
T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016

Thomas C. Schulthess

1

Exascale Computing:  
What are the Goal and Baseline?
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One of the drivers in U.S. scientific computing: the 
National Strategic Computing Initiative
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Executive Order (7/29/2015) Goal: Sustain/enhance U.S. leadership in HPC technology and use

How: 
1. Use HPC for economic competitiveness and scientific discovery 
2. Foster public-private collaboration (all industry, not just vendors) 
3. Use a whole-of-government approach (inter-agency collaboration) 
4. Move HPC research into production settings

Strategic objectives: 
1. Accelerating delivery of a capable exascale computing system across a range of apps. rep. gov. needs 
2. Increasing coherence between modelling and simulation and that used for data analytic computing 
3. Establishing, over the next 15 years, a viable path forward for HPC systems even beyond limits of CMOS 
4. Increasing the capacity and capability of an enduring national HPC ecosystem 
5. Developing an enduring public-private collaboration

Lead agencies: 
DOE – exascale computing program to support simulations & analytics 
NSF – HPC ecosystem for science; workforce development 
DOD – focus on advanced analytics in support of its mission

this summary by: Steve Conway, IDC
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What exactly is our metric for exascale computing?

• Today, the fastest supercomputers sustain 20-100 petaflops on HPL 

• Thus, a sustained exaflops would be a factor 10-50 away from today’s fastest 
supercomputer 

• There is a questions about productivity of these fastest systems 

• Thus, let’s be conservative an agree on exascale computing being a factor 100 more 
in sustained application performance over today’s (2016) best capabilities
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Ax = bLinpack benchmark solves:

for the historic development of supercomputing performance, see www.top500.org

1st application at > 1 TFLOP/s sustained

1st application at > 1 PFLOP/s sustained

1,000-fold performance improvement in per decade

http://www.top500.org
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“only” 100-fold performance improvement for climate codes
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Source: Peter Bauer, ECMWF
5
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Has efficiency of climate codes 
dropped 10-fold every decade decade?
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Application performance must be factored into 
the metric for supercomputing at exascale
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source: http://www.ecmwf.int/en/about/media-centre/news/2013/ecmwf-forecast-data-hurricane-sandy-available-researchers

http://www.ecmwf.int/en/about/media-centre/news/2013/ecmwf-forecast-data-hurricane-sandy-available-researchers
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source: http://www.ecmwf.int/en/about/media-centre/news/2013/ecmwf-forecast-data-hurricane-sandy-available-researchers

http://www.ecmwf.int/en/about/media-centre/news/2013/ecmwf-forecast-data-hurricane-sandy-available-researchers
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Predictive skill: weather
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We need both,  
capability and throughput!
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Goal: study climate extremes at km-scale resolution
• Severe weather prediction: simulate o(1-10 days) 
• Seasonal weather / climate prediction: simulate o(1 year) 

• agriculture 
• health 
• hydrological 

• Multi-decadal prediction for climate adaptation: simulate o(10-100 years) 
• Global prediction for informing mitigation policy: simulate o(100-1000 years) 
• Geoengineering: simulate o(100-1000 years) 
• Attribution of extreme weather events

Adapting to climate change in developing countries could rise to between $280 and $500 billion p.a. by 2050

UN Adaptation Gap Report of 2016

HPC capability: time compression = (simulated time) / (wall clock time)

Tim Palmer, Oxford
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1km-scale global simulations at exascale*?

• Today: 1km regional (refactored) models run at time compression ~100 
• If we could implement a global model with same efficiency, we can weak-scale to globe 
• Beyond weak scaling we will need; 

• time compression ~1,000 for climate model in production 
• time compression ~10,000 for spin up of coupled model 

• We need to accelerate the computation by 100x compared to present day 
simulations

*Exascale here is used for the timeline: DOE plans to deliver exascale supercomputers in 2023

What is the baseline for today’s sustained performance?
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Today’s Outlook: GPU-accelerated Weather Forecasting
John Russell
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COnsortium for Small-scale Modelling (COSMO)
• Limited area model (www.cosmo-model.org) 
• Used by 7 weather services and >70 research groups in academia 
• Runs on many different hardware platforms! 
• Very well managed consortium, in my opinion

http://www.cosmo-model.org
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Meteo Swiss production suite until March 30, 2016
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ECMWF  
4x per day 
16 km lateral grid, 91 
layers

COSMO-7  
3x per day 72h forecast 
6.6 km lateral grid, 60 layers

COSMO-2 
8x per day 33h forecast 
2.2 km lateral grid, 60 
layers

Some of the products generate from these simulations: 
‣ Daily weather forecast on TV / radio 
‣ Forecasting for air traffic control (Sky Guide) 
‣ Safety management in event of nuclear incidents
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Higher resolution is necessary for quantitative 
agreement wth experiment
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source: Oliver Fuhrer, MeteoSwiss

 COSMO-2 COSMO-1

Altdorf (Reuss valley) Lodrino (Leventina)

(18 days for July 9-27, 2006)
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Prognostic uncertainty
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The weather system is chaotic 
 ! rapid growth of small perturbations (butterfly effect)

Prognostic timeframeStart

Ensemble method: compute distribution over many simulations 
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Benefit of ensemble forecast
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Adelboden

reliable?

