
T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016

Thomas C. Schulthess

1

Exascale Computing:  
What are the Goal and Baseline?

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016

One of the drivers in U.S. scientific computing: the
National Strategic Computing Initiative

2

Executive Order (7/29/2015) Goal: Sustain/enhance U.S. leadership in HPC technology and use

How:
1. Use HPC for economic competitiveness and scientific discovery
2. Foster public-private collaboration (all industry, not just vendors)
3. Use a whole-of-government approach (inter-agency collaboration)
4. Move HPC research into production settings

Strategic objectives:
1. Accelerating delivery of a capable exascale computing system across a range of apps. rep. gov. needs
2. Increasing coherence between modelling and simulation and that used for data analytic computing
3. Establishing, over the next 15 years, a viable path forward for HPC systems even beyond limits of CMOS
4. Increasing the capacity and capability of an enduring national HPC ecosystem
5. Developing an enduring public-private collaboration

Lead agencies:
DOE – exascale computing program to support simulations & analytics
NSF – HPC ecosystem for science; workforce development
DOD – focus on advanced analytics in support of its mission

this summary by: Steve Conway, IDC

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 3

What exactly is our metric for exascale computing?

• Today, the fastest supercomputers sustain 20-100 petaflops on HPL

• Thus, a sustained exaflops would be a factor 10-50 away from today’s fastest
supercomputer

• There is a questions about productivity of these fastest systems

• Thus, let’s be conservative an agree on exascale computing being a factor 100 more
in sustained application performance over today’s (2016) best capabilities

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 4

Ax = bLinpack benchmark solves:

for the historic development of supercomputing performance, see www.top500.org

1st application at > 1 TFLOP/s sustained

1st application at > 1 PFLOP/s sustained

1,000-fold performance improvement in per decade

http://www.top500.org

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016

“only” 100-fold performance improvement for climate codes

5

Source: Peter Bauer, ECMWF
5

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 6

Has efficiency of climate codes
dropped 10-fold every decade decade?

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 7

Application performance must be factored into
the metric for supercomputing at exascale

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 8

source: http://www.ecmwf.int/en/about/media-centre/news/2013/ecmwf-forecast-data-hurricane-sandy-available-researchers

http://www.ecmwf.int/en/about/media-centre/news/2013/ecmwf-forecast-data-hurricane-sandy-available-researchers

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 9

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 10

source: http://www.ecmwf.int/en/about/media-centre/news/2013/ecmwf-forecast-data-hurricane-sandy-available-researchers

http://www.ecmwf.int/en/about/media-centre/news/2013/ecmwf-forecast-data-hurricane-sandy-available-researchers

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 11

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016

Predictive skill: weather

12

10-m wind speed

precipitation

resolution
upgrades

day-5

day-3

ECMWF, source Peter Bauer

150 km

250 km

350 km

450 km

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 13

We need both,  
capability and throughput!

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 14

Goal: study climate extremes at km-scale resolution
• Severe weather prediction: simulate o(1-10 days)
• Seasonal weather / climate prediction: simulate o(1 year)

• agriculture
• health
• hydrological

• Multi-decadal prediction for climate adaptation: simulate o(10-100 years)
• Global prediction for informing mitigation policy: simulate o(100-1000 years)
• Geoengineering: simulate o(100-1000 years)
• Attribution of extreme weather events

Adapting to climate change in developing countries could rise to between $280 and $500 billion p.a. by 2050

UN Adaptation Gap Report of 2016

HPC capability: time compression = (simulated time) / (wall clock time)

Tim Palmer, Oxford

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 15

1km-scale global simulations at exascale*?

• Today: 1km regional (refactored) models run at time compression ~100
• If we could implement a global model with same efficiency, we can weak-scale to globe
• Beyond weak scaling we will need;

• time compression ~1,000 for climate model in production
• time compression ~10,000 for spin up of coupled model

• We need to accelerate the computation by 100x compared to present day
simulations

*Exascale here is used for the timeline: DOE plans to deliver exascale supercomputers in 2023

What is the baseline for today’s sustained performance?

