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Wilkes
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• (Still)	Biggest	GPU	system	in	UK	public	sector

• 3631.70	MFlops/W,	#2	Green500,	June	'14		

• 128	nodes	DELL	T620

• two	Intel	Ivy	Bridge	E5-2630	v2	@	2.60GHz		(12	
cores	in	total)

• two	Mellanox	Connect-IB

• two	NVIDIA	K20c

• (Still)	Flexible	and	effective	Testing	&	Development	
platform!



Programming	heterogeneous	systems

• Many	GPU-based	flagship	systems	of	the	near	future	will	exhibit	fat	GPU	node	
architectures

• Established	hybrid	programming	model	MPI+CUDA	will	continue	to	exist

• CPUs	are	getting	faster	due	to	larger	caches	and	wider	vector	registers.	These	
strengths	that	should	not	be	neglected,	it	still	has	a	role	to	play

• CPU	can	be	still	used	as	a	processing	unit	in	addition	to	the	GPU,	resulting	in	
increased	performance

• Overlapping	the	various	data	exchanges	with	computation	is	a	key	component	
in	developing	efficient	and	scalable	implementations	
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Case	study:	7-point	3D	laplace	stencil	code	

• Well-known	case	study	(plus	many	scientific	codes	are	known	to	be	memory	bound!)

• Simple	model	suggest	that	a	reasonable	workload	division	ratio	between	the	CPU	and	
the	GPU	

• Simple	application	with	high	communication-to-computation	ratio	makes	it	well	suited	
for	investigating	the	effect	of	different	data	movement	strategies

Objective:

• Investigate	whether	CPU-avoiding	GPU↔	GPU inter-node	transfers	can	alleviate	the	
pressure	on	the	CPU	in	a	concurrent	CPU+GPU	implementation

• Quantify	the	impact	of	CPU-avoiding	inter-node	GPU↔GPU	transfers	using	GPUDirect
RDMA	
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Implementation

• Sub-domains	equal	to	number	of	GPU,	each	sub-domain	is	assigned	to	a	MPI	process

• Computing	workload	ration	GPU/CPU	(no	silver-bullet	but	we	can	get	close)

• Overhead	of	various	intra-node	and	inter-node	data	exchanges	should	be	masked

• amaster	thread	is	dedicated	to	handling	all	the	MPI	calls,	which	may	concern	both	inter-node	
CPU	↔	CPU	and	inter-node	GPU	↔	GPU	data	exchanges	(non-blocking	fashion).	Also	
responsible	for	intra-node	CPU	↔	GPU	data	exchanges	(async		memcpy)

• The	remaining	threads	computes	CPU’s	halo	boundaries,	such	that	these	can	be	finished	as	
soon	as	possible,	consequently	initiating	the	CPU	↔	CPU	and	CPU	↔	GPU	data	exchanges
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Workload	division	within	a	MPI	domain
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Optimization	details

CPU

• Pencil-shaped	cache	blocking	along	the	Y	direction,	in	combination	with	non-temporal	
store	instructions	

GPU

• Good	single-GPU	performance	(78%	of	peak	attainable)	by	using	pipelined	wave-front	
technique	which	introduces	a	for-loop	to	compute	values	in	Z	direction	column-wise	

• The	performance	was	further	enhanced	using	the	GPU’s	read-only	cache	and	GPUs	
constant	memory

MPI

• Computation	and	communication	are	overlapped	since	the	computation	of	interior	
points	is	decoupled	from	the	computation	of	the	halo	boundary	points
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Experiments	setup

SW	stack

• MVAPICH2-GDR	v2.2

• Intel	15

• CUDA	SDK	7.0

• MOFED	2.4	+	GDR	libs

Experiments	performed

• Weak	scaling	(fixed	the	sub-domain	problem	size	at	512	× 512	× 512	),	one	GPU	and	
two	GPU	per	node	using	different	CPU	workload	ratio	(15%	and	5%)	

• Strong	scaling	(overall	problem	size	was	set	to	512	× 512	× 1024),	one	GPU	and	two	
GPU	per	node	using	best	workload	ratio	measured
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Weak	Scaling
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“GPU-generated”	MPI	message	size	under	our	weak	scaling	experiments	is	approximately	2MB.	The	
chunking	of	the	messages	(for	pipelining)	also	puts	some	load	on	the	CPU.



Strong	scaling
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Impact	of	GDR	is	on	average	bigger	compared	to	the	weak	scaling	experiments	most	likely	linked	to	
the	fact	that	the	MPI	messages	become	smaller.	Intra-node	communication	plays	a	more	important	
role	as	opposed	to	when	only	one	GPU	per	node	is	used.



Personal takeaways …

• GDR	is	well-suited	in	applications	where	latency	is	crucial	or	for	strong	scaling	with	
small	problem	sizes

• Even	at	large	message	sizes	(e.g.	2	Mbytes),	MVAPICH	implementation	handles	better	
GPU	↔	GPU	transfers	than	explicit	programming

• CUDA-aware	MPI	programming	needs	less	code

• 737	originally,	with	GDR	643	à reduction	of	12.75%

• GDR	performance	sometimes	are	not	exceptional	but	it	is	always	worth	using	it

• GDR	frees	the	CPU	to	do	something	else… but	it	is	not	perfect
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GDR-as-a-service

Commitments

• Provide	latest	cutting-edge	CUDA	software	stack

• Provide	set	of	script	to	handle	GPU	binding	and	dual-rail	binding	for	various	
MPI	flavors

• Provide	optimal	pre-defined	environment	settings

Challenges

• I	need	to	bother	Khaled	every	time	I	need	a	new	build	of	GDR	J

• Make	sure	people	are	using	the	latest	and	use	scripts	correctly
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Beyond	Wilkes

Cambridge	HPC	is	a	Tier-2	facility

• Explosion	of	new	users	in	the	Long	Tail	of	Science

• Diverse	work-loads	(non-parallel	single/multi	GPU,	ML/DL)

• Scaling	is	overrated

Wilkes	2.0	(in	progress)

• NVIDIA	Pascal	GPU	on	PCIe,	GPU:CPU	4:1	(likely)	or	2:2	design

• Mellanox EDR	and	GDR-enabled	node	design

• 3x	current	(sustained)	performance	target
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