(heavy thunderstorms on July 24, 2015)

source: Oliver Fuhrer, MeteoSwiss
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Benefit of ensemble forecast
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(heavy thunderstorms on July 24, 2015)

Adelboden

source: Oliver Fuhrer, MeteoSwiss
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Improving simulation quality requires higher 
performance – what exactly and how much?
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Resource determining factors for Meteo Swiss’ simulations 

COSMO-2: 24h forecast running in 30 min.  
                   8x per day

COSMO-1: 24h forecast running in 30 min.  
                   8x per day (~10x COSMO-2)

COSMO-2E: 21-member ensemble,120h forecast 
                     in 150 min., 2x per day (~26x COSMO-2)

KENDA: 40-member ensemble,1h forecast 
               in 15 min., 24x per day (~5x COSMO-2)

Operational model through March 2016 New model starting operation in April 2016

New production system must deliver 
~40x the simulations performance 

of “Albis” and “Lema”
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• New system needs to be installed Q2-3/2015 

• Assuming 2x improvement in per-socket performance: 
~20x more X86 sockets would require 30 Cray XC cabinets

Current Cray XC30/XC40 platform  
(space for 40 racks XC)

New system for Meteo Swiss if we 
build it like the German Weather 
Service (DWD) did theirs, or UK Met 
Office, or ECMWF … (30 racks XC)

Albis & Lema: 3 cabinets Cray XE6 installed Q2/2012

Thinking inside the box is not a good option!
CSCS machine room

24

State of the art implementation 
of new system for MeteoSwiss
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COSMO: the model Meteo Swiss uses
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velocities

pressure

temperature

water

turbulence

physics et al.  
tendencies water adv.horizontal adv.3x1x

Timestep explicit (leapfrog)implicit (sparse solver)explicit (RK3)implicit (sparse)

fast wave solver~10xvertical adv.
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COSMO: the code behind the Meteo Swiss model
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% Code Lines (F90)

‣monolithic Fortran 90 code 
‣ 250,000 lines of code
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Physical model

Algorithmic description

Compilation

Computer

Imperative code
lap(i,j,k) = –4.0 * data(i,j,k) +
    data(i+1,j,k) + data(i-1,j,k) + 
    data(i,j+1,k) + data(i,j-1,k);

Domain science & applied mathematics

Computer engineering 
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COMMENTARY | FOCUS

Whereas this long-term sustained 
exponential growth had profound impact 
on the productivity of scientists and opened 
many new avenues in physics research, 
not all types of problems in scientific 
computing have seen the same performance 
improvements. For example, the sustained 
performance of climate codes, as documented 
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over 
approximately the same period as the 
Top500 project, has improved only by 
a factor of 100 per decade (Peter Bauer, 
manuscript in preparation). This is still an 
exponential growth, but it demonstrates 
the significant decrease in efficiency for 
software applications in some fields. This 
is more important, as meteorological and 
climate simulations have been around since 
the dawn of modern computing1. They rely 
on complex, but typically well-engineered 
computer codes that have been designed to 
run on the top supercomputing systems. If 
experts use computers inefficiently, what does 
this say about the applications developed by 
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in 
physics today. I try to analyse the challenges 
in writing efficient scientific software and 
examine possible ways in which physicists 
can deal with the rapidly increasing 
complexity of computer architectures. To do 
so it is important to first recall the main uses 
of computing in physics.

Imperative code

Compilation

Physical modelMathematical description

Algorithmic description

Computer

Domain science and applied mathematics

Computer engineering
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Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance) 
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations), 
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented 
in a program (for example, stencil code), and subsequently compiled into machine code that executes 
on a canonical computer architecture. The green line marks the separation of work. The physical 
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright, 
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern 
computing, modelling and simulation 
were used in physics in two ways. The 
first and best known (which we call the 
traditional way) is the use of computers 
to solve challenging theoretical problems 
that have no known analytical solution. 
In this case, the theory is well understood 
and the governing equations are solved 
numerically with elaborate computational 
methods to make quantitative and verifiable 
predictions. Sometimes the numerical 
solution of a theoretical problem may lead 
to new insights in its own right, as was the 
case with the discovery of the fluctuation 
theorem2. This was an argument for defining 
computer simulations as a third, independent 
pillar of science, complementing theory 
and experiment3. For our purpose, this 
distinction is not necessary, as from a 
computational point of view we are still 
solving known equations. The simulations are 
carefully planned — that is, the mathematical 
analysis and algorithms are well known and 
the elaborate computer codes, as in the case 
of climate simulations, have been developed 
and optimized. Scientists, and physicists 
in particular, will not shy away from great 
efforts in using cutting-edge technologies 
to solve such problems, and they will use 
imperative programming languages such as 
C or FORTRAN with machine-level codes to 
squeeze every last bit of performance out of a 
computing system.

