
Lessons	learnt	using	
GPU	Direct	over	RDMA
Filippo	SPIGA1,2 <fs395@cam.ac.uk>

1	Head	Research	Software	Engineering,	Research	Computing	Services,	University	of	Cambridge
2	Quantum	ESPRESSO	Foundation



Wilkes

2

• (Still)	Biggest	GPU	system	in	UK	public	sector

• 3631.70	MFlops/W,	#2	Green500,	June	'14		

• 128	nodes	DELL	T620

• two	Intel	Ivy	Bridge	E5-2630	v2	@	2.60GHz		(12	
cores	in	total)

• two	Mellanox	Connect-IB

• two	NVIDIA	K20c

• (Still)	Flexible	and	effective	Testing	&	Development	
platform!



Programming	heterogeneous	systems

• Many	GPU-based	flagship	systems	of	the	near	future	will	exhibit	fat	GPU	node	
architectures

• Established	hybrid	programming	model	MPI+CUDA	will	continue	to	exist

• CPUs	are	getting	faster	due	to	larger	caches	and	wider	vector	registers.	These	
strengths	that	should	not	be	neglected,	it	still	has	a	role	to	play

• CPU	can	be	still	used	as	a	processing	unit	in	addition	to	the	GPU,	resulting	in	
increased	performance

• Overlapping	the	various	data	exchanges	with	computation	is	a	key	component	
in	developing	efficient	and	scalable	implementations	

3



Case	study:	7-point	3D	laplace	stencil	code	

• Well-known	case	study	(plus	many	scientific	codes	are	known	to	be	memory	bound!)

• Simple	model	suggest	that	a	reasonable	workload	division	ratio	between	the	CPU	and	
the	GPU	

• Simple	application	with	high	communication-to-computation	ratio	makes	it	well	suited	
for	investigating	the	effect	of	different	data	movement	strategies

Objective:

• Investigate	whether	CPU-avoiding	GPU↔	GPU inter-node	transfers	can	alleviate	the	
pressure	on	the	CPU	in	a	concurrent	CPU+GPU	implementation

• Quantify	the	impact	of	CPU-avoiding	inter-node	GPU↔GPU	transfers	using	GPUDirect
RDMA	

4



Implementation

• Sub-domains	equal	to	number	of	GPU,	each	sub-domain	is	assigned	to	a	MPI	process

• Computing	workload	ration	GPU/CPU	(no	silver-bullet	but	we	can	get	close)

• Overhead	of	various	intra-node	and	inter-node	data	exchanges	should	be	masked

• amaster	thread	is	dedicated	to	handling	all	the	MPI	calls,	which	may	concern	both	inter-node	
CPU	↔	CPU	and	inter-node	GPU	↔	GPU	data	exchanges	(non-blocking	fashion).	Also	
responsible	for	intra-node	CPU	↔	GPU	data	exchanges	(async		memcpy)

• The	remaining	threads	computes	CPU’s	halo	boundaries,	such	that	these	can	be	finished	as	
soon	as	possible,	consequently	initiating	the	CPU	↔	CPU	and	CPU	↔	GPU	data	exchanges

5



Workload	division	within	a	MPI	domain

6



Optimization	details

CPU

• Pencil-shaped	cache	blocking	along	the	Y	direction,	in	combination	with	non-temporal	
store	instructions	

GPU

• Good	single-GPU	performance	(78%	of	peak	attainable)	by	using	pipelined	wave-front	
technique	which	introduces	a	for-loop	to	compute	values	in	Z	direction	column-wise	

• The	performance	was	further	enhanced	using	the	GPU’s	read-only	cache	and	GPUs	
constant	memory

MPI

• Computation	and	communication	are	overlapped	since	the	computation	of	interior	
points	is	decoupled	from	the	computation	of	the	halo	boundary	points

7



Experiments	setup

SW	stack

• MVAPICH2-GDR	v2.2

• Intel	15

• CUDA	SDK	7.0

• MOFED	2.4	+	GDR	libs

Experiments	performed

• Weak	scaling	(fixed	the	sub-domain	problem	size	at	512	× 512	× 512	),	one	GPU	and	
two	GPU	per	node	using	different	CPU	workload	ratio	(15%	and	5%)	

• Strong	scaling	(overall	problem	size	was	set	to	512	× 512	× 1024),	one	GPU	and	two	
GPU	per	node	using	best	workload	ratio	measured

8



Weak	Scaling

9

“GPU-generated”	MPI	message	size	under	our	weak	scaling	experiments	is	approximately	2MB.	The	
chunking	of	the	messages	(for	pipelining)	also	puts	some	load	on	the	CPU.



Strong	scaling

10

Impact	of	GDR	is	on	average	bigger	compared	to	the	weak	scaling	experiments	most	likely	linked	to	
the	fact	that	the	MPI	messages	become	smaller.	Intra-node	communication	plays	a	more	important	
role	as	opposed	to	when	only	one	GPU	per	node	is	used.



Personal takeaways …

• GDR	is	well-suited	in	applications	where	latency	is	crucial	or	for	strong	scaling	with	
small	problem	sizes

• Even	at	large	message	sizes	(e.g.	2	Mbytes),	MVAPICH	implementation	handles	better	
GPU	↔	GPU	transfers	than	explicit	programming

• CUDA-aware	MPI	programming	needs	less	code

• 737	originally,	with	GDR	643	à reduction	of	12.75%

• GDR	performance	sometimes	are	not	exceptional	but	it	is	always	worth	using	it

• GDR	frees	the	CPU	to	do	something	else… but	it	is	not	perfect

11



GDR-as-a-service

Commitments

• Provide	latest	cutting-edge	CUDA	software	stack

• Provide	set	of	script	to	handle	GPU	binding	and	dual-rail	binding	for	various	
MPI	flavors

• Provide	optimal	pre-defined	environment	settings

Challenges

• I	need	to	bother	Khaled	every	time	I	need	a	new	build	of	GDR	J

• Make	sure	people	are	using	the	latest	and	use	scripts	correctly

12



Beyond	Wilkes

Cambridge	HPC	is	a	Tier-2	facility

• Explosion	of	new	users	in	the	Long	Tail	of	Science

• Diverse	work-loads	(non-parallel	single/multi	GPU,	ML/DL)

• Scaling	is	overrated

Wilkes	2.0	(in	progress)

• NVIDIA	Pascal	GPU	on	PCIe,	GPU:CPU	4:1	(likely)	or	2:2	design

• Mellanox EDR	and	GDR-enabled	node	design

• 3x	current	(sustained)	performance	target

13



Acknowledgments

• Dr	Mohammed	Sourouri,	NTNU	and	Simula	Research	Lab	(Norway)

• MVAPICH	team

• NVIDIA	“GDR”	team

• Mellanox	“HPC	R&D”	team

14



CPU+GPU	Programming	of	Stencil	Computations	for	Resource-Efficient	Use	of	GPU	Clusters
M.	Sourouri,	J.	Langguth,	F.	Spiga,	S.	B.	Baden,	X.	Cai
2015	IEEE	18th	International	Conference	on	Computational	Science	and	Engineering	(CSE’15)

On	hybrid	MPI+CUDA+OpenMP	programming	and	concurrent	CPU+GPU	computations
M.	Sourouri,	J.	Langguth,	F.	Spiga,	S.	B.	Baden,	X.	Cai
Concurrency	and	Computation:	Practice	and	Experience	(submitted)

THANK	YOU	FOR	YOU	ATTENTION


