
Runtime Algorithm Selection of

Collective Communication with

RMA-based Monitoring Mechanism

Takeshi Nanri (Kyushu Univ. and JST CREST, Japan)

1

16 Aug, 2016

4th Annual MVAPICH Users Group Meeting

Background

• Difficulties in static optimization of parallel codes because:

• Larger number of nodes

• More complexed network topologies

• Load imbalances

• Congestions among jobs

etc.

• Needs for efficient method of runtime optimization

2

Cycle of Runtime Optimization

3

Monitor
Gather information
about current status

Analyze
Decide how to adjust
the system

Apply
Change the system
according to the
decision

Motivation of this work

• Examine efficiency of using RMA (Remote Memory

Access) interface of MPI in the Monitoring Phase

of runtime optimization

• Why RMA?

• Asynchronous

• Non-blocking

• Target in this work:

Runtime algorithm selection of collective communication

4

Enable low-overhead monitoring

on parallel systems

Algorithms of Collective Communications

• Various candidates for each function:

• Different characteristics:

• Number of steps

• Possibility of pipelining

• Robustness against load imbalances

etc.

• No champion algorithm that is fastest in any situations

5

Basic Linear Ring Bruck

...

Traditional, Static Algorithm Selection

• Switch algorithm according to static thresholds
• Message sizes and number of processes

• Cannot adapt to the different situations at runtime:
• topological location, load balance, network traffic, etc.

6

100

1000

10000

100000

1000000

R
un

-t
im

e
[m

ic
ro

se
co

nd
s]

Message Size (Bytes)

Alltoall algorithms (32x1 Procs)

S. Spread

Ring

Bruck

Pair light ba.

Pair-wise

Bruck Basic Linear Ring

STAR-MPI (A. Faraj, et al., 2006)
• A framework for runtime selection of collective

communication algorithms

• Learning phase:

• For each invocation, examine one candidate

• All candidates are examined -> Choose the fastest

• Probing phase:

• Monitor chosen algorithm

• Detect change? -> Re-select

7

1st : Bruck
2nd : Bruck

...
11th : Ring
12th : Ring

...

100th : Ring
101st : Ring

...

Learning...

for (i=0; i < 10000; ++i)

{

...

Alltoall();

...

}

Select

Probing

In this work

• Apply RMA-based monitoring to the Probing Phase of

STAR-MPI

• Instead of using Allreduce

• Use "Persistent Collective"-like interface

• Instead of specifying "Call Site ID" argument in STAR-MPI

• "Call Site ID":

Extra argument to represent position of collective call in the program

• Choose best algorithm for each invocation

8

Persistent Collective

• Currently discussed in the "Persistent WG" of MPI Forum
• ex)

• Requests can represent the position of invocation
in a program

9

MPI_Allgather_init(..., &request1);
MPI_Allgather_init(..., &request2);

for (...) {
...
MPI_Start(request1);
...
MPI_Wait(request1);
...
MPI_Start(request2);
...
MPI_Wait(request2);

}

Overview of Runtime Algorithm Selection

10

Init

Start

Wait

- Prepare collective and create a request

- Start clock

- Start collective(req)

- Complete collective(req)

- Stop clock

- if (Learning Phase)

- record time for the algorithm

- if (all algorithms are examined?)

- choose the fastest

- go to probing phase

- else

- Monitor

- Analyze

- Apply
Probing Phase

Probing Phase with Allreduce (STAR-MPI)

• Monitor

• Analyze + Apply

11

rank 0 rank 1 rank 2

- Record time

- if (N-th monitor)

- AVE =

total(Recorded Times) / N

- MPI_Allreduce (AVE)

- if (AVE changed)

- go back to Learning Phase

N
 tim

e
s

Monitor

Monitor

Monitor

Monitor

Monitor

Monitor

Monitor

Monitor

Monitor

Allreduce

Monitor Monitor Monitor

Monitor Monitor Monitor

Call MPI_Allreduce every

N times of Probing Phase Analyze

Apply

Analyze

Apply

Analyze

Apply

Probing Phase with RMA-based

Monitoring
• Monitor (all ranks)

• Analyze (at Master rank)

• Apply (all ranks)

12

- Record time

- if (N-th monitor)

- if (Change is determined)