The second, and profoundly different, use 
is the analysis of experimental data with the 
help of modelling and simulations before the 
theory and governing equations are known. 
This is essentially what Johannes Kepler did 
when he analysed Tycho Brahe’s planetary 
orbit data with heliocentric elliptical models 
to discover the three famous laws that 
now carry his name — Newton’s theory 
of gravitation, which explains Kepler’s 
laws, came later. Scientists today use 
computers to rapidly prototype models, 
thereby assimilating in a matter of seconds 
or minutes many orders of magnitude 
more data than Kepler did in months of 
laborious manual computations. Along with 
the development of electronic computing 
came large experimental facilities, which 
significantly increased the importance of 
systematic exploratory tools for data analysis. 
This lead to a substantial improvement of 
mathematical algorithms over the past few 
decades, which, together with the emergence 
of social media on the World Wide Web, 
have made this exploratory use relevant 
to areas outside of natural sciences, for 
instance in economics and social sciences. 
These have, in turn, led to the argument that 
a fundamentally new, fourth paradigm of 
science is emerging: ‘data science’3. For our 
present purpose, however, this distinction 
is again not necessarily important. But, for 
this second exploratory use of modelling and 
simulation scientists use more descriptive 
programming languages like Python or 
Ruby, and they rely on existing libraries even 
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary 
purposes: one is to specify the computation 
and the other is to manage computer 
resources. Most scientists are familiar with 
the former, whereas the latter is considered 
to be primarily the concern of computer 
engineers. The distinction is important as 
it allows a clear separation of concerns: 
scientists only need to know about the 
complexity of models and mathematics, and 
system engineers only need to focus on the 
complexity of the computer.

In this ideal case, the programming 
environment allows scientists to specify 
the computational tasks in terms of 
human-readable equations — descriptive 
programming — that are independent of the 
underlying system, which is portable across 
many platforms. The Python programming 
language, with its many associated libraries 
and tools, provides such an environment, 
but at the cost of performance. When the 
computation is big and has to be scaled, 
performance does matter. In this case 
scientists have the choice of algorithms 

© 2015 Macmillan Publishers Limited. All rights reserved

Mathematical description

Schulthess, Nature Physics, vol 11, 369-373 (2015)
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Imperative code

Compilation

Computer

Domain science & applied mathematics

Computer engineering 

Physical model

Mathematical description

Algorithmic description

Schulthess, Nature Physics, vol 11, 369-373 (2015)
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Physical model

Mathematical description

Algorithmic description

Imperative code

Compilation

Computer

Domain science & applied mathematics

Computer engineering 
Schulthess, Nature Physics, vol 11, 369-373 (2015)
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Imperative code

Compilation

Computer

Domain science & applied mathematics

Computer engineering 

Physical model

Mathematical description

H = −t
∑

⟨ij⟩,σ

c†iσcjσ + U
∑

i

ni↑ni↓

Algorithmic description
Gc({si, l}k+1) = Gc({si, l}0) + [a0|a1|...|ak] × [b0|b1|...|bk]t

Gc({si, l}k+1) = Gc({si, l}k) + ak × b
t
k
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Schulthess, Nature Physics, vol 11, 369-373 (2015)
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Physical model

Algorithmic description

Compilation

Computer

Imperative code
lap(i,j,k) = –4.0 * data(i,j,k) +
    data(i+1,j,k) + data(i-1,j,k) + 
    data(i,j+1,k) + data(i,j-1,k);
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Computer engineering 
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Whereas this long-term sustained 
exponential growth had profound impact 
on the productivity of scientists and opened 
many new avenues in physics research, 
not all types of problems in scientific 
computing have seen the same performance 
improvements. For example, the sustained 
performance of climate codes, as documented 
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over 
approximately the same period as the 
Top500 project, has improved only by 
a factor of 100 per decade (Peter Bauer, 
manuscript in preparation). This is still an 
exponential growth, but it demonstrates 
the significant decrease in efficiency for 
software applications in some fields. This 
is more important, as meteorological and 
climate simulations have been around since 
the dawn of modern computing1. They rely 
on complex, but typically well-engineered 
computer codes that have been designed to 
run on the top supercomputing systems. If 
experts use computers inefficiently, what does 
this say about the applications developed by 
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in 
physics today. I try to analyse the challenges 
in writing efficient scientific software and 
examine possible ways in which physicists 
can deal with the rapidly increasing 
complexity of computer architectures. To do 
so it is important to first recall the main uses 
of computing in physics.
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Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance) 
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations), 
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented 
in a program (for example, stencil code), and subsequently compiled into machine code that executes 
on a canonical computer architecture. The green line marks the separation of work. The physical 
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright, 
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern 
computing, modelling and simulation 
were used in physics in two ways. The 
first and best known (which we call the 
traditional way) is the use of computers 
to solve challenging theoretical problems 
that have no known analytical solution. 
In this case, the theory is well understood 
and the governing equations are solved 
numerically with elaborate computational 
methods to make quantitative and verifiable 
predictions. Sometimes the numerical 
solution of a theoretical problem may lead 
to new insights in its own right, as was the 
case with the discovery of the fluctuation 
theorem2. This was an argument for defining 
computer simulations as a third, independent 
pillar of science, complementing theory 
and experiment3. For our purpose, this 
distinction is not necessary, as from a 
computational point of view we are still 
solving known equations. The simulations are 
carefully planned — that is, the mathematical 
analysis and algorithms are well known and 
the elaborate computer codes, as in the case 
of climate simulations, have been developed 
and optimized. Scientists, and physicists 
in particular, will not shy away from great 
efforts in using cutting-edge technologies 
to solve such problems, and they will use 
imperative programming languages such as 
C or FORTRAN with machine-level codes to 
squeeze every last bit of performance out of a 
computing system.

