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HOOMD-blue

http://hoomd-blue.readthedocs.io/en/stable/
https://bitbucket.org/glotzer/hoomd-blue

http://glotzerlab.engin.umich.edu/hoomd-blueWebpage:

Development and complete change log:
Documentation:

Highly Optimized Object-oriented Many Particle Dynamics
Lead-developed in the Glotzer group at the University of Michigan
over 130 publications using HOOMD-blue since 2008

http://glotzerlab.engin.umich.edu/hoomd-blue
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HOOMD-blue 2.0

• New packages

- hpmc (Hard Particle Monte Carlo)

- dem (Discrete Element Method)

• New features:

- md.constrain.distance() - Pairwise distance constraints

- md.constrain.rigid() - composite particles now have central particles and are supported with MPI

- MPI support for md.charge.pppm() - distributed Coulomb force computation

- context.initialize() can now be called multiple times, useful for Jupyter notebooks

- Manage multiple concurrent simulation contexts in a single job script with SimulationContext

- New binary GSD file format for storing trajectories, dump.gsd(), init.gsd(), data.gsd_snapshot()

- init.create_lattice() to initialize from regular lattices

- …
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Computational biomaterial design

Functional 
biomaterial

Protein structure 
(PDB)

GPU Molecular Dynamics

e.g. detection of a
biothreat agent
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Self-assembly

Glotzer / Ellington collaboration 

Experimental validation
coarse-grained models
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Molecular Dynamics
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illustration by Joshua Anderson

Example - Lennard-Jones
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GPU Molecular Dynamics in 1 slide
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rcut
rbuff

Domain decomposition with MPI

Profile of 1 MD time step

Pair NVT pack

Comm Comm

Thermo unpack Pair

Collective
MPI

GPU

50 μs

communication 
computation overlap

pack/unpack on GPU auto-tune kernel
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J. Glaser, T. D. Nguyen, J. A. Anderson, P. Lui, F. Spiga, J. A. Millan, D. C. Morse, and S. C. Glotzer, “Strong scaling of general-purpose molecular 
dynamics simulations on GPUs,” Comput. Phys. Commun., vol. 192, no. July, pp. 97–107, 2015.
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GPUDirect RDMA

MVAPICH2 2.0 GDR data
courtesy of D.K. Panda and Rong Shi, OSU

host-memory MPI
cuda-aware MPI
GPUDirect RDMA
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ͻ Fastest possible communication 
between GPU and other PCI-E 
devices 

ͻ Network adapter can directly read 
data from GPU device memory 

ͻ Avoids copies through the host 

ͻ Allows for better asynchronous  
communication 
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MVAPICH2-GDR 2.0b is available for users 
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Job script example — Lennard-Jones liquid

import hoomd, hoomd.md
hoomd.context.initialize()
hoomd.init.read_gsd('init.gsd')
nl = hoomd.md.nlist.cell()
lj = hoomd.md.pair.lj(r_cut=2.5, nlist=nl)
lj.pair_coeff.set('A', 'A', epsilon=1.0, sigma=1.0)
hoomd.md.integrate.mode_standard(dt=0.005)
all = hoomd.group.all()
hoomd.md.integrate.langevin(group=all, kT=1.2, seed=4)
hoomd.run(1e5)
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Charged interactions

Polarization of the cut-off sphere due to 1/r potential

Ewald summation
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was only achieved for 1 M S6S on the timescales accessed in this

study.

In general, our technique of simulating CG ionic surfactant

micellization with multiple replica MD simulations on GPU

hardware yields empirically verifiable data for a wide range of

concentrations and hydrophobic tail lengths. This approach may

also be valuable for future studies of slowly evolving, self-

assembling systems including denser phases (cubic, reverse

micelle), vesicles, and other complicated interfaces.

Appendix: PPPM GPU implementation

In this appendix, we outline the implementation of electrostatic

interactions on the GPU. The Coulomb potential between two

particles with charge qi and qj, respectively, that are separated by

a distance rij ¼ |rij| ¼ |ri " rj|, is given by

UðrijÞ ¼
qiqj

4p303rrij
; (10)

where 30 is the permittivity of free space and 3r is the relative

dielectric constant. The total electrostatic energy of a periodic

system of dimensions L % L % L containing N charged particles

is thus

1

2

X

n

0
XN

i¼1

XN

j¼1

U
!""rij þ nL

""
#
; (11)

where n ¼ (nx, ny, nz) with nx, ny, nz ˛ Z. Here, the sum runs over

all periodic images of the system and the prime indicates that the

term with i ¼ j is omitted for n ¼ 0. Owing to the slow decay of

the electrostatic potential, eqn (11) is only conditionally

convergent.77 One common method that is used to overcome this

is the Ewald sum.59,77–79 The Ewald sum splits the potential-

energy calculation into a short-ranged contribution that is eval-

uated in real space

UrealðrijÞ ¼
1

2

X

i;j

qiqj erfcðarijÞ
4p303rrij

; (12)

and a long-range contribution that is evaluated in Fourier space,

UFourier ¼
1

2

X

ks0

jrðkÞj2

303rVk2
expð"k2=4a2Þ " affiffiffiffiffiffiffi

ðpÞ
p

X

i

q2i ; (13)

where r(k) is the Fourier transform of the charge density, defined

as,

""rðkÞ
""2¼

"
XN

i¼1

qi cosðk$riÞ

#2

þ

"
XN

i¼1

qi sinðk$riÞ

#2

: (14)

Here we have assumed conducting boundary conditions.59,77

For large systems of over a few thousand charged particles, the

performance of this method can be increased by computing the

reciprocal space contribution using fast Fourier transforms

routines (FFTs) provided by CUDA. These Fourier transforms

are finite and discrete and therefore the point charges in

continuous space must be replaced by a grid-based charge

density, rg. There are many different methods for implementing

electrostatics calculations using FFTs,80 including particle mesh

Ewald (PME), smooth particle mesh Ewald (SPME), and the

particle–particle particle–mesh (PPPM) method of Hockney and

Eastwood57,58 and we have chosen to implement the PPPM

method.

Implementing the short-range part of the Ewald sum in

HOOMD is straightforward and here we will focus only on the

long-range contribution. The first step in the calculation is

interpolating the charges in continuous space onto a grid. This

grid-based charge density is computed from an assignment

function W(r):

rg ¼
1

h

XN

i¼1

qiWðrp " riÞ; (15)

where rp is the coordinate of mesh point p, ri is the coordinate of

particle i, and h is the grid spacing. We use the P-order weight

function given by Hockney and Eastwood,58,80 which assigns

a charge to p mesh points in each direction, with the weight

function for one direction given by,

WPðsÞ ¼
%
1½"1=2;1=2(+$$$+1½"1=2;1=2(

&
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

p"fold convolution

ðx=hÞ (16)

with 1[–1/2, 1/2] being the characteristic function of the interval

"1

2
;
1

2

( )
(1 within the interval and 0 outside). This is generalized

to 3 dimensions using a simple factorization approach,

W(r) ¼ W(x)W(y)W(z). (17)

Depending on the expected size of the grid in an actual

simulation, this charge assignment can be implemented on

a GPU in different ways. For systems with thousands of charges

or more, only large grids, with sizes of 64 % 64 % 64 up to 256 %
256 % 256 are of interest and these grids are far too large to fit

into the multiprocessor’s shared memory. Since particles in

HOOMD are not sorted into cells, the method we use is to

directly assign the values to grid points in global memory. To

accomplish this, a kernel is started on the GPU with a single

thread for each particle. The closest grid point to each particle is

determined and then its charge is assigned to a number of

neighboring grid points, according to the selected weighting

method and interpolation order. To avoid race conditions, when

multiple particles contribute charge to the same grid point,

atomic functions are used to sum up the grid-based charge

density. CUDA 3.0 does not support atomic float additions for

graphics cards with compute capability 1.3 or smaller and we

therefore create a simple implementation of such a function

using CUDA’s atomic exchange function. Graphics cards

with compute capability 2.0 and higher can use the built in

atomicAdd() function.

Next, the Fourier coefficients of the mesh-based charge

density,

r̂kn ¼
1

V

X

rn

eikn$rnqrn ; (18)

are computed using the FTT library provided by CUDA, which

is optimized for the GPU architecture. These coefficients are then

multiplied by the mesh-based Green’s function to obtain the

potential in Fourier space,

f̂kn ¼ Ĝ0kn r̂kn : (19)

This journal is ª The Royal Society of Chemistry 2012 Soft Matter, 2012, 8, 2385–2397 | 2395
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was only achieved for 1 M S6S on the timescales accessed in this

study.

In general, our technique of simulating CG ionic surfactant

micellization with multiple replica MD simulations on GPU

hardware yields empirically verifiable data for a wide range of

concentrations and hydrophobic tail lengths. This approach may

also be valuable for future studies of slowly evolving, self-

assembling systems including denser phases (cubic, reverse

micelle), vesicles, and other complicated interfaces.

Appendix: PPPM GPU implementation

In this appendix, we outline the implementation of electrostatic

interactions on the GPU. The Coulomb potential between two

particles with charge qi and qj, respectively, that are separated by

a distance rij ¼ |rij| ¼ |ri " rj|, is given by

UðrijÞ ¼
qiqj

4p303rrij
; (10)

where 30 is the permittivity of free space and 3r is the relative

dielectric constant. The total electrostatic energy of a periodic

system of dimensions L % L % L containing N charged particles

is thus
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where n ¼ (nx, ny, nz) with nx, ny, nz ˛ Z. Here, the sum runs over

all periodic images of the system and the prime indicates that the

term with i ¼ j is omitted for n ¼ 0. Owing to the slow decay of

the electrostatic potential, eqn (11) is only conditionally

convergent.77 One common method that is used to overcome this

is the Ewald sum.59,77–79 The Ewald sum splits the potential-

energy calculation into a short-ranged contribution that is eval-

uated in real space

UrealðrijÞ ¼
1

2

X

i;j

qiqj erfcðarijÞ
4p303rrij

; (12)

and a long-range contribution that is evaluated in Fourier space,

UFourier ¼
1

2

X

ks0

jrðkÞj2

303rVk2
expð"k2=4a2Þ " affiffiffiffiffiffiffi

ðpÞ
p

X

i

q2i ; (13)

where r(k) is the Fourier transform of the charge density, defined

as,
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Here we have assumed conducting boundary conditions.59,77

For large systems of over a few thousand charged particles, the

performance of this method can be increased by computing the

reciprocal space contribution using fast Fourier transforms

routines (FFTs) provided by CUDA. These Fourier transforms

are finite and discrete and therefore the point charges in

continuous space must be replaced by a grid-based charge

density, rg. There are many different methods for implementing

electrostatics calculations using FFTs,80 including particle mesh

Ewald (PME), smooth particle mesh Ewald (SPME), and the

particle–particle particle–mesh (PPPM) method of Hockney and

Eastwood57,58 and we have chosen to implement the PPPM

method.