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 16

Compute(Rack Compute(Rack
1 2

AFCO(CRAYPD01 AFCO(CRAYPD01
MotivAir MotivAir

48 48P(GigE((Ops) 48P(GigE((Ops)
47 48P(GigE((Mgmt) 48P(GigE((Mgmt)
46 Mellanox(FDR(IB Mellanox(FDR(IB
45 BLANK BLANK
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2 BLANK BLANK
1 BLANK BLANK

0 0
0 0

PPN/Login

Hydra

Hydra

PPN/Login

MN

Hydra

Hydra

Hydra

Hydra

Hydra

Hydra

Hydra

Hydra

Hydra

Hydra Hydra

Hydra

Hydra

Hydra

MN

PPN/Login

PPN/Login

Hydra

Hydra

Hydra

Hydra

Hydra

Hydra

Hydra

Hydra

ESMS

NetApp(E2760

OSS

MDS/MGS

MN MN

MDS/MGS

OSS

NetApp(E2760

ESMS

“Piz Kesch”

September 15, 2015

Today’s Outlook: GPU-accelerated Weather Forecasting
John Russell

16

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 17

COnsortium for Small-scale Modelling (COSMO)
• Limited area model (www.cosmo-model.org)
• Used by 7 weather services and >70 research groups in academia
• Runs on many different hardware platforms!
• Very well managed consortium, in my opinion

http://www.cosmo-model.org

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016

Meteo Swiss production suite until March 30, 2016

18

ECMWF
4x per day
16 km lateral grid, 91
layers

COSMO-7
3x per day 72h forecast
6.6 km lateral grid, 60 layers

COSMO-2
8x per day 33h forecast
2.2 km lateral grid, 60
layers

Some of the products generate from these simulations:
‣ Daily weather forecast on TV / radio
‣ Forecasting for air traffic control (Sky Guide)
‣ Safety management in event of nuclear incidents

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016

Higher resolution is necessary for quantitative
agreement wth experiment

19

source: Oliver Fuhrer, MeteoSwiss

 COSMO-2 COSMO-1

Altdorf (Reuss valley) Lodrino (Leventina)

(18 days for July 9-27, 2006)

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016

Prognostic uncertainty

20

The weather system is chaotic 
 ! rapid growth of small perturbations (butterfly effect)

Prognostic timeframeStart

Ensemble method: compute distribution over many simulations

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016

Benefit of ensemble forecast

21

Adelboden

reliable?

(heavy thunderstorms on July 24, 2015)

source: Oliver Fuhrer, MeteoSwiss

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016

Benefit of ensemble forecast

22

(heavy thunderstorms on July 24, 2015)

Adelboden

source: Oliver Fuhrer, MeteoSwiss

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016

Improving simulation quality requires higher
performance – what exactly and how much?

23

Resource determining factors for Meteo Swiss’ simulations

COSMO-2: 24h forecast running in 30 min.  
 8x per day

COSMO-1: 24h forecast running in 30 min.  
 8x per day (~10x COSMO-2)

COSMO-2E: 21-member ensemble,120h forecast 
 in 150 min., 2x per day (~26x COSMO-2)

KENDA: 40-member ensemble,1h forecast 
 in 15 min., 24x per day (~5x COSMO-2)

Operational model through March 2016 New model starting operation in April 2016

New production system must deliver
~40x the simulations performance 

of “Albis” and “Lema”

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 24

• New system needs to be installed Q2-3/2015

• Assuming 2x improvement in per-socket performance: 
~20x more X86 sockets would require 30 Cray XC cabinets

Current Cray XC30/XC40 platform  
(space for 40 racks XC)

New system for Meteo Swiss if we
build it like the German Weather
Service (DWD) did theirs, or UK Met
Office, or ECMWF … (30 racks XC)

Albis & Lema: 3 cabinets Cray XE6 installed Q2/2012

Thinking inside the box is not a good option!
CSCS machine room

24

State of the art implementation
of new system for MeteoSwiss

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016

COSMO: the model Meteo Swiss uses

25

velocities

pressure

temperature

water

turbulence

physics et al.
tendencies water adv.horizontal adv.3x1x

Timestep explicit (leapfrog)implicit (sparse solver)explicit (RK3)implicit (sparse)

fast wave solver~10xvertical adv.