The second, and profoundly different, use 
is the analysis of experimental data with the 
help of modelling and simulations before the 
theory and governing equations are known. 
This is essentially what Johannes Kepler did 
when he analysed Tycho Brahe’s planetary 
orbit data with heliocentric elliptical models 
to discover the three famous laws that 
now carry his name — Newton’s theory 
of gravitation, which explains Kepler’s 
laws, came later. Scientists today use 
computers to rapidly prototype models, 
thereby assimilating in a matter of seconds 
or minutes many orders of magnitude 
more data than Kepler did in months of 
laborious manual computations. Along with 
the development of electronic computing 
came large experimental facilities, which 
significantly increased the importance of 
systematic exploratory tools for data analysis. 
This lead to a substantial improvement of 
mathematical algorithms over the past few 
decades, which, together with the emergence 
of social media on the World Wide Web, 
have made this exploratory use relevant 
to areas outside of natural sciences, for 
instance in economics and social sciences. 
These have, in turn, led to the argument that 
a fundamentally new, fourth paradigm of 
science is emerging: ‘data science’3. For our 
present purpose, however, this distinction 
is again not necessarily important. But, for 
this second exploratory use of modelling and 
simulation scientists use more descriptive 
programming languages like Python or 
Ruby, and they rely on existing libraries even 
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary 
purposes: one is to specify the computation 
and the other is to manage computer 
resources. Most scientists are familiar with 
the former, whereas the latter is considered 
to be primarily the concern of computer 
engineers. The distinction is important as 
it allows a clear separation of concerns: 
scientists only need to know about the 
complexity of models and mathematics, and 
system engineers only need to focus on the 
complexity of the computer.

In this ideal case, the programming 
environment allows scientists to specify 
the computational tasks in terms of 
human-readable equations — descriptive 
programming — that are independent of the 
underlying system, which is portable across 
many platforms. The Python programming 
language, with its many associated libraries 
and tools, provides such an environment, 
but at the cost of performance. When the 
computation is big and has to be scaled, 
performance does matter. In this case 
scientists have the choice of algorithms 

© 2015 Macmillan Publishers Limited. All rights reserved
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this say about the applications developed by 
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is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations), 
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented 
in a program (for example, stencil code), and subsequently compiled into machine code that executes 
on a canonical computer architecture. The green line marks the separation of work. The physical 
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright, 
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern 
computing, modelling and simulation 
were used in physics in two ways. The 
first and best known (which we call the 
traditional way) is the use of computers 
to solve challenging theoretical problems 
that have no known analytical solution. 
In this case, the theory is well understood 
and the governing equations are solved 
numerically with elaborate computational 
methods to make quantitative and verifiable 
predictions. Sometimes the numerical 
solution of a theoretical problem may lead 
to new insights in its own right, as was the 
case with the discovery of the fluctuation 
theorem2. This was an argument for defining 
computer simulations as a third, independent 
pillar of science, complementing theory 
and experiment3. For our purpose, this 
distinction is not necessary, as from a 
computational point of view we are still 
solving known equations. The simulations are 
carefully planned — that is, the mathematical 
analysis and algorithms are well known and 
the elaborate computer codes, as in the case 
of climate simulations, have been developed 
and optimized. Scientists, and physicists 
in particular, will not shy away from great 
efforts in using cutting-edge technologies 
to solve such problems, and they will use 
imperative programming languages such as 
C or FORTRAN with machine-level codes to 
squeeze every last bit of performance out of a 
computing system.