Implementing the short-range part of the Ewald sum in

HOOMD is straightforward and here we will focus only on the

long-range contribution. The first step in the calculation is

interpolating the charges in continuous space onto a grid. This

grid-based charge density is computed from an assignment

function W(r):

rg ¼
1

h

XN

i¼1

qiWðrp " riÞ; (15)

where rp is the coordinate of mesh point p, ri is the coordinate of

particle i, and h is the grid spacing. We use the P-order weight

function given by Hockney and Eastwood,58,80 which assigns

a charge to p mesh points in each direction, with the weight

function for one direction given by,

WPðsÞ ¼
%
1½"1=2;1=2(+$$$+1½"1=2;1=2(
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p"fold convolution

ðx=hÞ (16)

with 1[–1/2, 1/2] being the characteristic function of the interval

"1
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;
1
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( )
(1 within the interval and 0 outside). This is generalized

to 3 dimensions using a simple factorization approach,

W(r) ¼ W(x)W(y)W(z). (17)

Depending on the expected size of the grid in an actual

simulation, this charge assignment can be implemented on

a GPU in different ways. For systems with thousands of charges

or more, only large grids, with sizes of 64 % 64 % 64 up to 256 %
256 % 256 are of interest and these grids are far too large to fit

into the multiprocessor’s shared memory. Since particles in

HOOMD are not sorted into cells, the method we use is to

directly assign the values to grid points in global memory. To

accomplish this, a kernel is started on the GPU with a single

thread for each particle. The closest grid point to each particle is

determined and then its charge is assigned to a number of

neighboring grid points, according to the selected weighting

method and interpolation order. To avoid race conditions, when

multiple particles contribute charge to the same grid point,

atomic functions are used to sum up the grid-based charge

density. CUDA 3.0 does not support atomic float additions for

graphics cards with compute capability 1.3 or smaller and we

therefore create a simple implementation of such a function

using CUDA’s atomic exchange function. Graphics cards

with compute capability 2.0 and higher can use the built in

atomicAdd() function.

Next, the Fourier coefficients of the mesh-based charge

density,

r̂kn ¼
1

V

X

rn

eikn$rnqrn ; (18)

are computed using the FTT library provided by CUDA, which

is optimized for the GPU architecture. These coefficients are then

multiplied by the mesh-based Green’s function to obtain the

potential in Fourier space,

f̂kn ¼ Ĝ0kn r̂kn : (19)

This journal is ª The Royal Society of Chemistry 2012 Soft Matter, 2012, 8, 2385–2397 | 2395
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was only achieved for 1 M S6S on the timescales accessed in this

study.

In general, our technique of simulating CG ionic surfactant

micellization with multiple replica MD simulations on GPU

hardware yields empirically verifiable data for a wide range of

concentrations and hydrophobic tail lengths. This approach may

also be valuable for future studies of slowly evolving, self-

assembling systems including denser phases (cubic, reverse

micelle), vesicles, and other complicated interfaces.

Appendix: PPPM GPU implementation

In this appendix, we outline the implementation of electrostatic

interactions on the GPU. The Coulomb potential between two

particles with charge qi and qj, respectively, that are separated by

a distance rij ¼ |rij| ¼ |ri " rj|, is given by

UðrijÞ ¼
qiqj

4p303rrij
; (10)

where 30 is the permittivity of free space and 3r is the relative

dielectric constant. The total electrostatic energy of a periodic

system of dimensions L % L % L containing N charged particles

is thus
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where n ¼ (nx, ny, nz) with nx, ny, nz ˛ Z. Here, the sum runs over

all periodic images of the system and the prime indicates that the

term with i ¼ j is omitted for n ¼ 0. Owing to the slow decay of

the electrostatic potential, eqn (11) is only conditionally

convergent.77 One common method that is used to overcome this

is the Ewald sum.59,77–79 The Ewald sum splits the potential-

energy calculation into a short-ranged contribution that is eval-

uated in real space

UrealðrijÞ ¼
1
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and a long-range contribution that is evaluated in Fourier space,
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where r(k) is the Fourier transform of the charge density, defined

as,
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Here we have assumed conducting boundary conditions.59,77

For large systems of over a few thousand charged particles, the

performance of this method can be increased by computing the

reciprocal space contribution using fast Fourier transforms

routines (FFTs) provided by CUDA. These Fourier transforms

are finite and discrete and therefore the point charges in

continuous space must be replaced by a grid-based charge

density, rg. There are many different methods for implementing

electrostatics calculations using FFTs,80 including particle mesh

Ewald (PME), smooth particle mesh Ewald (SPME), and the

particle–particle particle–mesh (PPPM) method of Hockney and

Eastwood57,58 and we have chosen to implement the PPPM

method.

Implementing the short-range part of the Ewald sum in

HOOMD is straightforward and here we will focus only on the

long-range contribution. The first step in the calculation is

interpolating the charges in continuous space onto a grid. This

grid-based charge density is computed from an assignment

function W(r):

rg ¼
1

h

XN

i¼1

qiWðrp " riÞ; (15)

where rp is the coordinate of mesh point p, ri is the coordinate of

particle i, and h is the grid spacing. We use the P-order weight

function given by Hockney and Eastwood,58,80 which assigns

a charge to p mesh points in each direction, with the weight

function for one direction given by,

WPðsÞ ¼
%
1½"1=2;1=2(+$$$+1½"1=2;1=2(

&
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p"fold convolution

ðx=hÞ (16)

with 1[–1/2, 1/2] being the characteristic function of the interval

"1

2
;
1

2

( )
(1 within the interval and 0 outside). This is generalized

to 3 dimensions using a simple factorization approach,

W(r) ¼ W(x)W(y)W(z). (17)

Depending on the expected size of the grid in an actual

simulation, this charge assignment can be implemented on

a GPU in different ways. For systems with thousands of charges

or more, only large grids, with sizes of 64 % 64 % 64 up to 256 %
256 % 256 are of interest and these grids are far too large to fit

into the multiprocessor’s shared memory. Since particles in

HOOMD are not sorted into cells, the method we use is to

directly assign the values to grid points in global memory. To

accomplish this, a kernel is started on the GPU with a single

thread for each particle. The closest grid point to each particle is

determined and then its charge is assigned to a number of

neighboring grid points, according to the selected weighting

method and interpolation order. To avoid race conditions, when

multiple particles contribute charge to the same grid point,

atomic functions are used to sum up the grid-based charge

density. CUDA 3.0 does not support atomic float additions for

graphics cards with compute capability 1.3 or smaller and we

therefore create a simple implementation of such a function

using CUDA’s atomic exchange function. Graphics cards

with compute capability 2.0 and higher can use the built in

atomicAdd() function.

Next, the Fourier coefficients of the mesh-based charge

density,

r̂kn ¼
1

V

X

rn

eikn$rnqrn ; (18)

are computed using the FTT library provided by CUDA, which

is optimized for the GPU architecture. These coefficients are then

multiplied by the mesh-based Green’s function to obtain the

potential in Fourier space,

f̂kn ¼ Ĝ0kn r̂kn : (19)

This journal is ª The Royal Society of Chemistry 2012 Soft Matter, 2012, 8, 2385–2397 | 2395
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D. N. LeBard, B. G. Levine, P. Mertmann, S. A. Barr, A. Jusufi, S. Sanders, M. L. Klein, and A. Z. Panagiotopoulos
Self-assembly of coarse-grained ionic surfactants accelerated by graphics processing units 
Soft Matter, vol. 8, no. 8, pp. 2385–2397, 2012.

U(r) = qAqB


1

r
+

(✏RF � 1)r2

(2✏RF + 1)r3c

�

to compute long-range 1/r
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Particle-particle Particle-Mesh (PPPM) electrostatics

assign charges

Fourier transform

solve for potentials

inverse Fourier transform

interpolate forces

PM force computation

was only achieved for 1 M S6S on the timescales accessed in this

study.

In general, our technique of simulating CG ionic surfactant

micellization with multiple replica MD simulations on GPU

hardware yields empirically verifiable data for a wide range of

concentrations and hydrophobic tail lengths. This approach may

also be valuable for future studies of slowly evolving, self-

assembling systems including denser phases (cubic, reverse

micelle), vesicles, and other complicated interfaces.

