Distributed Algorithms for GPU Molecular Dynamics

Jens Glaser, Postdoctoral Fellow Chemical Engineering, University of Michigan

4th annual MVAPICH User Group (MUG) Meeting, Columbus, Ohio, August 15-17, 2016

HOOMD-blue

Highly Optimized Object-oriented Many Particle Dynamics Lead-developed in the Glotzer group at the University of Michigan over 130 publications using HOOMD-blue since 2008

Documentation:

MICHIGAN ENGINEERING

Development and complete change log:

http://hoomd-blue.readthedocs.io/en/stable/

https://bitbucket.org/glotzer/hoomd-blue

- New packages
 - **hpmc** (Hard Particle Monte Carlo)
 - **dem** (Discrete Element Method)
 - New features:
 - md.constrain.distance() Pairwise distance constraints
 - md.constrain.rigid() composite particles now have central particles and are supported with MPI
 - MPI support for **md.charge.pppm**() distributed Coulomb force computation
 - context.initialize() can now be called multiple times, useful for Jupyter notebooks
 - Manage multiple concurrent simulation contexts in a single job script with **SimulationContext**
 - New binary GSD file format for storing trajectories, dump.gsd(), init.gsd(), data.gsd_snapshot()
 - **init.create_lattice()** to initialize from regular lattices

Computational biomaterial design

Glotzer / Ellington collaboration

Molecular Dynamics

illustration by Joshua Anderson

GPU Molecular Dynamics in 1 slide

UNIVERSITY OF MICHIGAN

Domain decomposition with MPI

J. Glaser, T. D. Nguyen, J. A. Anderson, P. Lui, F. Spiga, J. A. Millan, D. C. Morse, and S. C. Glotzer, "Strong scaling of general-purpose molecular dynamics simulations on GPUs," Comput. Phys. Commun., vol. 192, no. July, pp. 97–107, 2015.

GPUDirect RDMA

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN


```
import hoomd, hoomd.md
hoomd.context.initialize()
hoomd.init.read_gsd('init.gsd')
nl = hoomd.md.nlist.cell()
lj = hoomd.md.pair.lj(r_cut=2.5, nlist=nl)
lj.pair_coeff.set('A', 'A', epsilon=1.0, sigma=1.0)
hoomd.md.integrate.mode_standard(dt=0.005)
all = hoomd.group.all()
hoomd.md.integrate.langevin(group=all, kT=1.2, seed=4)
hoomd.run(1e5)
```

Charged interactions

Onsager reaction field

Polarization of the cut-off sphere due to 1/r potential

$$U(r) = q_A q_B \left[\underbrace{\frac{1}{2}}_{\mathbf{e}} + \frac{(\epsilon_{RF} - 1)r^2}{(2\epsilon_{RF} + 1)r_c^3} \right]$$

Published on

Ewald summation

to compute long-range 1/r

$$\frac{1}{r} = \frac{f(r)}{r} + \frac{1 - f(r)}{r} \qquad U(r_{ij}) = \frac{q_i q_j}{4\pi\varepsilon_0\varepsilon_r r_{ij}}$$

