Runtime Algorithm Selection of
Collective Communication with
RMA-based Monitoring Mechanism

Takeshi Nanri (Kyushu Univ. and JST CREST, Japan)

16 Aug, 2016
4th Annual MVAPICH Users Group Meeting

Background

- Difficulties in static optimization of parallel codes because:
- Larger number of nodes
- More complexed network topologies

N N Torus Fat Tree Dragonfly

———

Group1
7 =

- Load imbalances

- Congestions among jobs
etc.

- Needs for efficient method of runtime optimization

Cycle of Runtime Optimization

a .
Monitor

Gather information
about current status

- a
Apply Analyze
Change the system Decide how to adjust
according to the the system

Motivation of this work

- Examine efficiency of using RMA (Remote Memory
Access) interface of MPI in the Monitoring Phase
of runtime optimization

- Why RMA?
- Asynchronous Enable low-overhead monitoring
- Non-blocking on parallel systems

- Target in this work:
Runtime algorithm selection of collective communication

Algorithms of Collective Communications

- Various candidates for each function:

][€ | [l -

Basic Linear Ring Bruck

- Different characteristics:
- Number of steps
- Possibility of pipelining
- Robustness against load imbalances
etc.

- No champion algorithm that is fastest in any situations

Traditional, Static Algorithm Selection

- Switch algorithm according to static thresholds
- Message sizes and number of processes

Alltoall algorithms (32x1 Procs)

1000000

......

100000 e //
Pair light ba
10000 o

1000

Run-time [microseconds]

100

S SR RS SR (R ™
NS ENGR TS N & I SV o
N > of O qSO SV

Message Size (Bytes) I

Bruck Basic Linear Ring

- Cannot adapt to the different situations at runtime:
- topological location, load balance, network traffic, etc.

STAR-MPI (A. Farai, et al., 2006)

- A framework for runtime selection of collective
communication algorithms
- Learning phase:

- For each invocation, examine one candidate
- All candidates are examined -> Choose the fastest

- Probing phase:
- Monitor chosen algorithm

1st : Bruck
° ? - -
Detect change? -> Re-select ond - Bruck
. ~ Learning
f (i=0; i < 10000; + 1, © Ring)
or (i=0; i ; 12th : Rin
{ : - v
‘Select ‘
Alltoall(); 100t : Ring
.. 101¢t : Ring Probing

In this work

- Apply RMA-based monitoring to the Probing Phase of
STAR-MPI

- Instead of using Allreduce

- Use "Persistent Collective"-like interface

- Instead of specifying "Call Site ID" argument in STAR-MPI

- "Call Site ID";
Extra argument to represent position of collective call in the program

» Choose best algorithm for each invocation

Persistent Collective

- Currently discussed in the "Persistent WG" of MPI Forum

© €x) MPI_Allgather_init(..., &requestl);
MPI_Allgather_init(..., &request2);

for (...) {
M;i_Start(requestl);
Méi_Wait(requestl);
Mﬁi_Start(requestZ);

MPI_Wait(request2);
}

- Requests can represent the position of invocation
In a program

Overview of Runtime Algorithm Selection

Init

Start

Wait

Prepare collective and create a request

~

77

Start clock
Start collective(req)

N\

Complete collective(req)
Stop clock
If (Learning Phase)
- record time for the algorithm
- If (all algorithms are examined?)
- choose the fastest
- go to probing phase
else
- Monitor
- Analyze | | Probing Phase

- Apply

—
\
<

~. MPI_Allgather_init(..., &requestl);

™~ MPI_Allgather_init(..., &request2);
for (...) {

|~ MPI_Start(requestl);

><

}

MPI_Wait(requestl);
MPI_Start(request2);

MPI_Wait(request2);

- Monitor

- Record time
- If (N-th monitor)
- AVE =
total(Recorded Times) / N
- MPI_Allreduce (AVE)

Call MPI1_Alilreduce every
N times of Probing Phase

- Analyze + Apply

- If (AVE changed)
- go back to Learning Phase

rank O

Monitor

Monitor

|

Analyze]

|

Apply]

Monitor

Monitor

rank 1

Monitor

Monitor

Monitor

Allreduce

[Analyze]
[Apply }

Monitor

Monitor

fi

Probing Phase with Allreduce (STAR-MPI)

rank 2

Monitor

Monitor

Monitor

[Analyze]

[Apply]

Monitor

Monitor

sawin N

Probing Phase with RMA-based

Monitoring
- Monitor (all ranks)

- Record time
- If (N-th monitor)
- If (Change is determined)
- Notify to Master

- Analyze (at Master rank)

- if (Num. of notify exceeds limit)
- Notify to all

- Apply (all ranks)

- check notify from Master
- If (Notify arrived)
- go back to Learning Phase

rank O

Monitor

Monitor

~ Apply |

rank 1

rank 2

Monitor

Monitor \1

Monitor Monitor

Z
Monitor Monitor g

D

)]
Monitor Monitor

. —
| |
N+1
ABRlY N+2

Notify to Master with RMA

- Awindow is prepared and "lock-all"ed in Init function
- Passive target

- If (rank == Master)

- MPI_Win_create(counter, ..., win)
- else

- MPI_Win_create(NULL, ..., win)
- MPI_Win_lock_all(0, *win)

- Remote atomic operation to increment a counter in Master
only when notification is required