Appendix: PPPM GPU implementation

In this appendix, we outline the implementation of electrostatic

interactions on the GPU. The Coulomb potential between two

particles with charge qi and qj, respectively, that are separated by

a distance rij ¼ |rij| ¼ |ri " rj|, is given by

UðrijÞ ¼
qiqj

4p303rrij
; (10)

where 30 is the permittivity of free space and 3r is the relative

dielectric constant. The total electrostatic energy of a periodic

system of dimensions L % L % L containing N charged particles

is thus

1

2

X

n

0
XN

i¼1

XN

j¼1

U
!""rij þ nL

""
#
; (11)

where n ¼ (nx, ny, nz) with nx, ny, nz ˛ Z. Here, the sum runs over

all periodic images of the system and the prime indicates that the

term with i ¼ j is omitted for n ¼ 0. Owing to the slow decay of

the electrostatic potential, eqn (11) is only conditionally

convergent.77 One common method that is used to overcome this

is the Ewald sum.59,77–79 The Ewald sum splits the potential-

energy calculation into a short-ranged contribution that is eval-

uated in real space

UrealðrijÞ ¼
1

2

X

i;j

qiqj erfcðarijÞ
4p303rrij

; (12)

and a long-range contribution that is evaluated in Fourier space,

UFourier ¼
1

2

X

ks0

jrðkÞj2

303rVk2
expð"k2=4a2Þ " affiffiffiffiffiffiffi

ðpÞ
p

X

i

q2i ; (13)

where r(k) is the Fourier transform of the charge density, defined

as,

""rðkÞ
""2¼

"
XN

i¼1

qi cosðk$riÞ

#2

þ

"
XN

i¼1

qi sinðk$riÞ

#2

: (14)

Here we have assumed conducting boundary conditions.59,77

For large systems of over a few thousand charged particles, the

performance of this method can be increased by computing the

reciprocal space contribution using fast Fourier transforms

routines (FFTs) provided by CUDA. These Fourier transforms

are finite and discrete and therefore the point charges in

continuous space must be replaced by a grid-based charge

density, rg. There are many different methods for implementing

electrostatics calculations using FFTs,80 including particle mesh

Ewald (PME), smooth particle mesh Ewald (SPME), and the

particle–particle particle–mesh (PPPM) method of Hockney and

Eastwood57,58 and we have chosen to implement the PPPM

method.

Implementing the short-range part of the Ewald sum in

HOOMD is straightforward and here we will focus only on the

long-range contribution. The first step in the calculation is

interpolating the charges in continuous space onto a grid. This

grid-based charge density is computed from an assignment

function W(r):

rg ¼
1

h

XN

i¼1

qiWðrp " riÞ; (15)

where rp is the coordinate of mesh point p, ri is the coordinate of

particle i, and h is the grid spacing. We use the P-order weight

function given by Hockney and Eastwood,58,80 which assigns

a charge to p mesh points in each direction, with the weight

function for one direction given by,

WPðsÞ ¼
%
1½"1=2;1=2(+$$$+1½"1=2;1=2(

&
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

p"fold convolution

ðx=hÞ (16)

with 1[–1/2, 1/2] being the characteristic function of the interval

"1

2
;
1

2

( )
(1 within the interval and 0 outside). This is generalized

to 3 dimensions using a simple factorization approach,

W(r) ¼ W(x)W(y)W(z). (17)

Depending on the expected size of the grid in an actual

simulation, this charge assignment can be implemented on

a GPU in different ways. For systems with thousands of charges

or more, only large grids, with sizes of 64 % 64 % 64 up to 256 %
256 % 256 are of interest and these grids are far too large to fit

into the multiprocessor’s shared memory. Since particles in

HOOMD are not sorted into cells, the method we use is to

directly assign the values to grid points in global memory. To

accomplish this, a kernel is started on the GPU with a single

thread for each particle. The closest grid point to each particle is

determined and then its charge is assigned to a number of

neighboring grid points, according to the selected weighting

method and interpolation order. To avoid race conditions, when

multiple particles contribute charge to the same grid point,

atomic functions are used to sum up the grid-based charge

density. CUDA 3.0 does not support atomic float additions for

graphics cards with compute capability 1.3 or smaller and we

therefore create a simple implementation of such a function

using CUDA’s atomic exchange function. Graphics cards

with compute capability 2.0 and higher can use the built in

atomicAdd() function.

Next, the Fourier coefficients of the mesh-based charge

density,

r̂kn ¼
1

V

X

rn

eikn$rnqrn ; (18)

are computed using the FTT library provided by CUDA, which

is optimized for the GPU architecture. These coefficients are then

multiplied by the mesh-based Green’s function to obtain the

potential in Fourier space,

f̂kn ¼ Ĝ0kn r̂kn : (19)
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was only achieved for 1 M S6S on the timescales accessed in this

study.

In general, our technique of simulating CG ionic surfactant

micellization with multiple replica MD simulations on GPU

hardware yields empirically verifiable data for a wide range of

concentrations and hydrophobic tail lengths. This approach may

also be valuable for future studies of slowly evolving, self-

assembling systems including denser phases (cubic, reverse

micelle), vesicles, and other complicated interfaces.

Appendix: PPPM GPU implementation

In this appendix, we outline the implementation of electrostatic

interactions on the GPU. The Coulomb potential between two

particles with charge qi and qj, respectively, that are separated by

a distance rij ¼ |rij| ¼ |ri " rj|, is given by

UðrijÞ ¼
qiqj

4p303rrij
; (10)

where 30 is the permittivity of free space and 3r is the relative

dielectric constant. The total electrostatic energy of a periodic

system of dimensions L % L % L containing N charged particles

is thus

1

2

X

n

0
XN

i¼1

XN

j¼1

U
!""rij þ nL

""
#
; (11)

where n ¼ (nx, ny, nz) with nx, ny, nz ˛ Z. Here, the sum runs over

all periodic images of the system and the prime indicates that the

term with i ¼ j is omitted for n ¼ 0. Owing to the slow decay of

the electrostatic potential, eqn (11) is only conditionally

convergent.77 One common method that is used to overcome this

is the Ewald sum.59,77–79 The Ewald sum splits the potential-

energy calculation into a short-ranged contribution that is eval-

uated in real space

UrealðrijÞ ¼
1

2

X

i;j

qiqj erfcðarijÞ
4p303rrij

; (12)

and a long-range contribution that is evaluated in Fourier space,

UFourier ¼
1

2

X

ks0

jrðkÞj2

303rVk2
expð"k2=4a2Þ " affiffiffiffiffiffiffi

ðpÞ
p

X

i

q2i ; (13)

where r(k) is the Fourier transform of the charge density, defined

as,

""rðkÞ
""2¼

"
XN

i¼1

qi cosðk$riÞ

#2

þ

"
XN

i¼1

qi sinðk$riÞ

#2

: (14)

Here we have assumed conducting boundary conditions.59,77

For large systems of over a few thousand charged particles, the

performance of this method can be increased by computing the

reciprocal space contribution using fast Fourier transforms

routines (FFTs) provided by CUDA. These Fourier transforms

are finite and discrete and therefore the point charges in

continuous space must be replaced by a grid-based charge

density, rg. There are many different methods for implementing

electrostatics calculations using FFTs,80 including particle mesh

Ewald (PME), smooth particle mesh Ewald (SPME), and the

particle–particle particle–mesh (PPPM) method of Hockney and

Eastwood57,58 and we have chosen to implement the PPPM

method.

Implementing the short-range part of the Ewald sum in

HOOMD is straightforward and here we will focus only on the

long-range contribution. The first step in the calculation is

interpolating the charges in continuous space onto a grid. This

grid-based charge density is computed from an assignment

function W(r):

rg ¼
1

h

XN

i¼1

qiWðrp " riÞ; (15)

where rp is the coordinate of mesh point p, ri is the coordinate of

particle i, and h is the grid spacing. We use the P-order weight

function given by Hockney and Eastwood,58,80 which assigns

a charge to p mesh points in each direction, with the weight

function for one direction given by,

WPðsÞ ¼
%
1½"1=2;1=2(+$$$+1½"1=2;1=2(

&
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

p"fold convolution

ðx=hÞ (16)

with 1[–1/2, 1/2] being the characteristic function of the interval

"1

2
;
1

2

( )
(1 within the interval and 0 outside). This is generalized

to 3 dimensions using a simple factorization approach,

W(r) ¼ W(x)W(y)W(z). (17)

Depending on the expected size of the grid in an actual

simulation, this charge assignment can be implemented on

a GPU in different ways. For systems with thousands of charges

or more, only large grids, with sizes of 64 % 64 % 64 up to 256 %
256 % 256 are of interest and these grids are far too large to fit

into the multiprocessor’s shared memory. Since particles in

HOOMD are not sorted into cells, the method we use is to

directly assign the values to grid points in global memory. To

accomplish this, a kernel is started on the GPU with a single

thread for each particle. The closest grid point to each particle is

determined and then its charge is assigned to a number of

neighboring grid points, according to the selected weighting

method and interpolation order. To avoid race conditions, when

multiple particles contribute charge to the same grid point,

atomic functions are used to sum up the grid-based charge

density. CUDA 3.0 does not support atomic float additions for

graphics cards with compute capability 1.3 or smaller and we

therefore create a simple implementation of such a function

using CUDA’s atomic exchange function. Graphics cards

with compute capability 2.0 and higher can use the built in

atomicAdd() function.

Next, the Fourier coefficients of the mesh-based charge

density,

r̂kn ¼
1

V

X

rn

eikn$rnqrn ; (18)

are computed using the FTT library provided by CUDA, which

is optimized for the GPU architecture. These coefficients are then

multiplied by the mesh-based Green’s function to obtain the

potential in Fourier space,

f̂kn ¼ Ĝ0kn r̂kn : (19)
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was only achieved for 1 M S6S on the timescales accessed in this

study.

In general, our technique of simulating CG ionic surfactant

micellization with multiple replica MD simulations on GPU

hardware yields empirically verifiable data for a wide range of

concentrations and hydrophobic tail lengths. This approach may

also be valuable for future studies of slowly evolving, self-

assembling systems including denser phases (cubic, reverse

micelle), vesicles, and other complicated interfaces.