$$U_{\text{real}}(r_{ij}) = \frac{1}{2} \sum_{i,j} \frac{q_i q_j \operatorname{erfc}(\alpha r_{ij})}{4\pi\varepsilon_0 \varepsilon_r r_{ij}} \qquad U_{\text{Fourier}} = \frac{1}{2} \sum_{k \neq 0} \frac{|\rho(\mathbf{k})|^2}{\varepsilon_0 \varepsilon_r V k^2} \exp(-k^2/4\alpha^2) - \frac{\alpha}{\sqrt{(\pi)}} \sum_i q_i^2 \frac{q_i q_j \operatorname{erfc}(\alpha r_{ij})}{\sqrt{(\pi)}} = \frac{1}{2} \sum_{k \neq 0} \frac{|\rho(\mathbf{k})|^2}{\varepsilon_0 \varepsilon_r V k^2} \exp(-k^2/4\alpha^2) - \frac{\alpha}{\sqrt{(\pi)}} \sum_i q_i^2 \frac{q_i q_j \operatorname{erfc}(\alpha r_{ij})}{\sqrt{(\pi)}} = \frac{1}{2} \sum_{k \neq 0} \frac{|\rho(\mathbf{k})|^2}{\varepsilon_0 \varepsilon_r V k^2} \exp(-k^2/4\alpha^2) - \frac{\alpha}{\sqrt{(\pi)}} \sum_i q_i^2 \frac{q_i q_j \operatorname{erfc}(\alpha r_{ij})}{\sqrt{(\pi)}} = \frac{1}{2} \sum_{k \neq 0} \frac{|\rho(\mathbf{k})|^2}{\varepsilon_0 \varepsilon_r V k^2} \exp(-k^2/4\alpha^2) - \frac{\alpha}{\sqrt{(\pi)}} \sum_i q_i^2 \frac{q_i q_j \operatorname{erfc}(\alpha r_{ij})}{\sqrt{(\pi)}} = \frac{1}{2} \sum_{k \neq 0} \frac{|\rho(\mathbf{k})|^2}{\varepsilon_0 \varepsilon_r V k^2} \exp(-k^2/4\alpha^2) - \frac{\alpha}{\sqrt{(\pi)}} \sum_i q_i^2 \frac{q_i q_i q_i q_i q_i q_i}{\sqrt{(\pi)}} = \frac{1}{2} \sum_{k \neq 0} \frac{|\rho(\mathbf{k})|^2}{\varepsilon_0 \varepsilon_r V k^2} \exp(-k^2/4\alpha^2) - \frac{\alpha}{\sqrt{(\pi)}} \sum_i q_i^2 \frac{q_i q_i q_i q_i}{\sqrt{(\pi)}} + \frac{1}{2} \sum_{k \neq 0} \frac{|\rho(\mathbf{k})|^2}{\varepsilon_0 \varepsilon_r V k^2} \exp(-k^2/4\alpha^2) + \frac{1}{2} \sum_{k \neq 0} \frac{|\rho(\mathbf{k})|^2}{\varepsilon_0 \varepsilon_r V k^2} \exp(-k^2/4\alpha^2) + \frac{1}{2} \sum_{k \neq 0} \frac{|\rho(\mathbf{k})|^2}{\varepsilon_0 \varepsilon_r V k^2} \exp(-k^2/4\alpha^2) + \frac{1}{2} \sum_{k \neq 0} \frac{|\rho(\mathbf{k})|^2}{\varepsilon_0 \varepsilon_r V k^2} \exp(-k^2/4\alpha^2) + \frac{1}{2} \sum_{k \neq 0} \frac{|\rho(\mathbf{k})|^2}{\varepsilon_0 \varepsilon_r V k^2} \exp(-k^2/4\alpha^2) + \frac{1}{2} \sum_{k \neq 0} \frac{|\rho(\mathbf{k})|^2}{\varepsilon_0 \varepsilon_r V k^2} \exp(-k^2/4\alpha^2) + \frac{1}{2} \sum_{k \neq 0} \frac{|\rho(\mathbf{k})|^2}{\varepsilon_0 \varepsilon_r V k^2} \exp(-k^2/4\alpha^2) + \frac{1}{2} \sum_{k \neq 0} \frac{|\rho(\mathbf{k})|^2}{\varepsilon_0 \varepsilon_r V k^2} \exp(-k^2/4\alpha^2) + \frac{1}{2} \sum_{k \neq 0} \frac{|\rho(\mathbf{k})|^2}{\varepsilon_0 \varepsilon_r V k^2} \exp(-k^2/4\alpha^2) + \frac{1}{2} \sum_{k \neq 0} \frac{|\rho(\mathbf{k})|^2}{\varepsilon_0 \varepsilon_r V k^2} \exp(-k^2/4\alpha^2) + \frac{1}{2} \sum_{k \neq 0} \frac{|\rho(\mathbf{k})|^2}{\varepsilon_0 \varepsilon_r V k^2} \exp(-k^2/4\alpha^2) + \frac{1}{2} \sum_{k \neq 0} \frac{|\rho(\mathbf{k})|^2}{\varepsilon_0 \varepsilon_r V k^2} \exp(-k^2/4\alpha^2) + \frac{1}{2} \sum_{k \neq 0} \frac{|\rho(\mathbf{k})|^2}{\varepsilon_0 \varepsilon_r V k^2} \exp(-k^2/4\alpha^2) + \frac{1}{2} \sum_{k \neq 0} \frac{|\rho(\mathbf{k})|^2}{\varepsilon_0 \varepsilon_r V k^2} \exp(-k^2/4\alpha^2) + \frac{1}{2} \sum_{k \neq 0} \frac{|\rho(\mathbf{k})|^2}{\varepsilon_0 \varepsilon_r V k^2} \exp(-k^2/4\alpha^2) + \frac{1}{2} \sum_{k \neq 0} \frac{|\rho(\mathbf{k})|^2}{\varepsilon_0 \varepsilon_r V k^2} \exp(-k^2/4\alpha^2) + \frac{1}{2} \sum_{k \neq 0} \frac{|\rho(\mathbf{k})|^2}{\varepsilon_0 \varepsilon_r V k^2} \exp(-k^2/4\alpha^2) + \frac{1}{2} \sum_{k \neq 0} \frac{|\rho(\mathbf{k})|^2}{\varepsilon_0 \varepsilon_r V k^2} \exp(-k^2/4\alpha^2) + \frac{1}{2} \sum_{k \neq 0} \frac{|\rho(\mathbf{k})|^2}{\varepsilon_0 \varepsilon_r V k^2} \exp(-k^2/4\alpha^2) + \frac{1}{$$