The second, and profoundly different, use 
is the analysis of experimental data with the 
help of modelling and simulations before the 
theory and governing equations are known. 
This is essentially what Johannes Kepler did 
when he analysed Tycho Brahe’s planetary 
orbit data with heliocentric elliptical models 
to discover the three famous laws that 
now carry his name — Newton’s theory 
of gravitation, which explains Kepler’s 
laws, came later. Scientists today use 
computers to rapidly prototype models, 
thereby assimilating in a matter of seconds 
or minutes many orders of magnitude 
more data than Kepler did in months of 
laborious manual computations. Along with 
the development of electronic computing 
came large experimental facilities, which 
significantly increased the importance of 
systematic exploratory tools for data analysis. 
This lead to a substantial improvement of 
mathematical algorithms over the past few 
decades, which, together with the emergence 
of social media on the World Wide Web, 
have made this exploratory use relevant 
to areas outside of natural sciences, for 
instance in economics and social sciences. 
These have, in turn, led to the argument that 
a fundamentally new, fourth paradigm of 
science is emerging: ‘data science’3. For our 
present purpose, however, this distinction 
is again not necessarily important. But, for 
this second exploratory use of modelling and 
simulation scientists use more descriptive 
programming languages like Python or 
Ruby, and they rely on existing libraries even 
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary 
purposes: one is to specify the computation 
and the other is to manage computer 
resources. Most scientists are familiar with 
the former, whereas the latter is considered 
to be primarily the concern of computer 
engineers. The distinction is important as 
it allows a clear separation of concerns: 
scientists only need to know about the 
complexity of models and mathematics, and 
system engineers only need to focus on the 
complexity of the computer.

In this ideal case, the programming 
environment allows scientists to specify 
the computational tasks in terms of 
human-readable equations — descriptive 
programming — that are independent of the 
underlying system, which is portable across 
many platforms. The Python programming 
language, with its many associated libraries 
and tools, provides such an environment, 
but at the cost of performance. When the 
computation is big and has to be scaled, 
performance does matter. In this case 
scientists have the choice of algorithms 
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Imperative code

Compilation

lap(i,j,k) = –4.0 * data(i,j,k) +
    data(i+1,j,k) + data(i-1,j,k) + 
    data(i,j+1,k) + data(i,j-1,k);
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Whereas this long-term sustained 
exponential growth had profound impact 
on the productivity of scientists and opened 
many new avenues in physics research, 
not all types of problems in scientific 
computing have seen the same performance 
improvements. For example, the sustained 
performance of climate codes, as documented 
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over 
approximately the same period as the 
Top500 project, has improved only by 
a factor of 100 per decade (Peter Bauer, 
manuscript in preparation). This is still an 
exponential growth, but it demonstrates 
the significant decrease in efficiency for 
software applications in some fields. This 
is more important, as meteorological and 
climate simulations have been around since 
the dawn of modern computing1. They rely 
on complex, but typically well-engineered 
computer codes that have been designed to 
run on the top supercomputing systems. If 
experts use computers inefficiently, what does 
this say about the applications developed by 
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in 
physics today. I try to analyse the challenges 
in writing efficient scientific software and 
examine possible ways in which physicists 
can deal with the rapidly increasing 
complexity of computer architectures. To do 
so it is important to first recall the main uses 
of computing in physics.

Imperative code

Compilation

Physical modelMathematical description

Algorithmic description

Computer

Domain science and applied mathematics

Computer engineering
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Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance) 
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations), 
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented 
in a program (for example, stencil code), and subsequently compiled into machine code that executes 
on a canonical computer architecture. The green line marks the separation of work. The physical 
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright, 
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern 
computing, modelling and simulation 
were used in physics in two ways. The 
first and best known (which we call the 
traditional way) is the use of computers 
to solve challenging theoretical problems 
that have no known analytical solution. 
In this case, the theory is well understood 
and the governing equations are solved 
numerically with elaborate computational 
methods to make quantitative and verifiable 
predictions. Sometimes the numerical 
solution of a theoretical problem may lead 
to new insights in its own right, as was the 
case with the discovery of the fluctuation 
theorem2. This was an argument for defining 
computer simulations as a third, independent 
pillar of science, complementing theory 
and experiment3. For our purpose, this 
distinction is not necessary, as from a 
computational point of view we are still 
solving known equations. The simulations are 
carefully planned — that is, the mathematical 
analysis and algorithms are well known and 
the elaborate computer codes, as in the case 
of climate simulations, have been developed 
and optimized. Scientists, and physicists 
in particular, will not shy away from great 
efforts in using cutting-edge technologies 
to solve such problems, and they will use 
imperative programming languages such as 
C or FORTRAN with machine-level codes to 
squeeze every last bit of performance out of a 
computing system.