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016

COSMO: the code behind the Meteo Swiss model

26

% Code Lines (F90)

‣monolithic Fortran 90 code
‣ 250,000 lines of code

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 27

Physical model

Algorithmic description

Compilation

Computer

Imperative code
lap(i,j,k) = –4.0 * data(i,j,k) +
 data(i+1,j,k) + data(i-1,j,k) +
 data(i,j+1,k) + data(i,j-1,k);

Domain science & applied mathematics

Computer engineering

370 NATURE PHYSICS | VOL 11 | MAY 2015 | www.nature.com/naturephysics

COMMENTARY | FOCUS

Whereas this long-term sustained
exponential growth had profound impact
on the productivity of scientists and opened
many new avenues in physics research,
not all types of problems in scientific
computing have seen the same performance
improvements. For example, the sustained
performance of climate codes, as documented
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over
approximately the same period as the
Top500 project, has improved only by
a factor of 100 per decade (Peter Bauer,
manuscript in preparation). This is still an
exponential growth, but it demonstrates
the significant decrease in efficiency for
software applications in some fields. This
is more important, as meteorological and
climate simulations have been around since
the dawn of modern computing1. They rely
on complex, but typically well-engineered
computer codes that have been designed to
run on the top supercomputing systems. If
experts use computers inefficiently, what does
this say about the applications developed by
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in
physics today. I try to analyse the challenges
in writing efficient scientific software and
examine possible ways in which physicists
can deal with the rapidly increasing
complexity of computer architectures. To do
so it is important to first recall the main uses
of computing in physics.

Imperative code

Compilation

Physical modelMathematical description

Algorithmic description

Computer

Domain science and applied mathematics

Computer engineering

= − ∇p + ρg − 2Ω×(ρv) + F

= − (cpd /cvd��p∇· v + (cpd /cvd−1)Qh

= p· +Qh

= − ∇ · Fv − (Il + I f)
= ∇ · (P l,f + F l,f) + Il,f

= p[Rd (1+(Rυ/Rd−1) qυ− q l−qf)T]−1

ODS�L�M�N�� �±�����GDWD�L�M�N���
GDWD�L���M�N����GDWD�L���M�N����
GDWD�L�M���N����GDWD�L�M���N��

Wind ρv·

Pressure p·

Water ρq· υ

ρq· l,f

Density ρ

Temperature ρcpd T·

Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance)
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations),
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented
in a program (for example, stencil code), and subsequently compiled into machine code that executes
on a canonical computer architecture. The green line marks the separation of work. The physical
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright,
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern
computing, modelling and simulation
were used in physics in two ways. The
first and best known (which we call the
traditional way) is the use of computers
to solve challenging theoretical problems
that have no known analytical solution.
In this case, the theory is well understood
and the governing equations are solved
numerically with elaborate computational
methods to make quantitative and verifiable
predictions. Sometimes the numerical
solution of a theoretical problem may lead
to new insights in its own right, as was the
case with the discovery of the fluctuation
theorem2. This was an argument for defining
computer simulations as a third, independent
pillar of science, complementing theory
and experiment3. For our purpose, this
distinction is not necessary, as from a
computational point of view we are still
solving known equations. The simulations are
carefully planned — that is, the mathematical
analysis and algorithms are well known and
the elaborate computer codes, as in the case
of climate simulations, have been developed
and optimized. Scientists, and physicists
in particular, will not shy away from great
efforts in using cutting-edge technologies
to solve such problems, and they will use
imperative programming languages such as
C or FORTRAN with machine-level codes to
squeeze every last bit of performance out of a
computing system.

The second, and profoundly different, use
is the analysis of experimental data with the
help of modelling and simulations before the
theory and governing equations are known.
This is essentially what Johannes Kepler did
when he analysed Tycho Brahe’s planetary
orbit data with heliocentric elliptical models
to discover the three famous laws that
now carry his name — Newton’s theory
of gravitation, which explains Kepler’s
laws, came later. Scientists today use
computers to rapidly prototype models,
thereby assimilating in a matter of seconds
or minutes many orders of magnitude
more data than Kepler did in months of
laborious manual computations. Along with
the development of electronic computing
came large experimental facilities, which
significantly increased the importance of
systematic exploratory tools for data analysis.
This lead to a substantial improvement of
mathematical algorithms over the past few
decades, which, together with the emergence
of social media on the World Wide Web,
have made this exploratory use relevant
to areas outside of natural sciences, for
instance in economics and social sciences.
These have, in turn, led to the argument that
a fundamentally new, fourth paradigm of
science is emerging: ‘data science’3. For our
present purpose, however, this distinction
is again not necessarily important. But, for
this second exploratory use of modelling and
simulation scientists use more descriptive
programming languages like Python or
Ruby, and they rely on existing libraries even
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary
purposes: one is to specify the computation
and the other is to manage computer
resources. Most scientists are familiar with
the former, whereas the latter is considered
to be primarily the concern of computer
engineers. The distinction is important as
it allows a clear separation of concerns:
scientists only need to know about the
complexity of models and mathematics, and
system engineers only need to focus on the
complexity of the computer.