D. N. LeBard, B. G. Levine, P. Mertmann, S. A. Barr, A. Jusufi, S. Sanders, M. L. Klein, and A. Z. Panagiotopoulos Self-assembly of coarse-grained ionic surfactants accelerated by graphics processing units Soft Matter, vol. 8, no. 8, pp. 2385–2397, 2012.

Particle-particle Particle-Mesh (PPPM) electrostatics

Fast Fourier Transform

$$y_k = \sum_{j=0}^{n-1} x_j e^{-2\pi i j k/n} \quad 0 \le k < n \qquad n = 2^m$$

 \mathbf{x} : vector of length n. input: \mathbf{y} : vector of length n. $\mathbf{y} = F_n \mathbf{x}$. *output:* function call: $\mathbf{y} := FFT(\mathbf{x}, n)$. if $n \mod 2 = 0$ then $\mathbf{x}^{\mathbf{e}} := x(0: 2: n-1);$ $\mathbf{x}^{\mathbf{o}} := x(1:2:n-1);$ $\mathbf{y}^{\mathbf{e}} := \mathrm{FFT}(\mathbf{x}^{\mathbf{e}}, n/2);$ $\mathbf{y}^{\mathbf{o}} := FFT(\mathbf{x}^{\mathbf{o}}, n/2);$ for k := 0 to n/2 - 1 do $\tau := \omega_n^k y_{l}^{\mathbf{o}};$ $y_k := y_k^{e} + \tau;$ $y_{k+n/2} := y_k^{\circ} - \tau;$ else $\mathbf{y} := \mathrm{DFT}(\mathbf{x}, n)$;

Non-recursive FFT with bit reversal

GAN ENGINEERING

https://en.wikipedia.org/wiki/ Cooley–Tukey_FFT_algorithm

 \mathbf{x} : vector of length $n = 2^m$, $m \ge 1$, $\mathbf{x} = \mathbf{x}_0$. *input: output:* \mathbf{x} : vector of length n, such that $\mathbf{x} = F_n \mathbf{x}_0$. function call: $FFT(\mathbf{x}, n)$. { Perform bit reversal $\mathbf{x} := R_n \mathbf{x}$. Function call bitrev (\mathbf{x}, n) } for j := 0 to n - 1 do { Compute $r := \rho_n(j)$ } q := j;r := 0;for k := 0 to $\log_2 n - 1$ do $b_k := q \mod 2;$ $q := q \operatorname{div} 2;$ $r := 2r + b_k;$ if j < r then swap (x_j, x_r) ; { Perform butterflies. Function call UFFT(\mathbf{x}, n) } k := 2;while k < n do { Compute $\mathbf{x} := (I_{n/k} \otimes B_k)\mathbf{x}$ } for r := 0 to $\frac{n}{k} - 1$ do { Compute $x(rk: rk + k - 1) := B_k x(rk: rk + k - 1)$ } for j := 0 to $\frac{k}{2} - 1$ do { Compute $x_{rk+j} \pm \omega_k^j x_{rk+j+k/2}$ } $\tau := \omega_k^j x_{rk+j+k/2};$ $x_{rk+j+k/2} := x_{rk+j} - \tau;$ $x_{rk+j} := x_{rk+j} + \tau;$ k := 2k;