The second, and profoundly different, use 
is the analysis of experimental data with the 
help of modelling and simulations before the 
theory and governing equations are known. 
This is essentially what Johannes Kepler did 
when he analysed Tycho Brahe’s planetary 
orbit data with heliocentric elliptical models 
to discover the three famous laws that 
now carry his name — Newton’s theory 
of gravitation, which explains Kepler’s 
laws, came later. Scientists today use 
computers to rapidly prototype models, 
thereby assimilating in a matter of seconds 
or minutes many orders of magnitude 
more data than Kepler did in months of 
laborious manual computations. Along with 
the development of electronic computing 
came large experimental facilities, which 
significantly increased the importance of 
systematic exploratory tools for data analysis. 
This lead to a substantial improvement of 
mathematical algorithms over the past few 
decades, which, together with the emergence 
of social media on the World Wide Web, 
have made this exploratory use relevant 
to areas outside of natural sciences, for 
instance in economics and social sciences. 
These have, in turn, led to the argument that 
a fundamentally new, fourth paradigm of 
science is emerging: ‘data science’3. For our 
present purpose, however, this distinction 
is again not necessarily important. But, for 
this second exploratory use of modelling and 
simulation scientists use more descriptive 
programming languages like Python or 
Ruby, and they rely on existing libraries even 
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary 
purposes: one is to specify the computation 
and the other is to manage computer 
resources. Most scientists are familiar with 
the former, whereas the latter is considered 
to be primarily the concern of computer 
engineers. The distinction is important as 
it allows a clear separation of concerns: 
scientists only need to know about the 
complexity of models and mathematics, and 
system engineers only need to focus on the 
complexity of the computer.

In this ideal case, the programming 
environment allows scientists to specify 
the computational tasks in terms of 
human-readable equations — descriptive 
programming — that are independent of the 
underlying system, which is portable across 
many platforms. The Python programming 
language, with its many associated libraries 
and tools, provides such an environment, 
but at the cost of performance. When the 
computation is big and has to be scaled, 
performance does matter. In this case 
scientists have the choice of algorithms 
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lap(i,j,k) = –4.0 * data(i,j,k) +
    data(i+1,j,k) + data(i-1,j,k) + 
    data(i,j+1,k) + data(i,j-1,k);
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Whereas this long-term sustained 
exponential growth had profound impact 
on the productivity of scientists and opened 
many new avenues in physics research, 
not all types of problems in scientific 
computing have seen the same performance 
improvements. For example, the sustained 
performance of climate codes, as documented 
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over 
approximately the same period as the 
Top500 project, has improved only by 
a factor of 100 per decade (Peter Bauer, 
manuscript in preparation). This is still an 
exponential growth, but it demonstrates 
the significant decrease in efficiency for 
software applications in some fields. This 
is more important, as meteorological and 
climate simulations have been around since 
the dawn of modern computing1. They rely 
on complex, but typically well-engineered 
computer codes that have been designed to 
run on the top supercomputing systems. If 
experts use computers inefficiently, what does 
this say about the applications developed by 
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in 
physics today. I try to analyse the challenges 
in writing efficient scientific software and 
examine possible ways in which physicists 
can deal with the rapidly increasing 
complexity of computer architectures. To do 
so it is important to first recall the main uses 
of computing in physics.
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Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance) 
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations), 
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented 
in a program (for example, stencil code), and subsequently compiled into machine code that executes 
on a canonical computer architecture. The green line marks the separation of work. The physical 
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright, 
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern 
computing, modelling and simulation 
were used in physics in two ways. The 
first and best known (which we call the 
traditional way) is the use of computers 
to solve challenging theoretical problems 
that have no known analytical solution. 
In this case, the theory is well understood 
and the governing equations are solved 
numerically with elaborate computational 
methods to make quantitative and verifiable 
predictions. Sometimes the numerical 
solution of a theoretical problem may lead 
to new insights in its own right, as was the 
case with the discovery of the fluctuation 
theorem2. This was an argument for defining 
computer simulations as a third, independent 
pillar of science, complementing theory 
and experiment3. For our purpose, this 
distinction is not necessary, as from a 
computational point of view we are still 
solving known equations. The simulations are 
carefully planned — that is, the mathematical 
analysis and algorithms are well known and 
the elaborate computer codes, as in the case 
of climate simulations, have been developed 
and optimized. Scientists, and physicists 
in particular, will not shy away from great 
efforts in using cutting-edge technologies 
to solve such problems, and they will use 
imperative programming languages such as 
C or FORTRAN with machine-level codes to 
squeeze every last bit of performance out of a 
computing system.