Appendix: PPPM GPU implementation

In this appendix, we outline the implementation of electrostatic

interactions on the GPU. The Coulomb potential between two

particles with charge qi and qj, respectively, that are separated by

a distance rij ¼ |rij| ¼ |ri " rj|, is given by

UðrijÞ ¼
qiqj

4p303rrij
; (10)

where 30 is the permittivity of free space and 3r is the relative

dielectric constant. The total electrostatic energy of a periodic

system of dimensions L % L % L containing N charged particles

is thus

1

2

X

n

0
XN

i¼1

XN

j¼1

U
!""rij þ nL

""
#
; (11)

where n ¼ (nx, ny, nz) with nx, ny, nz ˛ Z. Here, the sum runs over

all periodic images of the system and the prime indicates that the

term with i ¼ j is omitted for n ¼ 0. Owing to the slow decay of

the electrostatic potential, eqn (11) is only conditionally

convergent.77 One common method that is used to overcome this

is the Ewald sum.59,77–79 The Ewald sum splits the potential-

energy calculation into a short-ranged contribution that is eval-

uated in real space

UrealðrijÞ ¼
1

2

X

i;j

qiqj erfcðarijÞ
4p303rrij

; (12)

and a long-range contribution that is evaluated in Fourier space,

UFourier ¼
1

2

X

ks0

jrðkÞj2

303rVk2
expð"k2=4a2Þ " affiffiffiffiffiffiffi

ðpÞ
p

X

i

q2i ; (13)

where r(k) is the Fourier transform of the charge density, defined

as,

""rðkÞ
""2¼

"
XN

i¼1

qi cosðk$riÞ

#2

þ

"
XN

i¼1

qi sinðk$riÞ

#2

: (14)

Here we have assumed conducting boundary conditions.59,77

For large systems of over a few thousand charged particles, the

performance of this method can be increased by computing the

reciprocal space contribution using fast Fourier transforms

routines (FFTs) provided by CUDA. These Fourier transforms

are finite and discrete and therefore the point charges in

continuous space must be replaced by a grid-based charge

density, rg. There are many different methods for implementing

electrostatics calculations using FFTs,80 including particle mesh

Ewald (PME), smooth particle mesh Ewald (SPME), and the

particle–particle particle–mesh (PPPM) method of Hockney and

Eastwood57,58 and we have chosen to implement the PPPM

method.

Implementing the short-range part of the Ewald sum in

HOOMD is straightforward and here we will focus only on the

long-range contribution. The first step in the calculation is

interpolating the charges in continuous space onto a grid. This

grid-based charge density is computed from an assignment

function W(r):

rg ¼
1

h

XN

i¼1

qiWðrp " riÞ; (15)

where rp is the coordinate of mesh point p, ri is the coordinate of

particle i, and h is the grid spacing. We use the P-order weight

function given by Hockney and Eastwood,58,80 which assigns

a charge to p mesh points in each direction, with the weight

function for one direction given by,

WPðsÞ ¼
%
1½"1=2;1=2(+$$$+1½"1=2;1=2(

&
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

p"fold convolution

ðx=hÞ (16)

with 1[–1/2, 1/2] being the characteristic function of the interval

"1

2
;
1

2

( )
(1 within the interval and 0 outside). This is generalized

to 3 dimensions using a simple factorization approach,

W(r) ¼ W(x)W(y)W(z). (17)

Depending on the expected size of the grid in an actual

simulation, this charge assignment can be implemented on

a GPU in different ways. For systems with thousands of charges

or more, only large grids, with sizes of 64 % 64 % 64 up to 256 %
256 % 256 are of interest and these grids are far too large to fit

into the multiprocessor’s shared memory. Since particles in

HOOMD are not sorted into cells, the method we use is to

directly assign the values to grid points in global memory. To

accomplish this, a kernel is started on the GPU with a single

thread for each particle. The closest grid point to each particle is

determined and then its charge is assigned to a number of

neighboring grid points, according to the selected weighting

method and interpolation order. To avoid race conditions, when

multiple particles contribute charge to the same grid point,

atomic functions are used to sum up the grid-based charge

density. CUDA 3.0 does not support atomic float additions for

graphics cards with compute capability 1.3 or smaller and we

therefore create a simple implementation of such a function

using CUDA’s atomic exchange function. Graphics cards

with compute capability 2.0 and higher can use the built in

atomicAdd() function.

Next, the Fourier coefficients of the mesh-based charge

density,

r̂kn ¼
1

V

X

rn

eikn$rnqrn ; (18)

are computed using the FTT library provided by CUDA, which

is optimized for the GPU architecture. These coefficients are then

multiplied by the mesh-based Green’s function to obtain the

potential in Fourier space,

f̂kn ¼ Ĝ0kn r̂kn : (19)
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was only achieved for 1 M S6S on the timescales accessed in this

study.

In general, our technique of simulating CG ionic surfactant

micellization with multiple replica MD simulations on GPU

hardware yields empirically verifiable data for a wide range of

concentrations and hydrophobic tail lengths. This approach may

also be valuable for future studies of slowly evolving, self-

assembling systems including denser phases (cubic, reverse

micelle), vesicles, and other complicated interfaces.

Appendix: PPPM GPU implementation

In this appendix, we outline the implementation of electrostatic

interactions on the GPU. The Coulomb potential between two

particles with charge qi and qj, respectively, that are separated by

a distance rij ¼ |rij| ¼ |ri " rj|, is given by

UðrijÞ ¼
qiqj

4p303rrij
; (10)

where 30 is the permittivity of free space and 3r is the relative

dielectric constant. The total electrostatic energy of a periodic

system of dimensions L % L % L containing N charged particles

is thus

1

2

X

n

0
XN

i¼1

XN

j¼1

U
!""rij þ nL

""
#
; (11)

where n ¼ (nx, ny, nz) with nx, ny, nz ˛ Z. Here, the sum runs over

all periodic images of the system and the prime indicates that the

term with i ¼ j is omitted for n ¼ 0. Owing to the slow decay of

the electrostatic potential, eqn (11) is only conditionally

convergent.77 One common method that is used to overcome this

is the Ewald sum.59,77–79 The Ewald sum splits the potential-

energy calculation into a short-ranged contribution that is eval-

uated in real space

UrealðrijÞ ¼
1

2

X

i;j

qiqj erfcðarijÞ
4p303rrij

; (12)

and a long-range contribution that is evaluated in Fourier space,

UFourier ¼
1

2

X

ks0

jrðkÞj2

303rVk2
expð"k2=4a2Þ " affiffiffiffiffiffiffi

ðpÞ
p

X

i

q2i ; (13)

where r(k) is the Fourier transform of the charge density, defined

as,

""rðkÞ
""2¼

"
XN

i¼1

qi cosðk$riÞ

#2

þ

"
XN

i¼1

qi sinðk$riÞ

#2

: (14)

Here we have assumed conducting boundary conditions.59,77

For large systems of over a few thousand charged particles, the

performance of this method can be increased by computing the

reciprocal space contribution using fast Fourier transforms

routines (FFTs) provided by CUDA. These Fourier transforms

are finite and discrete and therefore the point charges in

continuous space must be replaced by a grid-based charge

density, rg. There are many different methods for implementing

electrostatics calculations using FFTs,80 including particle mesh

Ewald (PME), smooth particle mesh Ewald (SPME), and the

particle–particle particle–mesh (PPPM) method of Hockney and

Eastwood57,58 and we have chosen to implement the PPPM

method.

Implementing the short-range part of the Ewald sum in

HOOMD is straightforward and here we will focus only on the

long-range contribution. The first step in the calculation is

interpolating the charges in continuous space onto a grid. This

grid-based charge density is computed from an assignment

function W(r):

rg ¼
1

h

XN

i¼1

qiWðrp " riÞ; (15)

where rp is the coordinate of mesh point p, ri is the coordinate of

particle i, and h is the grid spacing. We use the P-order weight

function given by Hockney and Eastwood,58,80 which assigns

a charge to p mesh points in each direction, with the weight

function for one direction given by,

WPðsÞ ¼
%
1½"1=2;1=2(+$$$+1½"1=2;1=2(

&
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

p"fold convolution

ðx=hÞ (16)

with 1[–1/2, 1/2] being the characteristic function of the interval

"1

2
;
1

2

( )
(1 within the interval and 0 outside). This is generalized

to 3 dimensions using a simple factorization approach,

W(r) ¼ W(x)W(y)W(z). (17)

Depending on the expected size of the grid in an actual

simulation, this charge assignment can be implemented on

a GPU in different ways. For systems with thousands of charges

or more, only large grids, with sizes of 64 % 64 % 64 up to 256 %
256 % 256 are of interest and these grids are far too large to fit

into the multiprocessor’s shared memory. Since particles in

HOOMD are not sorted into cells, the method we use is to

directly assign the values to grid points in global memory. To

accomplish this, a kernel is started on the GPU with a single

thread for each particle. The closest grid point to each particle is

determined and then its charge is assigned to a number of

neighboring grid points, according to the selected weighting

method and interpolation order. To avoid race conditions, when

multiple particles contribute charge to the same grid point,

atomic functions are used to sum up the grid-based charge

density. CUDA 3.0 does not support atomic float additions for

graphics cards with compute capability 1.3 or smaller and we

therefore create a simple implementation of such a function

using CUDA’s atomic exchange function. Graphics cards

with compute capability 2.0 and higher can use the built in

atomicAdd() function.

Next, the Fourier coefficients of the mesh-based charge

density,

r̂kn ¼
1

V

X

rn

eikn$rnqrn ; (18)

are computed using the FTT library provided by CUDA, which

is optimized for the GPU architecture. These coefficients are then

multiplied by the mesh-based Green’s function to obtain the

potential in Fourier space,

f̂kn ¼ Ĝ0kn r̂kn : (19)
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Here we use a modified Green’s function which minimizes the

error when calculating the electric fields,58,80

Ĝ0kn ¼

X

M

Û
2

knþMĜknþMkn$knþM

! X

M

Û
2

knþM

!2

jknj2
; (20)

where

Ûkh
NXNYNZ

V
Ŵ k; (21)

and

Ŵ k ¼
ð

V

eikn$rnW ðrÞd3r; (22)

is the Fourier transform of the weight function, eqn (15).

Ĝkh
4p
##k
##2
e%jkj

2
=4a2 (23)

is the unmodified Green’s function associated with the screening

distribution. These do not change during a simulation and are

only computed once at the beginning.