 $x_i = x_0, x_1, \ldots, x_n$ input vector

Block distribution on \boldsymbol{p} processors

 $x_i \to P(i \operatorname{div} b) \qquad b = \lceil n/p \rceil$

Butterflies B_k with $k \leq n/p$ are local

Cyclic distribution

$$x_i \to P(i \operatorname{mod} p)$$

HIGA<u>N ENGINEERING</u>

Butterflies B_k with $k \ge 2p$ are local

\rightarrow Strategy: start with block distribution, finish with cyclic

$$n = 10$$

When too many processors are available, p>n/p, we need the

Group-Cyclic distribution

R. H. Bisseling, Parallel Scientific Computation. Oxford University Press, 2004.

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Algorithm - one-dimensional parallel FFT

input: \mathbf{x} : vector of length $n = 2^m$, $m \ge 1$, $\mathbf{x} = \mathbf{x}_0$, distr(\mathbf{x}) = cyclic over $p = 2^q$ processors with $0 \le q < m$. output: \mathbf{x} : vector of length n, distr(\mathbf{x}) = cyclic, such that $\mathbf{x} = F_n \mathbf{x}_0$. bitrev(x(s: p: n-1), n/p); { $distr(\mathbf{x}) = block$ with bit-reversed processor numbering } k := 2;c := 1;rev := true;while $k \leq n$ do (0) $j_0 := s \mod c;$ $j_2 := s \operatorname{div} c;$ while $k \leq \frac{n}{p}c$ do $nblocks := \frac{nc}{kp};$ for $r := j_2 \cdot nblocks$ to $(j_2 + 1) \cdot nblocks - 1$ do { Compute local part of x(rk: (r+1)k-1) } for $j := j_0$ to $\frac{k}{2} - 1$ step c do $\tau := \omega_k^j x_{rk+j+k/2};$ $x_{rk+j+k/2} := x_{rk+j} - \tau;$ $x_{rk+j} := x_{rk+j} + \tau;$ k := 2k;if c < p then $c_0 := c;$ $c := \min(\frac{n}{p}c, p);$ redistr($\mathbf{x}, n, p, c_0, c, rev$); (1)rev := false; $\{ \operatorname{distr}(\mathbf{x}) = \operatorname{group-cyclic} \operatorname{with} \operatorname{cycle} c \}$

R. H. Bisseling, Parallel Scientific Computation. Oxford University Press, 2004.

Implementation in HOOMD-blue 2.0 - md.charge.pppm()

- Local Butterflies are optimized using NVIDIA CUFFT on GPU
- Vector-Radix for n-d transforms
- Group-cyclic redistribution using MPI_Alltoallv()
- Implemented in dfftlib (http://github.com/jglaser/dfftlib)
- currently only single precision

Protein aggregation benchmark Martini FF w/long-range PPPM, no solvent

MICHIGAN ENGINEERING

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

PM force computation w/communication

Pairwise distance constraints

Constraint equation
$$\chi_n(t) \equiv \mathbf{r}_n^2(t) - \mathbf{d}_n^2 = 0$$
 $(n = 1 - N)$
 $\mathbf{r}_n(t) \equiv \mathbf{x}_i(t) - \mathbf{x}_j(t).$
Constraint force $f_i^c(t) = \frac{1}{2} \sum_{n=1}^N \lambda_n(t) \nabla_{r_i(t)} \chi_n(t) = \sum_{n=1}^N \lambda_n(t) \mathbf{r}_i(t).$
Iterative SHAKE: $\chi_n(t + \Delta t) + O(\varepsilon) = 0.$
Non-Iterative Matrix Method: $\chi_n(t + \Delta t) + O(\Delta t^4) = 0$

Linear matrix equation due to coupled constraints (combine with Velocity-Verlet):

$$\chi_n(t+2\Delta t) + O(\Delta t^4) = \mathbf{q}_n^2(t+\Delta t) - \mathbf{d}_n^2 + 2\mathbf{q}_n(t+\Delta t) \cdot \ddot{\mathbf{r}}(t+\Delta t)\Delta t^2 = 0,$$

$$\mathbf{q}_n(t+\Delta t) \equiv \mathbf{r}_n(t+\Delta t) + \dot{\mathbf{r}}_n(t+\Delta t/2)\Delta t.$$

 M. Yoneya, H. J. C. Berendsen, and K. Hirasawa, "A Non-Iterative Matrix Method for Constraint Molecular Dynamics Simulations," Mol. Simul., vol. 13, no. 6, pp. 395–405, 1994.