In this ideal case, the programming
environment allows scientists to specify
the computational tasks in terms of
human-readable equations — descriptive
programming — that are independent of the
underlying system, which is portable across
many platforms. The Python programming
language, with its many associated libraries
and tools, provides such an environment,
but at the cost of performance. When the
computation is big and has to be scaled,
performance does matter. In this case
scientists have the choice of algorithms

© 2015 Macmillan Publishers Limited. All rights reserved

Mathematical description

Schulthess, Nature Physics, vol 11, 369-373 (2015)

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 28

Imperative code

Compilation

Computer

Domain science & applied mathematics

Computer engineering

Physical model

Mathematical description

Algorithmic description

Schulthess, Nature Physics, vol 11, 369-373 (2015)

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 29

Physical model

Mathematical description

Algorithmic description

Imperative code

Compilation

Computer

Domain science & applied mathematics

Computer engineering
Schulthess, Nature Physics, vol 11, 369-373 (2015)

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 30

Imperative code

Compilation

Computer

Domain science & applied mathematics

Computer engineering

Physical model

Mathematical description

H = −t
∑

⟨ij⟩,σ

c†iσcjσ + U
∑

i

ni↑ni↓

Algorithmic description
Gc({si, l}k+1) = Gc({si, l}0) + [a0|a1|...|ak] × [b0|b1|...|bk]t

Gc({si, l}k+1) = Gc({si, l}k) + ak × b
t
k

30

Schulthess, Nature Physics, vol 11, 369-373 (2015)

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 31

Physical model

Algorithmic description

Compilation

Computer

Imperative code
lap(i,j,k) = –4.0 * data(i,j,k) +
 data(i+1,j,k) + data(i-1,j,k) +
 data(i,j+1,k) + data(i,j-1,k);

Domain science & applied mathematics

Computer engineering

370 NATURE PHYSICS | VOL 11 | MAY 2015 | www.nature.com/naturephysics

COMMENTARY | FOCUS

Whereas this long-term sustained
exponential growth had profound impact
on the productivity of scientists and opened
many new avenues in physics research,
not all types of problems in scientific
computing have seen the same performance
improvements. For example, the sustained
performance of climate codes, as documented
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over
approximately the same period as the
Top500 project, has improved only by
a factor of 100 per decade (Peter Bauer,
manuscript in preparation). This is still an
exponential growth, but it demonstrates
the significant decrease in efficiency for
software applications in some fields. This
is more important, as meteorological and
climate simulations have been around since
the dawn of modern computing1. They rely
on complex, but typically well-engineered
computer codes that have been designed to
run on the top supercomputing systems. If
experts use computers inefficiently, what does
this say about the applications developed by
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in
physics today. I try to analyse the challenges
in writing efficient scientific software and
examine possible ways in which physicists
can deal with the rapidly increasing
complexity of computer architectures. To do
so it is important to first recall the main uses
of computing in physics.