To obtain the forces on the particles, the electric field must first

be computed by differentiating the potential. This is done in

Fourier space by multiplying f̂kn by ik then performing an

inverse Fourier transform on the result. The mesh-based electric

field is then obtained from the following equation,

EðrpÞ ¼ %FFT
 $$$ %

ik& r̂kn & Ĝ0kn
&'
rpÞ: (24)

Ĝ0kn and ik are stored in arrays in global memory and are

multiplied with the related charge density to achieve the three

corresponding complex values of the electric field vector in

Fourier space. This is all done in a single kernel, so r̂kn , Ĝ
0
kn
, and

ik are read from global memory and three complex field values

are written to global memory. This kernel can use the graphics

card very efficiently since all memory accesses are coalesced.

Note that since k is a vector, there are three inverse transforms,

again using the CUFFT library. These transforms can be fast-

tracked slightly by introducing three streams in CUDA which

handle all the transforms independently. In this way resources on

the GPU which are unused for one transform can be utilized by

the other two transforms.

The force on each particle is computed from the grid-based

electric field using the same assignment function W(r), used to

interpolate the charges onto the grid via the following equation,

Fi ¼ qi
X

rp˛M
EðrpÞW ðrp % riÞ (25)

Again, a single thread is started for each particle and the

closest grid point to every particle is calculated. Then the

weighting corresponding to the charge density assignment takes

place and the force on all particles is summed up. Due to

unsorted particle data, reading of all electric field values is done

from global memory. To reduce the number of memory accesses

for large number of particles during this process, the three

separate electric field components, E(rp) in real space are written

into a single array of vectors in a kernel function. Though it may

seem counterintuitive to perform this extra operation to save

time, each particle must access a large number of grid points, up

to 125 for an interpolation order of 4, and each grid can

contribute a force to many particles. The speed gained from

reducing the memory reads for those operations outweighs the

extra time spent storing the electric field vectors in a single array.

These forces are then added to the short-ranged part of the

Ewald sum computed in real space,

FrealðrijÞ ¼
!
qiqj erfcðarijÞ
4p303rrij

þ 2affiffiffi
p
p e%a2rij

)
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; (26)

and any other short-ranged potentials.

Acknowledgements

We gratefully acknowledge Wataru Shinoda and Russell

DeVane for many useful discussions and for providing pre-

publication access to the parameters of the CG model for ionic

surfactants. We also thank Joshua Anderson, Axel Kohlmeyer,

Paul Navratil, and the support staff at the Texas Advanced

Computing Center (TACC) for their technical assistance. At

Temple, this work was supported by the National Science

Foundation under grant CHE 09-46358 and CNS 09-58854 and

through TeraGrid resources provided by Longhorn at TACC

under grant numbers TG-MCA93S020 and TG-ASC090088.

MLK and AJ would also like to thank The Procter & Gamble

company for generous support. At Princeton, this work was

supported by the Princeton Center for Complex Materials,

Award NSF-DMR 0819860 and by the Department of Energy,

Office of Basic Energy Sciences, Award DE-SC0002128.

References

1 C. Tanford, The Hydrophobic Effect: Formation of Micelles and
Biological Membranes, John Wiley & Sons Inc, New York, 1973.

2 J. N. Israelachvili, Intermolecular and Surface Forces, Harcourt Brace,
London, 1992.

3 K. Kataoka, A. Harada and Y. Nagasaki, Adv. Drug Delivery Rev.,
2001, 47, 113–131.

4 R. Ideta, F. Tasaka, W.-D. Jang, N. Nishiyama, G.-D. Zhang,
A. Harada, Y. Yanagi, Y. Tamaki, T. Aida and K. Kataoka, Nano
Lett., 2005, 5, 2426–2431.

5 A. Patist, J. R. Kanicky, P. K. Shukla and D. O. Shah, J. Colloid
Interface Sci., 2002, 245, 1–15.

6 A. Patist, S. G. Oh, R. Leung and D. O. Shah, Colloids Surf., A, 2001,
176, 3–16.

7 R. R. Balmbra, J. S. Clunie, J. M. Corkill and J. F. Goodman, Trans.
Faraday Soc., 1964, 60, 979–985.

8 N. J. Turro and A. Yekta, J. Am. Chem. Soc., 1978, 100, 5951–5952.
9 F. M. Menger, Acc. Chem. Res., 1979, 12, 111–117.
10 P. J. Missel, N. A. Mazer, G. B. Benedek, C. Y. Young and

M. C. Carey, J. Phys. Chem., 1980, 84, 1044–1057.
11 F. M. Menger and C. A. Littau, J. Am. Chem. Soc., 1993, 115, 10083–

10090.
12 K. Streletzky and G. D. J. Phillies, Langmuir, 1995, 11, 42–47.
13 S. W. Haan and L. R. Pratt, Chem. Phys. Lett., 1981, 79, 436–440.
14 J. M. Haile and J. P. O’Connell, J. Phys. Chem., 1984, 88, 6363–6366.
15 B. Jonsson, O. Edholm and O. Teleman, J. Chem. Phys., 1986, 85,

2259–2271.
16 K. Watanabe, M. Ferrario andM. L. Klein, J. Phys. Chem., 1988, 92,

819–821.
17 K. Watanabe and M. L. Klein, J. Phys. Chem., 1989, 93, 6897–6901.
18 B. Smit, P. A. J. Hilbers, K. Esselink, L. A. M. Rupert, N. M. van Os

and A. G. Schlijper, Nature, 1990, 348, 624–625.
19 B. Smit, P. A. J. Hilbers, K. Esselink, L. A. M. Rupert, N. M. van Os

and A. G. Schlijper, J. Phys. Chem., 1991, 95, 6361–6368.

2396 | Soft Matter, 2012, 8, 2385–2397 This journal is ª The Royal Society of Chemistry 2012

Pu
bl

is
he

d 
on

 0
9 

D
ec

em
be

r 2
01

1.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f M
ic

hi
ga

n 
Li

br
ar

y 
on

 0
8/

12
/2

01
5 

23
:0

0:
31

. 

Here we use a modified Green’s function which minimizes the

error when calculating the electric fields,58,80

Ĝ0kn ¼

X

M

Û
2

knþMĜknþMkn$knþM

! X

M

Û
2

knþM

!2

jknj2
; (20)

where

Ûkh
NXNYNZ

V
Ŵ k; (21)

and

Ŵ k ¼
ð

V

eikn$rnW ðrÞd3r; (22)

is the Fourier transform of the weight function, eqn (15).

Ĝkh
4p
##k
##2
e%jkj

2
=4a2 (23)

is the unmodified Green’s function associated with the screening

distribution. These do not change during a simulation and are

only computed once at the beginning.

To obtain the forces on the particles, the electric field must first

be computed by differentiating the potential. This is done in

Fourier space by multiplying f̂kn by ik then performing an

inverse Fourier transform on the result. The mesh-based electric

field is then obtained from the following equation,

EðrpÞ ¼ %FFT
 $$$ %

ik& r̂kn & Ĝ0kn
&'
rpÞ: (24)

Ĝ0kn and ik are stored in arrays in global memory and are

multiplied with the related charge density to achieve the three

corresponding complex values of the electric field vector in

Fourier space. This is all done in a single kernel, so r̂kn , Ĝ
0
kn
, and

ik are read from global memory and three complex field values

are written to global memory. This kernel can use the graphics

card very efficiently since all memory accesses are coalesced.

Note that since k is a vector, there are three inverse transforms,

again using the CUFFT library. These transforms can be fast-

tracked slightly by introducing three streams in CUDA which

handle all the transforms independently. In this way resources on

the GPU which are unused for one transform can be utilized by

the other two transforms.

The force on each particle is computed from the grid-based

electric field using the same assignment function W(r), used to

interpolate the charges onto the grid via the following equation,

Fi ¼ qi
X

rp˛M
EðrpÞW ðrp % riÞ (25)

Again, a single thread is started for each particle and the

closest grid point to every particle is calculated. Then the

weighting corresponding to the charge density assignment takes

place and the force on all particles is summed up. Due to

unsorted particle data, reading of all electric field values is done

from global memory. To reduce the number of memory accesses

for large number of particles during this process, the three

separate electric field components, E(rp) in real space are written

into a single array of vectors in a kernel function. Though it may

seem counterintuitive to perform this extra operation to save

time, each particle must access a large number of grid points, up

to 125 for an interpolation order of 4, and each grid can

contribute a force to many particles. The speed gained from

reducing the memory reads for those operations outweighs the

extra time spent storing the electric field vectors in a single array.

These forces are then added to the short-ranged part of the

Ewald sum computed in real space,

FrealðrijÞ ¼
!
qiqj erfcðarijÞ
4p303rrij

þ 2affiffiffi
p
p e%a2rij

)
rij
rij
; (26)

and any other short-ranged potentials.
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Here we use a modified Green’s function which minimizes the

error when calculating the electric fields,58,80

Ĝ0kn ¼

X

M

Û
2

knþMĜknþMkn$knþM

! X

M

Û
2

knþM

!2

jknj2
; (20)

where

Ûkh
NXNYNZ

V
Ŵ k; (21)

and

Ŵ k ¼
ð

V

eikn$rnW ðrÞd3r; (22)

is the Fourier transform of the weight function, eqn (15).

Ĝkh
4p
##k
##2
e%jkj

2
=4a2 (23)

is the unmodified Green’s function associated with the screening

distribution. These do not change during a simulation and are

only computed once at the beginning.

To obtain the forces on the particles, the electric field must first

be computed by differentiating the potential. This is done in

Fourier space by multiplying f̂kn by ik then performing an

inverse Fourier transform on the result. The mesh-based electric

field is then obtained from the following equation,

EðrpÞ ¼ %FFT
 $$$ %

ik& r̂kn & Ĝ0kn
&'
rpÞ: (24)

Ĝ0kn and ik are stored in arrays in global memory and are

multiplied with the related charge density to achieve the three

corresponding complex values of the electric field vector in

Fourier space. This is all done in a single kernel, so r̂kn , Ĝ
0
kn
, and

ik are read from global memory and three complex field values

are written to global memory. This kernel can use the graphics

card very efficiently since all memory accesses are coalesced.