[2] M. Yoneya, "A Generalized Non-iterative Matrix Method for Constraint Molecular Dynamics Simulations," J. Comput. Phys., vol. 172, no. 1, pp. 188–197, Sep. 2001.

Distance

Sparse matrix refactorization - md.constrain.distance()

At every time step, solve for the forces $M \lambda = v$

M: constraint topology matrix

 λ : vector of Lagrange multipliers

M is sparse and the location of non-zeros in **M** does not change

 \rightarrow Solve on GPU using sparse QR refactorization with cuSolverRfRefactor() (available with CUDA Toolkit version \ge 7.5)

Protein aggregation benchmark

The Glotzer Group

MPI implementation: dynamically update ghost layer width to include largest constraint cluster

MICHIGAN ENGINEERING

Composite bodies - md.constrain.rigid()

In HOOMD 2.0, composite body positions and orientations are tracked through their central particles Central particles the same integrators

Central particles the same integrators (md.integrate.*) with non-rigid particles

particle id

$\mathbf{0}$ 2 3 4 5 6 7 8 9 0

nonrigid particle

central particle of body 0 (body id 0)

constituent particles of body 0 (ascending order)

central particle of body 1 (body id 6)

constituent particles of body 1

nonrigid particle

Integrate step two

The central particle determines the positions of the the constituent particles

Ghost layer must be wide enough to ensure that *all* constituent particles are communicated whenever a part of the rigid body is within the interaction range

Example for constrain.rigid()

```
from hoomd import *
from hoomd import md
context.initialize()
# create rigid spherocylinders out of two particles (not including the central particle)
len cyl = 2.5
n bead = 5
uc = lattice.unitcell(N = 2, a1 = [4,0,0], a2 = [0,4,0], a3 = [0,0,len_cyl+4], position = [[0,0,0], [1,1,0]],
                      type name = ['A', 'B'])
system = init.create lattice(unitcell=uc, n=[8,8,4])
for p in system.particles:
   p.moment_inertia = (.5, .5, 1)
# create constituent particle types
system.particles.types.add('A const')
system.particles.types.add('B_const')
md.integrate.mode_standard(dt=0.001)
# central particles
lj = md.pair.lj(r_cut=False,nlist=md.nlist.cell())
lj.pair_coeff.set(['A', 'B'], system.particles.types, epsilon=1.0, sigma=1.0, r_cut=2.5)
# constituent particle coefficients
lj.pair coeff.set('A const', 'A const', epsilon=1.0, sigma=1.0, r cut=2**(1./6.))
lj.pair coeff.set('B const', 'B const', epsilon=1.0, sigma=1.0, r cut=2**(1./6.))
lj.pair_coeff.set('A_const', 'B_const', epsilon=1.0, sigma=1.0, r_cut=2.5)
                                                                                              Oppositely charged rigid rods
rigid = md.constrain.rigid()
rigid.set_param('A', types=['A_const']*n_bead, positions=[(0,0,-len_cyl/2+i*len_cyl/n_bead) for i in range(n_bead)])
rigid.set_param('B', types=['B_const']*n_bead, positions=[(0,0,-len_cyl/2+i*len_cyl/n_bead) for i in range(n_bead)])
# create the constituent particles
rigid.create bodies()
center = group.rigid center()
langevin = md.integrate.langevin(group=center,kT=1.0,seed=123)
langevin.set gamma('A',2.0)
langevin.set_gamma('B',2.0)
run(1e7)
```


HPMC Dodecahedron benchmark

http://www.nvidia.com/object/tesla-p100.html

- HOOMD-blue is flexible, python-based and optimized for latest GPU generations, all major features available with MPI
- In HOOMD-blue 2.0, PPPM electrostatics, distance constraints and rigid body constraints are supported in multi-GPU configuration
- Targeted for large-scale biomolecular self-assembly

Acknowledgments

ARO # W911NF-15-1-0185