Imperative code

Compilation

Physical modelMathematical description

Algorithmic description

Computer

Domain science and applied mathematics

Computer engineering

= − ∇p + ρg − 2Ω×(ρv) + F

= − (cpd /cvd��p∇· v + (cpd /cvd−1)Qh

= p· +Qh

= − ∇ · Fv − (Il + I f)
= ∇ · (P l,f + F l,f) + Il,f

= p[Rd (1+(Rυ/Rd−1) qυ− q l−qf)T]−1

ODS�L�M�N�� �±�����GDWD�L�M�N���
GDWD�L���M�N����GDWD�L���M�N����
GDWD�L�M���N����GDWD�L�M���N��

Wind ρv·

Pressure p·

Water ρq· υ

ρq· l,f

Density ρ

Temperature ρcpd T·

Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance)
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations),
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented
in a program (for example, stencil code), and subsequently compiled into machine code that executes
on a canonical computer architecture. The green line marks the separation of work. The physical
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright,
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern
computing, modelling and simulation
were used in physics in two ways. The
first and best known (which we call the
traditional way) is the use of computers
to solve challenging theoretical problems
that have no known analytical solution.
In this case, the theory is well understood
and the governing equations are solved
numerically with elaborate computational
methods to make quantitative and verifiable
predictions. Sometimes the numerical
solution of a theoretical problem may lead
to new insights in its own right, as was the
case with the discovery of the fluctuation
theorem2. This was an argument for defining
computer simulations as a third, independent
pillar of science, complementing theory
and experiment3. For our purpose, this
distinction is not necessary, as from a
computational point of view we are still
solving known equations. The simulations are
carefully planned — that is, the mathematical
analysis and algorithms are well known and
the elaborate computer codes, as in the case
of climate simulations, have been developed
and optimized. Scientists, and physicists
in particular, will not shy away from great
efforts in using cutting-edge technologies
to solve such problems, and they will use
imperative programming languages such as
C or FORTRAN with machine-level codes to
squeeze every last bit of performance out of a
computing system.

The second, and profoundly different, use
is the analysis of experimental data with the
help of modelling and simulations before the
theory and governing equations are known.
This is essentially what Johannes Kepler did
when he analysed Tycho Brahe’s planetary
orbit data with heliocentric elliptical models
to discover the three famous laws that
now carry his name — Newton’s theory
of gravitation, which explains Kepler’s
laws, came later. Scientists today use
computers to rapidly prototype models,
thereby assimilating in a matter of seconds
or minutes many orders of magnitude
more data than Kepler did in months of
laborious manual computations. Along with
the development of electronic computing
came large experimental facilities, which
significantly increased the importance of
systematic exploratory tools for data analysis.
This lead to a substantial improvement of
mathematical algorithms over the past few
decades, which, together with the emergence
of social media on the World Wide Web,
have made this exploratory use relevant
to areas outside of natural sciences, for
instance in economics and social sciences.
These have, in turn, led to the argument that
a fundamentally new, fourth paradigm of
science is emerging: ‘data science’3. For our
present purpose, however, this distinction
is again not necessarily important. But, for
this second exploratory use of modelling and
simulation scientists use more descriptive
programming languages like Python or
Ruby, and they rely on existing libraries even
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary
purposes: one is to specify the computation
and the other is to manage computer
resources. Most scientists are familiar with
the former, whereas the latter is considered
to be primarily the concern of computer
engineers. The distinction is important as
it allows a clear separation of concerns:
scientists only need to know about the
complexity of models and mathematics, and
system engineers only need to focus on the
complexity of the computer.

In this ideal case, the programming
environment allows scientists to specify
the computational tasks in terms of
human-readable equations — descriptive
programming — that are independent of the
underlying system, which is portable across
many platforms. The Python programming
language, with its many associated libraries
and tools, provides such an environment,
but at the cost of performance. When the
computation is big and has to be scaled,
performance does matter. In this case
scientists have the choice of algorithms

© 2015 Macmillan Publishers Limited. All rights reserved

Mathematical description

Schulthess, Nature Physics, vol 11, 369-373 (2015)

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 32

Physical model

Algorithmic description

Imperative code

Compilation

lap(i,j,k) = –4.0 * data(i,j,k) +
 data(i+1,j,k) + data(i-1,j,k) +
 data(i,j+1,k) + data(i,j-1,k);

Domain science & applied mathematics

Computer engineering

370 NATURE PHYSICS | VOL 11 | MAY 2015 | www.nature.com/naturephysics

COMMENTARY | FOCUS

Whereas this long-term sustained
exponential growth had profound impact
on the productivity of scientists and opened
many new avenues in physics research,
not all types of problems in scientific
computing have seen the same performance
improvements. For example, the sustained
performance of climate codes, as documented
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over
approximately the same period as the
Top500 project, has improved only by
a factor of 100 per decade (Peter Bauer,
manuscript in preparation). This is still an
exponential growth, but it demonstrates
the significant decrease in efficiency for
software applications in some fields. This
is more important, as meteorological and
climate simulations have been around since
the dawn of modern computing1. They rely
on complex, but typically well-engineered
computer codes that have been designed to
run on the top supercomputing systems. If
experts use computers inefficiently, what does
this say about the applications developed by
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in
physics today. I try to analyse the challenges
in writing efficient scientific software and
examine possible ways in which physicists
can deal with the rapidly increasing
complexity of computer architectures. To do
so it is important to first recall the main uses
of computing in physics.