- If (N-th monitor)
- If (Change is determined)
- MPI_Fetch_and_op(..., ..., MPIL_INT, Master, ...,
MPI_SUM, win)
- MPI_Flush(Master, win)

Notify from Master to All with A
Send + Probe

- Master sends notification with MPI1_Isend

- If ((N+1)-th monitor)
- If ((rank == Master) && (counter > threshold))
- FLAG =1
- fori=0toprocs-1
MPI_Isend(FLAG, rank + i)

- Others check arrival of FLAG at (N+2)-th monitor

- Depends on (N+2)-th collective to make sure that
MPI_Isend(FLAG)s by Master have been completed already

- If ((N+2)-th monitor)
- If (rank !'= Master)
- MPI_Iprobe(Master, &arrived)
- if (arrived)
- MPI_Recv(FLAG)
- if (FLAG) Go back to Learning Phase

Asynchronous Notification:
RMA vs Send+Probe

Notification with RMA (atomic, passive mode)
Latency may be higher than Send + Probe
Receiver does not have to perform any MPI function

Suitable for gathering notifications to Master
(as far as the frequency of notification is low enough)

Notification with Send+Probe
Receiver needs to call MPI_Iprobe for every possible senders
Latency of Send/Recv is lower for short messages than MPI_Put

Suitable for propagating notifications from Master
(since there is only one possible sender per rank)

Experiments

- Examine overhead of monitoring
- RMA vs Allreduce vs No Monitor

- Study effects of runtime optimization

- Experimental platform: PC Cluster (Fujitsu CX400)
- Intel Xeon E5-2680 x 2, 128GB, RedHat 6.1
- up to 512 nodes / 1476, one process / node
- InfiniBand FDR, Mellanox MT4099
- MVAPICH2-2.2rcl + GCC 4.4.6

- Benchmark program: OSU Benchmarks 5.1

- Modified "osu_iallgather.c":
- Use "persistent collective"-like interface
- Fixed amount of dummy computation

Average time of Comm + Dummy-Comp

- Algl ~ 3: each algorithm
- No Monitor:

- Allreduce 5, 20:
perform allreduce every 5
or 20 times of monitoring

- RMA5, 20:
check changes every 5 or
20 times of monitoring

Time (micro sec)

10000

1000

100

in RMA5 and 20.

These are measured in stable situation.
With dummy notification every 200 times

RMA-based Monitoring shows lower
overheads than Allreduce-based

sAlgl Alg2 128 nodes
+Alg3 No Monitor
—+Allreduce 5 —Allreduce 20
-+-RMA 5 RMA 20 "
100000
~<Algl Alg2 256 nodes
+Alg3 No Monitor
g 10000 —~Allreduce 5 —+Allreduce 20
P --RMAS RMA 20
S
S z
£ =7
£ 1000 A /
'—)
_—— e~
100000
~Alg1 Alg2 512 nodes
+Alg3 No Monitor
g 10000 —+Allreduce 5 —+Allreduce 20
o -+-RMA 5 RMA 20
S
£ %
(1)
£ 1000 L
~ —_—— S
: - = = " ,-—""//
100
1 2 4 8 16 32 64 128 256512 1K 2K 4K 8K 16K 32K
Message Size (Byte)

dvanced

ommunication
library

for xa
projict of IST CREST Japary
Ratio over "No Monitor"
1.6
128 nodes
- 1.4
212 /
g
s 1 S—o—-\v
=§ 0.8 ==Allreduce 5
2 0.6 ==Allreduce 20
204 +RMA 5
=02 RMA 20
0
1.8
1 2 4 8 16 32 ¢ 16 256 nodes
M{ 514
512 -.—_%
<§3 1 = Tt /\
0.8 _
«n ==Allreduce 5
30'6 ==Allreduce 20 '
= 0.4 Y
<05 +RMA 5
0 RMA 20
] 2
12 4 8 16 512 nodes
1.5 T~
D]

1 /‘\-./ A“ﬂ-—o—‘__\/__

0.5

==Allreduce 20
-+-RMA 5

Ratio vs "No Monitor"

==Allreduce 5

RMA 20

Gap between A”reduce-based and RMA-based 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K
glows according to the number of nodes Message size (B¢

Effect of Runtime Optimization

- Scenario:
Change load-balance of computation "before" collective
communication at 250th, 400th, 550th and 700th iteration
of "osu_iallgather.c"

- Check if the framework can detect the change and
re-select the best algorithm.

Results:
Sometimes, it worked well

2000
1800 - Algl Alg2
- Alg3 No Monitor
1600
— Allreduce 5 — Allreduce 20
1400 ~ RMAS RMA 20

At 700th step, best algorithm
changed from Alg3 to Alg1.

WA M; .’jw;w.ﬁl

650 670 690 710 730 750 770
Step

After re-entering "Learning Phase",
RMAS and 20 could re-select
the best one.

Sometimes

2000
1800
1600

, NOL.

Time (micro sec)
=
o
o
(@]

800
- Algl Alg2
600
- Alg3 No Monitor
400
— Allreduce 5 Allreduce 20
200
RMAS -—\XMA 20
0
450 460 470 480 490 500

Wrong detection of performance change
caused worse performance than
"No Monitor".

Conclusion

- Examined RMA-based monitoring in the framework of
runtime algorithm selection of collectives.

- Confirmed reduction of overhead.

- Future works:

- Refinement of runtime algorithm selection
- Modify policies to avoid miss detection

- Other collectives
- Other runtime optimizations
- Common framework for runtime optimization