- Notify to Master

- check notify from Master

- if (Notify arrived)

- go back to Learning Phase

N
 tim

e
s

Master

rank 0 rank 1 rank 2

N
 tim

e
s

Monitor

Monitor

Monitor

Monitor

Monitor

Monitor

Monitor

Monitor

Monitor

Monitor Monitor Monitor

notify

Analyze

Apply Apply Apply

N+1

N+2

1

- if (Num. of notify exceeds limit)

- Notify to all

Notify to Master with RMA
• A window is prepared and "lock-all"ed in Init function

• Passive target

• Remote atomic operation to increment a counter in Master

only when notification is required

13

- if (rank == Master)

- MPI_Win_create(counter, ..., win)

- else

- MPI_Win_create(NULL, ..., win)

- MPI_Win_lock_all(0, *win)

- if (N-th monitor)

- if (Change is determined)

- MPI_Fetch_and_op(..., ..., MPI_INT, Master, ...,

MPI_SUM, win)

- MPI_Flush(Master, win)

Notify from Master to All with

Send + Probe
• Master sends notification with MPI_Isend

• Others check arrival of FLAG at (N+2)-th monitor

• Depends on (N+2)-th collective to make sure that

MPI_Isend(FLAG)s by Master have been completed already

14

- if ((N+1)-th monitor)

- if ((rank == Master) && (counter > threshold))

- FLAG = 1

- for i = 0 to procs - 1

MPI_Isend(FLAG, rank + i)

- if ((N+2)-th monitor)

- if (rank != Master)

- MPI_Iprobe(Master, &arrived)

- if (arrived)

- MPI_Recv(FLAG)

- if (FLAG) Go back to Learning Phase

Asynchronous Notification:

RMA vs Send+Probe
• Notification with RMA (atomic, passive mode)

• Latency may be higher than Send + Probe

• Receiver does not have to perform any MPI function

• Notification with Send+Probe

• Receiver needs to call MPI_Iprobe for every possible senders

• Latency of Send/Recv is lower for short messages than MPI_Put

15

Suitable for gathering notifications to Master

(as far as the frequency of notification is low enough)

Suitable for propagating notifications from Master

(since there is only one possible sender per rank)

Experiments

• Examine overhead of monitoring
• RMA vs Allreduce vs No Monitor

• Study effects of runtime optimization

• Experimental platform: PC Cluster (Fujitsu CX400)
• Intel Xeon E5-2680 x 2, 128GB, RedHat 6.1

• up to 512 nodes / 1476, one process / node

• InfiniBand FDR, Mellanox MT4099

• MVAPICH2-2.2rc1 + GCC 4.4.6

• Benchmark program: OSU Benchmarks 5.1
• Modified "osu_iallgather.c":

• Use "persistent collective"-like interface

• Fixed amount of dummy computation

16

Average time of Comm + Dummy-Comp

17

- Alg1 ~ 3: each algorithm

- No Monitor:

- Allreduce 5, 20:

perform allreduce every 5

or 20 times of monitoring

- RMA 5, 20:

check changes every 5 or

20 times of monitoring

RMA-based Monitoring shows lower

overheads than Allreduce-based

128 nodes

256 nodes

512 nodesThese are measured in stable situation.

With dummy notification every 200 times

in RMA5 and 20.

Ratio over "No Monitor"

18

128 nodes

256 nodes

512 nodes

Gap between Allreduce-based and RMA-based

glows according to the number of nodes

Effect of Runtime Optimization

• Scenario:

Change load-balance of computation "before" collective

communication at 250th, 400th, 550th and 700th iteration

of "osu_iallgather.c"

• Check if the framework can detect the change and

re-select the best algorithm.

19

Results:

Sometimes, it worked well

20

At 700th step, best algorithm

changed from Alg3 to Alg1.

After re-entering "Learning Phase",

RMA5 and 20 could re-select

the best one.

Sometimes, not.

21

Wrong detection of performance change

caused worse performance than

"No Monitor".

Conclusion

• Examined RMA-based monitoring in the framework of

runtime algorithm selection of collectives.

• Confirmed reduction of overhead.

• Future works:

• Refinement of runtime algorithm selection

• Modify policies to avoid miss detection

• Other collectives

• Other runtime optimizations

• Common framework for runtime optimization

22