Imperative code

Compilation

Physical modelMathematical description

Algorithmic description

Computer

Domain science and applied mathematics

Computer engineering

= − ∇p + ρg − 2Ω×(ρv) + F

= − (cpd /cvd��p∇· v + (cpd /cvd−1)Qh

= p· +Qh

= − ∇ · Fv − (Il + I f)
= ∇ · (P l,f + F l,f) + Il,f

= p[Rd (1+(Rυ/Rd−1) qυ− q l−qf)T]−1

ODS�L�M�N�� �±�����GDWD�L�M�N���
GDWD�L���M�N����GDWD�L���M�N����
GDWD�L�M���N����GDWD�L�M���N��

Wind ρv·

Pressure p·

Water ρq· υ

ρq· l,f

Density ρ

Temperature ρcpd T·

Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance)
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations),
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented
in a program (for example, stencil code), and subsequently compiled into machine code that executes
on a canonical computer architecture. The green line marks the separation of work. The physical
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright,
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern
computing, modelling and simulation
were used in physics in two ways. The
first and best known (which we call the
traditional way) is the use of computers
to solve challenging theoretical problems
that have no known analytical solution.
In this case, the theory is well understood
and the governing equations are solved
numerically with elaborate computational
methods to make quantitative and verifiable
predictions. Sometimes the numerical
solution of a theoretical problem may lead
to new insights in its own right, as was the
case with the discovery of the fluctuation
theorem2. This was an argument for defining
computer simulations as a third, independent
pillar of science, complementing theory
and experiment3. For our purpose, this
distinction is not necessary, as from a
computational point of view we are still
solving known equations. The simulations are
carefully planned — that is, the mathematical
analysis and algorithms are well known and
the elaborate computer codes, as in the case
of climate simulations, have been developed
and optimized. Scientists, and physicists
in particular, will not shy away from great
efforts in using cutting-edge technologies
to solve such problems, and they will use
imperative programming languages such as
C or FORTRAN with machine-level codes to
squeeze every last bit of performance out of a
computing system.

The second, and profoundly different, use
is the analysis of experimental data with the
help of modelling and simulations before the
theory and governing equations are known.
This is essentially what Johannes Kepler did
when he analysed Tycho Brahe’s planetary
orbit data with heliocentric elliptical models
to discover the three famous laws that
now carry his name — Newton’s theory
of gravitation, which explains Kepler’s
laws, came later. Scientists today use
computers to rapidly prototype models,
thereby assimilating in a matter of seconds
or minutes many orders of magnitude
more data than Kepler did in months of
laborious manual computations. Along with
the development of electronic computing
came large experimental facilities, which
significantly increased the importance of
systematic exploratory tools for data analysis.
This lead to a substantial improvement of
mathematical algorithms over the past few
decades, which, together with the emergence
of social media on the World Wide Web,
have made this exploratory use relevant
to areas outside of natural sciences, for
instance in economics and social sciences.
These have, in turn, led to the argument that
a fundamentally new, fourth paradigm of
science is emerging: ‘data science’3. For our
present purpose, however, this distinction
is again not necessarily important. But, for
this second exploratory use of modelling and
simulation scientists use more descriptive
programming languages like Python or
Ruby, and they rely on existing libraries even
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary
purposes: one is to specify the computation
and the other is to manage computer
resources. Most scientists are familiar with
the former, whereas the latter is considered
to be primarily the concern of computer
engineers. The distinction is important as
it allows a clear separation of concerns:
scientists only need to know about the
complexity of models and mathematics, and
system engineers only need to focus on the
complexity of the computer.

In this ideal case, the programming
environment allows scientists to specify
the computational tasks in terms of
human-readable equations — descriptive
programming — that are independent of the
underlying system, which is portable across
many platforms. The Python programming
language, with its many associated libraries
and tools, provides such an environment,
but at the cost of performance. When the
computation is big and has to be scaled,
performance does matter. In this case
scientists have the choice of algorithms

© 2015 Macmillan Publishers Limited. All rights reserved

Mathematical description

Schulthess, Nature Physics, vol 11, 369-373 (2015)

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 33

Algorithmic description

Imperative code

Compilation

lap(i,j,k) = –4.0 * data(i,j,k) +
 data(i+1,j,k) + data(i-1,j,k) +
 data(i,j+1,k) + data(i,j-1,k);