Note that since k is a vector, there are three inverse transforms,

again using the CUFFT library. These transforms can be fast-

tracked slightly by introducing three streams in CUDA which

handle all the transforms independently. In this way resources on

the GPU which are unused for one transform can be utilized by

the other two transforms.

The force on each particle is computed from the grid-based

electric field using the same assignment function W(r), used to

interpolate the charges onto the grid via the following equation,

Fi ¼ qi
X

rp˛M
EðrpÞW ðrp % riÞ (25)

Again, a single thread is started for each particle and the

closest grid point to every particle is calculated. Then the

weighting corresponding to the charge density assignment takes

place and the force on all particles is summed up. Due to

unsorted particle data, reading of all electric field values is done

from global memory. To reduce the number of memory accesses

for large number of particles during this process, the three

separate electric field components, E(rp) in real space are written

into a single array of vectors in a kernel function. Though it may

seem counterintuitive to perform this extra operation to save

time, each particle must access a large number of grid points, up

to 125 for an interpolation order of 4, and each grid can

contribute a force to many particles. The speed gained from

reducing the memory reads for those operations outweighs the

extra time spent storing the electric field vectors in a single array.

These forces are then added to the short-ranged part of the

Ewald sum computed in real space,

FrealðrijÞ ¼
!
qiqj erfcðarijÞ
4p303rrij

þ 2affiffiffi
p
p e%a2rij

)
rij
rij
; (26)

and any other short-ranged potentials.

Acknowledgements

We gratefully acknowledge Wataru Shinoda and Russell

DeVane for many useful discussions and for providing pre-

publication access to the parameters of the CG model for ionic

surfactants. We also thank Joshua Anderson, Axel Kohlmeyer,

Paul Navratil, and the support staff at the Texas Advanced

Computing Center (TACC) for their technical assistance. At

Temple, this work was supported by the National Science

Foundation under grant CHE 09-46358 and CNS 09-58854 and

through TeraGrid resources provided by Longhorn at TACC

under grant numbers TG-MCA93S020 and TG-ASC090088.

MLK and AJ would also like to thank The Procter & Gamble

company for generous support. At Princeton, this work was

supported by the Princeton Center for Complex Materials,

Award NSF-DMR 0819860 and by the Department of Energy,

Office of Basic Energy Sciences, Award DE-SC0002128.

References

1 C. Tanford, The Hydrophobic Effect: Formation of Micelles and
Biological Membranes, John Wiley & Sons Inc, New York, 1973.

2 J. N. Israelachvili, Intermolecular and Surface Forces, Harcourt Brace,
London, 1992.

3 K. Kataoka, A. Harada and Y. Nagasaki, Adv. Drug Delivery Rev.,
2001, 47, 113–131.

4 R. Ideta, F. Tasaka, W.-D. Jang, N. Nishiyama, G.-D. Zhang,
A. Harada, Y. Yanagi, Y. Tamaki, T. Aida and K. Kataoka, Nano
Lett., 2005, 5, 2426–2431.

5 A. Patist, J. R. Kanicky, P. K. Shukla and D. O. Shah, J. Colloid
Interface Sci., 2002, 245, 1–15.

6 A. Patist, S. G. Oh, R. Leung and D. O. Shah, Colloids Surf., A, 2001,
176, 3–16.

7 R. R. Balmbra, J. S. Clunie, J. M. Corkill and J. F. Goodman, Trans.
Faraday Soc., 1964, 60, 979–985.

8 N. J. Turro and A. Yekta, J. Am. Chem. Soc., 1978, 100, 5951–5952.
9 F. M. Menger, Acc. Chem. Res., 1979, 12, 111–117.
10 P. J. Missel, N. A. Mazer, G. B. Benedek, C. Y. Young and

M. C. Carey, J. Phys. Chem., 1980, 84, 1044–1057.
11 F. M. Menger and C. A. Littau, J. Am. Chem. Soc., 1993, 115, 10083–

10090.
12 K. Streletzky and G. D. J. Phillies, Langmuir, 1995, 11, 42–47.
13 S. W. Haan and L. R. Pratt, Chem. Phys. Lett., 1981, 79, 436–440.
14 J. M. Haile and J. P. O’Connell, J. Phys. Chem., 1984, 88, 6363–6366.
15 B. Jonsson, O. Edholm and O. Teleman, J. Chem. Phys., 1986, 85,

2259–2271.
16 K. Watanabe, M. Ferrario andM. L. Klein, J. Phys. Chem., 1988, 92,

819–821.
17 K. Watanabe and M. L. Klein, J. Phys. Chem., 1989, 93, 6897–6901.
18 B. Smit, P. A. J. Hilbers, K. Esselink, L. A. M. Rupert, N. M. van Os

and A. G. Schlijper, Nature, 1990, 348, 624–625.
19 B. Smit, P. A. J. Hilbers, K. Esselink, L. A. M. Rupert, N. M. van Os

and A. G. Schlijper, J. Phys. Chem., 1991, 95, 6361–6368.

2396 | Soft Matter, 2012, 8, 2385–2397 This journal is ª The Royal Society of Chemistry 2012

Pu
bl

is
he

d 
on

 0
9 

D
ec

em
be

r 2
01

1.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f M
ic

hi
ga

n 
Li

br
ar

y 
on

 0
8/

12
/2

01
5 

23
:0

0:
31

. 

Here we use a modified Green’s function which minimizes the

error when calculating the electric fields,58,80

Ĝ0kn ¼

X

M
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knþMĜknþMkn$knþM
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jknj2
; (20)

where

Ûkh
NXNYNZ

V
Ŵ k; (21)

and

Ŵ k ¼
ð

V

eikn$rnW ðrÞd3r; (22)

is the Fourier transform of the weight function, eqn (15).

Ĝkh
4p
##k
##2
e%jkj

2
=4a2 (23)

is the unmodified Green’s function associated with the screening

distribution. These do not change during a simulation and are

only computed once at the beginning.

To obtain the forces on the particles, the electric field must first

be computed by differentiating the potential. This is done in

Fourier space by multiplying f̂kn by ik then performing an

inverse Fourier transform on the result. The mesh-based electric

field is then obtained from the following equation,

EðrpÞ ¼ %FFT
 $$$ %

ik& r̂kn & Ĝ0kn
&'
rpÞ: (24)

Ĝ0kn and ik are stored in arrays in global memory and are

multiplied with the related charge density to achieve the three

corresponding complex values of the electric field vector in

Fourier space. This is all done in a single kernel, so r̂kn , Ĝ
0
kn
, and

ik are read from global memory and three complex field values

are written to global memory. This kernel can use the graphics

card very efficiently since all memory accesses are coalesced.

Note that since k is a vector, there are three inverse transforms,

again using the CUFFT library. These transforms can be fast-

tracked slightly by introducing three streams in CUDA which

handle all the transforms independently. In this way resources on

the GPU which are unused for one transform can be utilized by

the other two transforms.

The force on each particle is computed from the grid-based

electric field using the same assignment function W(r), used to

interpolate the charges onto the grid via the following equation,

Fi ¼ qi
X

rp˛M
EðrpÞW ðrp % riÞ (25)

Again, a single thread is started for each particle and the

closest grid point to every particle is calculated. Then the

weighting corresponding to the charge density assignment takes

place and the force on all particles is summed up. Due to

unsorted particle data, reading of all electric field values is done

from global memory. To reduce the number of memory accesses

for large number of particles during this process, the three

separate electric field components, E(rp) in real space are written

into a single array of vectors in a kernel function. Though it may

seem counterintuitive to perform this extra operation to save

time, each particle must access a large number of grid points, up

to 125 for an interpolation order of 4, and each grid can

contribute a force to many particles. The speed gained from

reducing the memory reads for those operations outweighs the

extra time spent storing the electric field vectors in a single array.

These forces are then added to the short-ranged part of the

Ewald sum computed in real space,

FrealðrijÞ ¼
!
qiqj erfcðarijÞ
4p303rrij

þ 2affiffiffi
p
p e%a2rij

)
rij
rij
; (26)

and any other short-ranged potentials.
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Here we use a modified Green’s function which minimizes the

error when calculating the electric fields,58,80
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where
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and
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eikn$rnW ðrÞd3r; (22)

is the Fourier transform of the weight function, eqn (15).
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is the unmodified Green’s function associated with the screening

distribution. These do not change during a simulation and are

only computed once at the beginning.

To obtain the forces on the particles, the electric field must first

be computed by differentiating the potential. This is done in

Fourier space by multiplying f̂kn by ik then performing an

inverse Fourier transform on the result. The mesh-based electric

field is then obtained from the following equation,

EðrpÞ ¼ %FFT
 $$$ %

ik& r̂kn & Ĝ0kn
&'
rpÞ: (24)

Ĝ0kn and ik are stored in arrays in global memory and are

multiplied with the related charge density to achieve the three

corresponding complex values of the electric field vector in

Fourier space. This is all done in a single kernel, so r̂kn , Ĝ
0
kn
, and

ik are read from global memory and three complex field values

are written to global memory. This kernel can use the graphics

card very efficiently since all memory accesses are coalesced.

Note that since k is a vector, there are three inverse transforms,

again using the CUFFT library. These transforms can be fast-

tracked slightly by introducing three streams in CUDA which

handle all the transforms independently. In this way resources on

the GPU which are unused for one transform can be utilized by

the other two transforms.

The force on each particle is computed from the grid-based

electric field using the same assignment function W(r), used to

interpolate the charges onto the grid via the following equation,

Fi ¼ qi
X

rp˛M
EðrpÞW ðrp % riÞ (25)

Again, a single thread is started for each particle and the

closest grid point to every particle is calculated. Then the

weighting corresponding to the charge density assignment takes

place and the force on all particles is summed up. Due to

unsorted particle data, reading of all electric field values is done

from global memory. To reduce the number of memory accesses

for large number of particles during this process, the three

separate electric field components, E(rp) in real space are written

into a single array of vectors in a kernel function. Though it may

seem counterintuitive to perform this extra operation to save

time, each particle must access a large number of grid points, up

to 125 for an interpolation order of 4, and each grid can

contribute a force to many particles. The speed gained from

reducing the memory reads for those operations outweighs the

extra time spent storing the electric field vectors in a single array.

