MVAPICH2-Virt 

• Application Best Practices 

• Overview of Configuration and Debugging Support 

• Conclusions and Final Q&A 

Presentation Overview 



MUG’16 125 Network Based Computing Laboratory 

• Exascale systems will be constrained by 
– Power 
– Memory per core 
– Data movement cost 
– Faults 

• Programming Models and Runtimes for HPC need to be designed for 
– Scalability 
– Performance 
– Fault-resilience 
– Energy-awareness 
– Programmability 
– Productivity 

• Highlighted some of the issues and challenges 
• Need continuous innovation on all these fronts   

Looking into the Future …. 



MUG’16 126 Network Based Computing Laboratory 

MVAPICH2 – Plans for Exascale 
• Performance and Memory scalability toward 1M cores 
• Hybrid programming (MPI + OpenSHMEM, MPI + UPC, MPI + CAF …) 

• MPI + Task* 
• Enhanced Optimization for GPU Support and Accelerators 
• Taking advantage of advanced features of Mellanox InfiniBand 

• Switch-IB2 SHArP* 
• GID-based support* 

• Enhanced communication schemes for upcoming architectures 
• Knights Landing with MCDRAM* 
• NVLINK* 
• CAPI* 

• Extended topology-aware collectives 
• Extended Energy-aware designs and Virtualization Support 
• Extended Support for MPI Tools Interface (as in MPI 3.0) 
• Extended Checkpoint-Restart and migration support with SCR 
• Support for * features will be available in future MVAPICH2 Releases  
 
 



MUG’16 127 Network Based Computing Laboratory 

• Provided an overview of the MVAPICH2 software libraries 

• Presented in-depth details on configuration and runtime parameters, 
optimizations and their impacts 

• Provided an overview of debugging support 

• Summarized the impact of optimization and tuning by creating a set of 
“Application Best Practices” 

• Demonstrated how users can take advantage of these optimization techniques to 
extract performance and scalability while using various MVAPICH2 software 
libraries 

Concluding Remarks 



MUG’16 128 Network Based Computing Laboratory 

 International Workshop on Extreme Scale Programming 
Models and Middleware (ESPM2) 

ESPM2 2016 will be held with the Supercomputing Conference (SC ‘16), at Salt 
Lake City, Utah, on Friday, November 18th, 2016 

http://web.cse.ohio-state.edu/~hamidouc/ESPM2/espm2_16.html#program 

In Cooperation with ACM SIGHPC 

Paper Submission Deadline:  August 26th, 2016 

Author Notification: September 30th, 2016 

Camera Ready: October 7th, 2016 
 

ESPM2 2015 was held with the Supercomputing Conference (SC ‘15), at Austin, Texas, on 
Sunday, November 15th, 2015 

http://web.cse.ohio-state.edu/~hamidouc/ESPM2/espm2.html#program 
 

http://web.cse.ohio-state.edu/%7Ehamidouc/ESPM2/espm2_16.html
http://web.cse.ohio-state.edu/%7Ehamidouc/ESPM2/espm2_16.html
http://web.cse.ohio-state.edu/%7Ehamidouc/ESPM2/espm2_16.html
http://web.cse.ohio-state.edu/%7Ehamidouc/ESPM2/espm2_16.html


MUG’16 129 Network Based Computing Laboratory 

Funding Acknowledgments 

Funding Support by 

Equipment Support by 



MUG’16 130 Network Based Computing Laboratory 

Personnel Acknowledgments 
Current Students  

– A. Augustine (M.S.) 

– A. Awan (Ph.D.) 

– M. Bayatpour (Ph.D.) 

– S. Chakraborthy  (Ph.D.) 

– C.-H. Chu (Ph.D.) 

– S. Gugnani (Ph.D.) 

Past Students  
– P. Balaji (Ph.D.) 

– S. Bhagvat (M.S.) 

– A. Bhat (M.S.)  

– D. Buntinas (Ph.D.) 

– L. Chai (Ph.D.) 

– B. Chandrasekharan (M.S.) 

– N. Dandapanthula (M.S.) 

– V. Dhanraj (M.S.) 

– T. Gangadharappa (M.S.) 

– K. Gopalakrishnan (M.S.) 

– R. Rajachandrasekar (Ph.D.) 

– G. Santhanaraman (Ph.D.) 

– A. Singh (Ph.D.) 