The second, and profoundly different, use 
is the analysis of experimental data with the 
help of modelling and simulations before the 
theory and governing equations are known. 
This is essentially what Johannes Kepler did 
when he analysed Tycho Brahe’s planetary 
orbit data with heliocentric elliptical models 
to discover the three famous laws that 
now carry his name — Newton’s theory 
of gravitation, which explains Kepler’s 
laws, came later. Scientists today use 
computers to rapidly prototype models, 
thereby assimilating in a matter of seconds 
or minutes many orders of magnitude 
more data than Kepler did in months of 
laborious manual computations. Along with 
the development of electronic computing 
came large experimental facilities, which 
significantly increased the importance of 
systematic exploratory tools for data analysis. 
This lead to a substantial improvement of 
mathematical algorithms over the past few 
decades, which, together with the emergence 
of social media on the World Wide Web, 
have made this exploratory use relevant 
to areas outside of natural sciences, for 
instance in economics and social sciences. 
These have, in turn, led to the argument that 
a fundamentally new, fourth paradigm of 
science is emerging: ‘data science’3. For our 
present purpose, however, this distinction 
is again not necessarily important. But, for 
this second exploratory use of modelling and 
simulation scientists use more descriptive 
programming languages like Python or 
Ruby, and they rely on existing libraries even 
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary 
purposes: one is to specify the computation 
and the other is to manage computer 
resources. Most scientists are familiar with 
the former, whereas the latter is considered 
to be primarily the concern of computer 
engineers. The distinction is important as 
it allows a clear separation of concerns: 
scientists only need to know about the 
complexity of models and mathematics, and 
system engineers only need to focus on the 
complexity of the computer.

In this ideal case, the programming 
environment allows scientists to specify 
the computational tasks in terms of 
human-readable equations — descriptive 
programming — that are independent of the 
underlying system, which is portable across 
many platforms. The Python programming 
language, with its many associated libraries 
and tools, provides such an environment, 
but at the cost of performance. When the 
computation is big and has to be scaled, 
performance does matter. In this case 
scientists have the choice of algorithms 
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COSMO:

36

% Code Lines (F90) % Runtime

Runtime based 2 km production model 
 of MeteoSwiss

Original code (with OpenACC for GPU) Rewrite in C++ (with CUDA backend for GPU)

‣monolithic Fortran 90 code 
‣ 250,000 lines of code

a legacy code migration project
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Stencil example: Laplace operator in 2D

37

lap(i,j,k) = –4.0 * data(i,j,k) + 
    data(i+1,j,k) + data(i-1,j,k) +  
    data(i,j+1,k) + data(i,j-1,k);
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do k = kstart, kend
  do j = jstart, jend
    do i = istart, iend
      lap(i, j, k) = -4.0 * data(i,   j  , k) + &
        data(i+1, j, , k) + data(i-1, j  , k) + &
        data(i  , j+1, k) + data(i  , j-1, k)
     end do
  end do
end do 
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1. Loop-logic defines stencil application domain and order
2. Stencil defines the operator to be applied 

do k = kstart, kend
  do j = jstart, jend
    do i = istart, iend
      lap(i, j, k) = -4.0 * data(i,   j  , k) + &
        data(i+1, j, , k) + data(i-1, j  , k) + &
        data(i  , j+1, k) + data(i  , j-1, k)
     end do
  end do
end do 

Two main components of an operator on a structured grid
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IJKRealField lapfield, datafield;

Stencil stencil;

StencilCompiler::Build(

pack_parameters(

    Param<lap, cInOut>(lapfield),

    Param<data, cIn>(datafield)

),

  concatenate_sweeps(

    define_sweep<KLoopFullDomain>(

      define_stages(

        StencilStage<Laplace, IJRangeComplete>()

      )

    )

  )

);

stencil.Apply();

enum { data, lap };

template<typename TEnv>

struct Laplace

{

  STENCIL_STAGE(Tenv)

  STAGE_PARAMETER(FullDomain, data)

  STAGE_PARAMETER(FullDomain, lap)

 

  static void Do()

  {

    lap::Center() =

      -4.0 * data::Center() +

      data::At(iplus1) +

      data::At(iminus1) +

      data::At(jplus1) +

      data::At(jminus1);

  }

};  
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enum { data, lap };

template<typename TEnv>

struct Laplace

{

  STENCIL_STAGE(Tenv)

  STAGE_PARAMETER(FullDomain, data)

  STAGE_PARAMETER(FullDomain, lap)

 

  static void Do()

  {

    lap::Center() =

      -4.0 * data::Center() +

      data::At(iplus1) +

      data::At(iminus1) +

      data::At(jplus1) +

      data::At(jminus1);

  }

};  

IJKRealField lapfield, datafield;

Stencil stencil;

StencilCompiler::Build(

pack_parameters(

    Param<lap, cInOut>(lapfield),

    Param<data, cIn>(datafield)

),

  concatenate_sweeps(

    define_sweep<KLoopFullDomain>(

      define_stages(

        StencilStage<Laplace, IJRangeComplete>()

      )

    )

  )

);

stencil.Apply();

Stencil Loop logic
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Architecture dependent backend

• The same user-level code can be 
compiled with different, architecture 
dependent backends 

• multi-core CPU (x86) – SIMD 
• kij-storage 
• ij-blocking 
• Coarse: OpenMP theads 
• Fine: vectorisation by compiler 