These forces are then added to the short-ranged part of the

Ewald sum computed in real space,

FrealðrijÞ ¼
!
qiqj erfcðarijÞ
4p303rrij

þ 2affiffiffi
p
p e%a2rij

)
rij
rij
; (26)

and any other short-ranged potentials.
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The Glotzer Group

Fast Fourier Transform

!n = e�2⇡i/n

yk =
n�1X

j=0

xje
�2⇡ijk/n 0  k < n

!2
n = !n/2

yk =
n�1X

j=0

x2j!
2jk
n +

n/2�1X

j=0

x2j+1!
(2j+1)k
n

yk =

n/2�1X

j=0

x2j!
jk
n/2 + !

k
n

n/2�1X

j=0

x2j+1!
jk
n/2

yk+n/2 =

n/2�1X

j=0

x2j!
jk
n/2 � !

k
n

n/2�1X

j=0

x2j+1!
jk
n/2

After repeatedly eating away at the middle factor. from both sides, we
finally reach In F,1n = I„ fir' I, = I,,. Collecting the factors produced iii
this process, we obtain the following theorem, which is the so-called
decimation in time (DIT) variant of the Cooley-Tukey factorization.
(The name `DIT' comes from splitting deciniating the samples taken
over time. cf. eqn (3.9).)

Theorem 3.7 (Cooley and Tukey [45]-DIT) Let n be a power of two witli
n. > 2. Then

where

R. H. Bisseling, Parallel Scientific Computation. Oxford University Press, 2004.

n = 2m
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Recursive O[N log(N)] algorithm

Van Loan [187] presents a unifying framework in which the Fourier
matrix F71, is factorized as the product of permutation matrices and
structured sparse matrices. This helps in concisely formulating FFT
algorithms, classifying the huge amount of existing FFT variants, and
identifying the fundamental variants. We adopt this framework in
deriving our parallel algorithm.

The computation of F,,,x by the recursive algorithin can he expressed
in matrix language as

Here, S2„ denotes the n x n diagonal matrix with the first 11 powers of
W')", On the diagonal.

Q2 . = diag(1,UJ217w277,. • . '271 i). (3.17)

R. H. Bisseling, Parallel Scientific Computation. Oxford University Press, 2004.



The Glotzer Group

Non-recursive FFT with bit reversal
of the recursive algorithm.

Algorithm 3.2. Sequential nonrecursive FFT.

The symmetry of the Fourier matrix Fr, and the bit-reversal matrix R,
gives us an alternative form of the Cooley Tukcy FFT factorization, the

https://en.wikipedia.org/wiki/
Cooley–Tukey_FFT_algorithm

LSB ⇔ MSB

R. H. Bisseling, Parallel Scientific Computation. Oxford University Press, 2004.
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Distributed FFT

xi ! P (i div b)

xi = x0, x1, . . . , xn input vector

Block distribution on      processors

b = dn/pe
p

n = 10

0 0 0 1 1 1 2 2 2 3
0 1 2 3 4 5 6 7 8 9

xi ! P (imod p)

Cyclic distribution
0 1 2 3 0 1 2 3 0 1
0 1 2 3 4 5 6 7 8 9

R. H. Bisseling, Parallel Scientific Computation. Oxford University Press, 2004.

Butterflies          with                      are localk  n/pBk

Butterflies          with                   are localBk k � 2p

⤳ Strategy: start with block distribution, finish with cyclic
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Group-cyclic distribution

p > n/pWhen too many processors are available,                     , we need the

xj ! P

✓
j div

⇠
cn

p

⇡◆
+

✓
jmod

⇠
cn

p

⇡◆
mod c

�

Group-Cyclic distribution

0 0 1 1 2 2 3 3
0 1 2 3 4 5 6 7

0 1 0 1 2 3 2 3
0 1 2 3 4 5 6 7

0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7

c = 1

c = 2

c = 4

(block)

(cyclic)

2c  k  n

p
cBkwith

is local

n = 8

R. H. Bisseling, Parallel Scientific Computation. Oxford University Press, 2004.
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Algorithm - one-dimensional parallel FFT

T 11 = (2 [~a q q1 + 1) 1. (3.36)

Second, we examine the communication cost. Communication occurs
only within the redistribution, where in the worst case all n/p old local
vector components are sent away, and n/p new components are received
from another processor. Each vector component is a complex number,

R. H. Bisseling, Parallel Scientific Computation. Oxford University Press, 2004.
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Implementation in HOOMD-blue 2.0 - md.charge.pppm()

- Local Butterflies are optimized using NVIDIA CUFFT on GPU
- Vector-Radix for n-d transforms
- Group-cyclic redistribution using MPI_Alltoallv()
- Implemented in dfftlib (http://github.com/jglaser/dfftlib)
- currently only single precision

Protein aggregation benchmark
Martini FF w/long-range PPPM, no solvent
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http://github.com/jglaser/dfftlib
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Ghost cell layer
PM force computation w/communication

assign charges

dFFT

solve for potentials

inverse dFFT

interpolate forces

update ghost cells

update ghost cells
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Pairwise distance constraints

NON-ITERATIVE MOLECULAR DYNAMICS SIMULATIONS 189

original combinations with Verlet and leap-frog to combinations with velocity Verlet and
Beeman time integration schemes.
In this article, we present a more generalized extension of NIMM for so-called “Verlet

equivalent” time integration schemes. We evaluate its computational efficiency and ro-
bustness compared to SHAKE with test simulations of fullerenes, a protein, rigid planar
benzenes, etc.

2. CONSTRAINT ALGORITHMS

In this section, we show the basic idea of NIMM in comparison with SHAKE.We discuss
only the bond length constraint because the other constraints, e.g., bond angle, are formally
the same as that of bond length.

2.1. Constraint with SHAKE

Let us assume there are N bonds in a molecule. xi , x j are the coordinates of two atoms
which form the nth bond of this molecule and dn is its fixed bond length. The total constraint
condition of a molecule can be expressed as

χn(t) ≡ r2n(t) − d2n = 0 (n = 1− N ),

where

rn(t) ≡ xi (t) − x j (t).

In SHAKE, the atomic coordinates are iteratively reset to fulfill the following equation as
a result:

χn(t + "t) + O(ε) = 0. (1)

Thepoint of SHAKE is that the constraint force is calculated to fulfill the constraint condition
(with user-specified error tolerance ε) at not the current, but the next time step t + "t . It
is known, that the time integration with constraint force which is calculated to fulfill the
constraint condition at the current time step results in large drifts of constrained bond
lengths [1]. This is because the time integration scheme itself has a limited accuracy and the
accumulation of integration error causes the drifts. SHAKE effectively suppresses this drift
by the point above. The method proposed by Edberg et al. [2] has no such error suppressing
function itself and then it needs an independent error handler.
The constraint force f ci is expressed as follows using the Lagrange multiplier λn:

f ci (t) = 1
2

N∑

n=1
λn(t)∇ri (t)χn(t) =

N∑

n=1
λn(t)ri (t). (2)

Equation (2) means that the calculation of constraint force is equivalent to the calculation
of the Lagrange multipliers. If we use this constraint force equation (2) in the constraint
condition (1), it results in a non-linear (quadratic) equation about λn and then, needs an
iterative procedure to solve λn . This is the reasonwhy SHAKEbecomes an iterativemethod.
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[1] M. Yoneya, H. J. C. Berendsen, and K. Hirasawa, “A Non-Iterative Matrix Method for Constraint Molecular Dynamics Simulations,” 
Mol. Simul., vol. 13, no. 6, pp. 395–405, 1994.
[2] M. Yoneya, “A Generalized Non-iterative Matrix Method for Constraint Molecular Dynamics Simulations,” J. Comput. Phys., vol. 
172, no. 1, pp. 188–197, Sep. 2001.
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2.2. NIMM and Its Extension

NIMM is a constraint algorithm which can only be combined with (up to) fourth error
order time integration schemes, e.g., various “Verlet equivalent” time integration schemes.
The difference between NIMM and SHAKE is the equation which is solved in SHAKE

(Eq. (1)) and the equation which is solved in NIMM,

χn(t + "t) + O("t4) = 0; (3)

i.e., the difference between them is simply the specification of the constraint errors. This
means that the point which suppresses the constraint error accumulation is considered to
be the same in both SHAKE and NIMM. In SHAKE, the constraint error tolerance ε is a
user-specified parameter. On the other hand, the constraint error order O("t4) in NIMM is
the error order of the combined time integration scheme. In constraint dynamics, these error
orders of the constraint condition and time integration are not independent as in SHAKE,
but related to each other. It is shown that the error orders of the constraint condition and time
integration should be on the same order with the simple analysis in the original presentation
of NIMM [4]. The major difference when solving Eq. (3) instead of Eq. (1) to obtain the
Lagrange multipliers is the former can be solved non-iteratively because of the quadratic
term about λn is omitted as O("t4) terms, in contrast to the latter which must be solved by
the iterative procedure. This is the reason why NIMM becomes non-iterative and it must be
combined with (up to) fourth error order time integration schemes.
In the original presentation of NIMM [4], the combinations with Verlet and the leap-

frog time integration scheme were explained. Neither evaluates the atomic coordinates and
velocities at the same timing and this causes inconvenience in some applications. Slusher
and Cummings [5] extended NIMM, combining it with the velocity Verlet and Beeman time
integration scheme in which the coordinate and velocity are evaluated at the same timing.
Their actual algorithm is shown with an example of the velocity Verlet in

x(t + "t) = x(t) + ẋ(t)"t + 1
2
ẍ(t)"t (4)