– J. Sridhar (M.S.) 

– S. Sur (Ph.D.) 

– H. Subramoni (Ph.D.) 

– K. Vaidyanathan (Ph.D.) 

– A. Vishnu (Ph.D.) 

– J. Wu (Ph.D.) 

– W. Yu (Ph.D.) 

Past Research Scientist 
– S. Sur 

Past Post-Docs 
– H. Wang 

– X. Besseron 

– H.-W. Jin 

– M. Luo 

– W. Huang (Ph.D.) 

– W. Jiang (M.S.) 

– J. Jose (Ph.D.) 

– S. Kini (M.S.) 

– M. Koop (Ph.D.) 

– R. Kumar (M.S.) 

– S. Krishnamoorthy (M.S.) 

– K. Kandalla (Ph.D.) 

– P. Lai (M.S.) 

– J. Liu (Ph.D.) 

 

– M. Luo (Ph.D.) 

– A. Mamidala (Ph.D.) 

– G. Marsh (M.S.) 

– V. Meshram (M.S.) 

– A. Moody (M.S.) 

– S. Naravula (Ph.D.) 

– R. Noronha (Ph.D.) 

– X. Ouyang (Ph.D.) 

– S. Pai (M.S.) 

– S. Potluri (Ph.D.)  
 

 

 

– J. Hashimi (Ph.D.) 

– N. Islam (Ph.D.) 

– M. Li (Ph.D.) 

– K. Kulkarni (M.S.) 

– M. Rahman (Ph.D.) 

– D. Shankar (Ph.D.) 

– A. Venkatesh (Ph.D.) 

– J. Zhang (Ph.D.) 

– E. Mancini 

– S. Marcarelli 

– J. Vienne 

– D. Banerjee 

– J. Lin 

Current Research Scientists 
– K. Hamidouche 

– X. Lu 

Past Programmers 
– D. Bureddy 

Current Research Specialist 
– M. Arnold 

– J. Perkins 

– H. Subramoni 



MUG’16 131 Network Based Computing Laboratory 

panda@cse.ohio-state.edu, subramon@cse.ohio-state.edu, hamidouc@cse.ohio-state.edu 

Thank You! 

Network-Based Computing Laboratory 
http://nowlab.cse.ohio-state.edu/ 

The MVAPICH Project 
http://mvapich.cse.ohio-state.edu/ 

mailto:panda@cse.ohio-state.edu
mailto:subramon@cse.ohio-state.edu
mailto:hamidouc@cse.ohio-state.edu
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/