• GPU (Tesla) – SIMT 
• ijk-storage 
• Coarse: CUDA thread blocks 
• Fine: CUDA threads 
• software managed caching

STELLA backends 

•  The same high-level user code can be 
compiled using different backends 

•  CPU (x86 multi-core) 
•  kij-storage 
•  ij-blocking 
•  Coarse: OpenMP threads 
•  Fine: vectorization by compiler 

•  GPU (NVIDIA) 
•  ijk-storage 
•  Coarse: CUDA thread blocks 
•  Fine: CUDA threads 
•  software managed caching 

A single switch 
chooses the 

STELLA backend 

Horizontal IJ-plane 

Block0 Block1 

Block2 Block3 

Coarse-grained parallelism"

Fine-grained 
parallelism 
(vectorization)"
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COSMO: old and new (refactored) code

43

main (current / Fortran)

physics 
(Fortran)

dynamics (Fortran)

MPI

system

main (new / Fortran)

physics 
(Fortran) 

with OpenMP / 
OpenACC

dynamics (C++)

MPI or whatever

system

Generic 
Comm. 
Library

boundary 
conditions & 
halo exchg.

stencil library

X86 GPU

Shared 
Infrastructure
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iPython/notebook 
JUPYTER
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What we compare to establish the baseline

• Three machine types 
• Cray XE6 with AMD Barcelona – state of the art in 2012 
• Cray XC40 with Intel Xeon (Haswell) – state of the art in 2015 
• Cray CS Storm with Intel Xeon (Haswell) and NVIDIA K80 GPU – state of the art in 2015 

• Two implementations of the COSMO model 
• Standard F90 with MPI – used by German Weather Service and others 
• Refactored, hybrid F90 + C++ with MPI & CUDA / OpenMP – used by MeteoSwiss 
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Origin of factor 40 performance improvement

47

• Past production system installed in 2012 
• New Piz Kesch/Escha installed in 2015 

• Processor performance (X86)                  
• Algorithms & system utilisation           
• General software performance  
• Port to GPU architecture             
• Increase in number of processors   
• Total performance improvement  

• Bonus: simulation running on GPU is 3x 
more energy efficient compared to 
conventional state of the art CPU

Performance of COSMO running on new “Piz Kesch” compared to      (in Sept. 2015) 
(1) previous production system – Cray XE6 with AMD Barcelona 
(2) “Piz Dora” – Cray XE40 with Intel Haswell (E5-2690v3)

Moore’s Law

Software  
refactoring

~40x

2.8x
2.8x

1.3x
2.3x
1.7x
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A factor 40 improvement with similar physical 
footprint & ~30% reduction in power consumption

48

Albis & Lema (in production through 3/2016) New system: Kesch & Escha
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Origin of factor 40 performance improvement

49

• Past production system installed in 2012 
• New Piz Kesch/Escha installed in 2015 

• Processor performance                  
• Algorithms & system utilisation           
• General software performance  
• Port to GPU architecture             
• Increase in number of processors   
• Total performance improvement  

• Bonus: simulation running on GPU is 3x 
more energy efficient compared to 
conventional state of the art CPU

Performance of COSMO running on new “Piz Kesch” compared to      (in Sept. 2015) 
(1) previous production system – Cray XE6 with AMD Barcelona 
(2) “Piz Dora” – Cray XE40 with Intel Haswell (E5-2690v3)

~40x

2.8x
2.8x

1.3x
2.3x
1.7x = 11x
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So what is the baseline for exascale?
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The state-of the art implementation of COSMO running at 
DWD (Deutscher Wetterdienst) on multi-core hardware.

The refactored version of COSMO running at MeteoSwiss 
on multi-core or GPU accelerated hardware.

~10x
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1km-scale global simulations at exascale*?

• Today: 1km regional (refactored) models run at time compression ~100 
• If we could implement a global model with same efficiency, we can weak-scale to globe 
• Beyond weak scaling we will need; 

• time compression ~1,000 for climate model in production 
• time compression ~10,000 for spin up of coupled model 

• We need to accelerate the computation by 100x compared to present day 
simulations

*Exascale here is used for the timeline: DOE plans to deliver exascale supercomputers in 2023

• Example of COSMO, ICON (assuming the latter is as efficient at the former) 
• Maybe speed up another factor 2 in strong scaling with current algorithms 
• Expected improvements in hardware (2019) ~3x 
• Maybe there is another factor 2 in hardware by early 2020s 

• In the best of cases will need at least another factor 10 from somewhere else 
• consider methods / algorithms 
• co-design a more appropriate computing system?
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Conclusion
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The answer depends on what you 2016 baseline is!

But for sure we will need more than exascale to solve our real problems  
(e.g. climate and meteorology)

Is it realistic to have the exascale systems  we need  
in 2020 (China) or 2023 (USA/Japan)?

Outside the box solutions are needed
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