ẋ(t + "t) = ẋ(t) + 1
2
{ẍ(t) + ẍ(t + "t)}"t2. (5)

Slusher and Cummings proposed the following procedure which evaluates χn(t + 2"t)
with an equation obtained by substituting Eq. (5) into Eq. (4) and shifting one time step"t :

χn(t + 2"t) + O("t4) = {rn(t + "t) + ṙn(t)"t}2 − d2n + {rn(t + "t)

+ ṙn(t)"t} · {r̈n(t) + 2 r̈n(t + "t)}"t2 = 0. (6)

Equation (6) utilizes one time step earlier values ṙn(t), r̈n(t) which are usually not avail-
able at the timing of the constraint force evaluation because these are overwritten with
the corresponding latest values. As a result, we need extra memory area for these earlier
step values to calculate the constraint force using Eq. (6). On the other hand, the original
NIMM for the leap-frog only utilizes the latest available values rn(t), ṙn(t − "t), r̈ncn (t) at
the timing of the constraint force evaluation. Analogously, when we restart the constraint
dynamics run from the previous configuration which is stored in a restart file, the file with
the same contents as the non-constraint run, i.e., x(t), ẋ(t − "t) is enough in the original

Iterative SHAKE:
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Evaluating χn(t + 2"t) with this equation makes the constraint condition for t + 2"t

χn(t + 2"t) + O("t4) = q2n(t + "t) − d2n + 2qn(t + "t) · r̈(t + "t)"t2 = 0, (9)

where qn(t + "t) is defined as

qn(t + "t) ≡ rn(t + "t) + ṙn(t + "t/2)"t.

Equation (9) utilizes only the latest available values at the timing of the constraint force
evaluation (between the second and the third equations of the first time step), and does not
require the one step earlier values as in Eq. (6).
Next, the restart file size is discussed. Usually, the restart file contains atomic coordinates

and velocities and these are actually x(t + "t) and ẋ(t + "t) in the case of the two-
step expression of the velocity Verlet above. In this case, at the first step after restart,
ẋ(t + (3/2)"t) cannot be calculated due to a lack of ẍ(t + "t) which includes constraint
force. To solve it, the values contained in the restart file should be the latest values which
can be calculated at the last time step. In the case of the velocity Verlet, x(t + "t) and
ẋ(t + (3/2)"t) should be stored as a restart file and a continuous run becomes possible
using such a restart file without extra restart file size.

3.2. Generalization of NIMM

In the previous section, the NIMM was extended to the combinations with the velocity
Verlet. Extension to the combinations with the position Verlet is also possible in a similar
manner. We found that the equations to obtain the constraint force take the general form

χn(t + α"t) + O("t4) = q2n(t + (α − 1)"t) − d2n
+ 2qn(t + (α − 1)"t) · r̈(t + (α − 1)"t)"t2 = 0 (10)

qn(t + (α − 1)"t) ≡ rn(t + (α − 1)"t) + ṙn(t + (α − 3/2)"t)"t,

where

α = 1 for Verlet using ṙn(t − "t/2)"t = rn(t) − rn(t − "t)

= 1 for leap− frog

= 3/2 for position Verlet

= 2 for velocity Verlet.

Thismeans exactly the same subroutine (to solveEq. (10)) can be used to calculate constraint
force for all these “Verlet equivalent” time integration schemes (with O("t4) constraint
error order). Corresponding constraint force is obtained by Eq. (2) as follows:

f ci (t + (α − 1)"t) = 1
2

N∑

n=1
λn(t + (α − 1)"t)∇ri (t+(α−1)"t)χn(t + (α − 1)"t)

=
N∑

n=1
λn(t + (α − 1)"t)rn(t + (α − 1)"t). (11)

Linear matrix equation due to coupled constraints (combine with Velocity-Verlet):
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Evaluating χn(t + 2"t) with this equation makes the constraint condition for t + 2"t

χn(t + 2"t) + O("t4) = q2n(t + "t) − d2n + 2qn(t + "t) · r̈(t + "t)"t2 = 0, (9)

where qn(t + "t) is defined as

qn(t + "t) ≡ rn(t + "t) + ṙn(t + "t/2)"t.

Equation (9) utilizes only the latest available values at the timing of the constraint force
evaluation (between the second and the third equations of the first time step), and does not
require the one step earlier values as in Eq. (6).
Next, the restart file size is discussed. Usually, the restart file contains atomic coordinates

and velocities and these are actually x(t + "t) and ẋ(t + "t) in the case of the two-
step expression of the velocity Verlet above. In this case, at the first step after restart,
ẋ(t + (3/2)"t) cannot be calculated due to a lack of ẍ(t + "t) which includes constraint
force. To solve it, the values contained in the restart file should be the latest values which
can be calculated at the last time step. In the case of the velocity Verlet, x(t + "t) and
ẋ(t + (3/2)"t) should be stored as a restart file and a continuous run becomes possible
using such a restart file without extra restart file size.

3.2. Generalization of NIMM

In the previous section, the NIMM was extended to the combinations with the velocity
Verlet. Extension to the combinations with the position Verlet is also possible in a similar
manner. We found that the equations to obtain the constraint force take the general form

χn(t + α"t) + O("t4) = q2n(t + (α − 1)"t) − d2n
+ 2qn(t + (α − 1)"t) · r̈(t + (α − 1)"t)"t2 = 0 (10)

qn(t + (α − 1)"t) ≡ rn(t + (α − 1)"t) + ṙn(t + (α − 3/2)"t)"t,

where

α = 1 for Verlet using ṙn(t − "t/2)"t = rn(t) − rn(t − "t)

= 1 for leap− frog

= 3/2 for position Verlet

= 2 for velocity Verlet.

Thismeans exactly the same subroutine (to solveEq. (10)) can be used to calculate constraint
force for all these “Verlet equivalent” time integration schemes (with O("t4) constraint
error order). Corresponding constraint force is obtained by Eq. (2) as follows:

f ci (t + (α − 1)"t) = 1
2

N∑

n=1
λn(t + (α − 1)"t)∇ri (t+(α−1)"t)χn(t + (α − 1)"t)

=
N∑

n=1
λn(t + (α − 1)"t)rn(t + (α − 1)"t). (11)

Distance 
constraints to 
integrate out fast 
bond fluctuations
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Sparse matrix refactorization - md.constrain.distance()

At every time step, solve for the forces M 𝝺 = v M: constraint topology matrix
𝝺: vector of Lagrange multipliers

M is sparse and the location of non-zeros in M does not change

⤳Solve on GPU using sparse QR refactorization with cuSolverRfRefactor() 
(available with CUDA Toolkit version ≧7.5)

MPI implementation: dynamically update ghost layer 
width to include largest constraint cluster

cusolverRf Eigen (CPU)0
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Composite bodies - md.constrain.rigid()
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central particle of body 0 (body id 0)

particle id
nonrigid particle

constituent particles of body 0 
(ascending order)

nonrigid particle

central particle of body 1 (body id 6)

constituent particles of body 1

…

Integrate step one

Communicate ghost positions

Compute forces

Sum body force and torque

Integrate step two

Update constituent particles

Time stepIn HOOMD 2.0, composite body positions and orientations are 
tracked through their central particles

Central particles the same integrators 
(md.integrate.*) with non-rigid particles

Communicate forces
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Ghost layers for composite bodies

The central particle determines the 
positions of the the constituent particles

Ghost layer must be wide enough to ensure that all constituent particles 
are communicated whenever a part of the rigid body is within the 
interaction range

local domain

extra ghost layer due to rigid 
body constraints

ghost layer from pair potential

molecule 
diameter
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Example for constrain.rigid()

from hoomd import *
from hoomd import md

context.initialize()

# create rigid spherocylinders out of two particles (not including the central particle)
len_cyl = 2.5
n_bead = 5

uc = lattice.unitcell(N = 2, a1 = [4,0,0], a2 = [0,4,0], a3 = [0,0,len_cyl+4],position = [[0,0,0], [1,1,0]],
                      type_name = ['A', 'B'])
system = init.create_lattice(unitcell=uc, n=[8,8,4])

for p in system.particles:
    p.moment_inertia = (.5,.5,1)

# create constituent particle types
system.particles.types.add('A_const')
system.particles.types.add('B_const')

md.integrate.mode_standard(dt=0.001)

# central particles
lj = md.pair.lj(r_cut=False,nlist=md.nlist.cell())
lj.pair_coeff.set(['A','B'], system.particles.types, epsilon=1.0, sigma=1.0, r_cut=2.5)

# constituent particle coefficients
lj.pair_coeff.set('A_const','A_const', epsilon=1.0, sigma=1.0, r_cut=2**(1./6.))
lj.pair_coeff.set('B_const','B_const', epsilon=1.0, sigma=1.0, r_cut=2**(1./6.))
lj.pair_coeff.set('A_const','B_const', epsilon=1.0, sigma=1.0, r_cut=2.5)

rigid = md.constrain.rigid()
rigid.set_param('A', types=['A_const']*n_bead, positions=[(0,0,-len_cyl/2+i*len_cyl/n_bead) for i in range(n_bead)])
rigid.set_param('B', types=['B_const']*n_bead, positions=[(0,0,-len_cyl/2+i*len_cyl/n_bead) for i in range(n_bead)])

# create the constituent particles
rigid.create_bodies()
center = group.rigid_center()

langevin = md.integrate.langevin(group=center,kT=1.0,seed=123)
langevin.set_gamma('A',2.0)
langevin.set_gamma('B',2.0)
run(1e7)

Oppositely charged rigid rods
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Performance on Pascal P100

HPMC Dodecahedron benchmark

http://www.nvidia.com/object/tesla-p100.html
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Summary

• HOOMD-blue is flexible, python-based and optimized for latest 
GPU generations, all major features available with MPI 

• In HOOMD-blue 2.0, PPPM electrostatics, distance constraints 
and rigid body constraints are supported in multi-GPU 
configuration  

• Targeted for large-scale biomolecular self-assembly
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