	How to Boost the Performance of your MPI and PGAS Applications with MVAPICH2 Libraries?
	MVAPICH2 Software Family 
	Presentation Overview
	MVAPICH2 Interfaces (Latest Release 2.2rc2) 
	MVAPICH2 2.2rc2
	Presentation Overview
	Job-Launchers supported by MVAPICH2
	Towards High Performance and Scalable Startup at Exascale
	Non-blocking Process Management Interface (PMI) Primitives for Scalable MPI Startup  
	Process Management Interface (PMI) over Shared Memory (SHMEMPMI)
	How to Get the Best Startup Performance with MVAPICH2?
	Presentation Overview
	Inter-node Point-to-Point Tuning: Eager Thresholds
	Inter-node Point-to-Point Tuning: Number of Buffers and RNDV Protocols
	Presentation Overview
	Shared Receive Queue (SRQ)
	Using Shared Receive Queues with MVAPICH2
	Using eXtended Reliable Connection (XRC) in MVAPICH2
	Using UD Transport with MVAPICH2
	Hybrid (UD/RC/XRC) Mode in MVAPICH2
	Minimizing Memory Footprint by Direct Connect (DC) Transport
	User-mode Memory Registration (UMR)
	On-Demand Paging (ODP)
	Presentation Overview
	Process Mapping support in MVAPICH2
	Preset Process-binding Policies – Bunch
	Preset Process-binding Policies – Scatter
	User-Defined Process Mapping
	Intra-node Communication Support in MVAPICH2 
	MVAPICH2 Two-Sided Intra-Node Tuning:�Shared memory and Kernel-based Zero-copy Support (LiMIC and CMA)
	MVAPICH2 Two-Sided Intra-Node Tuning:�Shared-Memory based Runtime Parameters
	Impact of Architecture-Specific Tuning
	Presentation Overview
	One-sided Communication Model
	Internode One-sided Communication: Direct RDMA-based Designs
	MPI-3 RMA Model: Performance
	MPI-3 RMA Model: Overlap 
	Performance of AWP-ODC using MPI-3-RMA
	Presentation Overview
	Collective Communication Operations
	Sample Collective Communication Routines
	Sample Collective Communication Routines (Cont’d)
	Collective Communication in MVAPICH2
	Hardware Multicast-aware MPI_Bcast on TACC Stampede
	MPI_Scatter - Benefits of using Hardware-Mcast
	Shared-memory Aware Collectives �
	Concept of Non-blocking Collectives
	Non-blocking Collective (NBC) Operations
	Strong Overlap Example Benchmarks�
	How do I write applications with NBC?
	Collective Offload Support in ConnectX InfiniBand Adapter (Recv followed by Multi-Send)
	Presentation Overview
	OSU Microbenchmarks
	OSU Microbenchmarks v5.3.1
	Presentation Overview
	GPU-Aware MPI Library: MVAPICH2-GPU 
	GPU-Direct RDMA (GDR) with CUDA 
	CUDA-Aware MPI: MVAPICH2-GDR 1.8-2.2 Releases
	Presentation Overview
	Pipelined Data Movement in MVAPICH2-GDR: Tuning
	Presentation Overview
	GPU-Direct RDMA (GDR) with CUDA 
	Tuning GPUDirect RDMA (GDR) Designs in MVAPICH2-GDR
	Slide Number 64
	Tuning GDRCOPY Designs in MVAPICH2-GDR
	Tuning Loopback Designs in MVAPICH2-GDR
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Tuning Multi-rail Support in MVAPICH2-GDR
	Slide Number 71
	Presentation Overview
	Slide Number 73
	Tuning IPC designs in MVAPICH2-GDR
	Presentation Overview
	Slide Number 76
	MPI Datatype support in MVAPICH2
	Slide Number 78
	Slide Number 79
	Presentation Overview
	Slide Number 81
	Presentation Overview
	CUDA and OpenACC Extensions in OMB
	Presentation Overview
	MVAPICH2-X for Hybrid MPI + PGAS Applications
	MVAPICH2-X 2.2rc2
	Compiling programs with MVAPICH2-X
	Running Programs with MVAPICH2-X
	OSU Microbenchmarks – UPC, UPC++ and OpenSHMEM
	On-demand Connection Management for OpenSHMEM+MPI
	Microbenchmark Level Performance
	Hybrid MPI+UPC NAS-FT
	Performance Evaluations for One-sided Communication
	UPC++ Support in MVAPICH2-X
	Presentation Overview
	MPI Applications on MIC Clusters
	Data Movement on Intel Xeon Phi Clusters
	MVAPICH2-MIC 2.0 Design for Clusters with IB and  MIC
	MIC-Remote-MIC P2P Communication with Proxy-based Communication
	Optimized MPI Collectives for MIC Clusters (Allgather & Alltoall)
	Latest Status on MVAPICH2-MIC 
	Presentation Overview
	Energy-Aware MVAPICH2 & OSU Energy Management Tool (OEMT)
	MVAPICH2-EA: Application Oblivious Energy-Aware-MPI (EAM)
	Presentation Overview
	MVAPICH2-Virt 2.2rc1
	Slide Number 107
	Slide Number 108
	Presentation Overview
	Applications-Level Tuning: Compilation of Best Practices
	Amber: Impact of Tuning Eager Threshold
	SMG2000: Impact of Tuning Transport Protocol
	Neuron: Impact of Tuning Transport Protocol
	HPCG: Impact of Collective Tuning for MPI+OpenMP Programming Model
	LULESH: Impact of Collective Tuning for MPI+OpenMP Programming Model
	MILC: Impact of User-mode Memory Registration (UMR) based tuning
	HOOMD-blue: Impact of GPUDirect RDMA Based Tuning
	Presentation Overview
	User Resources
	Getting Help
	Getting Help (Cont.)
	Submitting Bug Report
	Submitting Bug Report (Cont.)
	Presentation Overview
	Looking into the Future ….
	MVAPICH2 – Plans for Exascale
	Concluding Remarks
	 International Workshop on Extreme Scale Programming Models and Middleware (ESPM2)
	Funding Acknowledgments
	Personnel Acknowledgments
	Thank You!