Domain science & applied mathematics

Computer engineering

370 NATURE PHYSICS | VOL 11 | MAY 2015 | www.nature.com/naturephysics

COMMENTARY | FOCUS

Whereas this long-term sustained
exponential growth had profound impact
on the productivity of scientists and opened
many new avenues in physics research,
not all types of problems in scientific
computing have seen the same performance
improvements. For example, the sustained
performance of climate codes, as documented
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over
approximately the same period as the
Top500 project, has improved only by
a factor of 100 per decade (Peter Bauer,
manuscript in preparation). This is still an
exponential growth, but it demonstrates
the significant decrease in efficiency for
software applications in some fields. This
is more important, as meteorological and
climate simulations have been around since
the dawn of modern computing1. They rely
on complex, but typically well-engineered
computer codes that have been designed to
run on the top supercomputing systems. If
experts use computers inefficiently, what does
this say about the applications developed by
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in
physics today. I try to analyse the challenges
in writing efficient scientific software and
examine possible ways in which physicists
can deal with the rapidly increasing
complexity of computer architectures. To do
so it is important to first recall the main uses
of computing in physics.

Imperative code

Compilation

Physical modelMathematical description

Algorithmic description

Computer

Domain science and applied mathematics

Computer engineering

= − ∇p + ρg − 2Ω×(ρv) + F

= − (cpd /cvd��p∇· v + (cpd /cvd−1)Qh

= p· +Qh

= − ∇ · Fv − (Il + I f)
= ∇ · (P l,f + F l,f) + Il,f

= p[Rd (1+(Rυ/Rd−1) qυ− q l−qf)T]−1

ODS�L�M�N�� �±�����GDWD�L�M�N���
GDWD�L���M�N����GDWD�L���M�N����
GDWD�L�M���N����GDWD�L�M���N��

Wind ρv·

Pressure p·

Water ρq· υ

ρq· l,f

Density ρ

Temperature ρcpd T·

Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance)
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations),
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented
in a program (for example, stencil code), and subsequently compiled into machine code that executes
on a canonical computer architecture. The green line marks the separation of work. The physical
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright,
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern
computing, modelling and simulation
were used in physics in two ways. The
first and best known (which we call the
traditional way) is the use of computers
to solve challenging theoretical problems
that have no known analytical solution.
In this case, the theory is well understood
and the governing equations are solved
numerically with elaborate computational
methods to make quantitative and verifiable
predictions. Sometimes the numerical
solution of a theoretical problem may lead
to new insights in its own right, as was the
case with the discovery of the fluctuation
theorem2. This was an argument for defining
computer simulations as a third, independent
pillar of science, complementing theory
and experiment3. For our purpose, this
distinction is not necessary, as from a
computational point of view we are still
solving known equations. The simulations are
carefully planned — that is, the mathematical
analysis and algorithms are well known and
the elaborate computer codes, as in the case
of climate simulations, have been developed
and optimized. Scientists, and physicists
in particular, will not shy away from great
efforts in using cutting-edge technologies
to solve such problems, and they will use
imperative programming languages such as
C or FORTRAN with machine-level codes to
squeeze every last bit of performance out of a
computing system.

The second, and profoundly different, use
is the analysis of experimental data with the
help of modelling and simulations before the
theory and governing equations are known.
This is essentially what Johannes Kepler did
when he analysed Tycho Brahe’s planetary
orbit data with heliocentric elliptical models
to discover the three famous laws that
now carry his name — Newton’s theory
of gravitation, which explains Kepler’s
laws, came later. Scientists today use
computers to rapidly prototype models,
thereby assimilating in a matter of seconds
or minutes many orders of magnitude
more data than Kepler did in months of
laborious manual computations. Along with
the development of electronic computing
came large experimental facilities, which
significantly increased the importance of
systematic exploratory tools for data analysis.
This lead to a substantial improvement of
mathematical algorithms over the past few
decades, which, together with the emergence
of social media on the World Wide Web,
have made this exploratory use relevant
to areas outside of natural sciences, for
instance in economics and social sciences.
These have, in turn, led to the argument that
a fundamentally new, fourth paradigm of
science is emerging: ‘data science’3. For our
present purpose, however, this distinction
is again not necessarily important. But, for
this second exploratory use of modelling and
simulation scientists use more descriptive
programming languages like Python or
Ruby, and they rely on existing libraries even
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary
purposes: one is to specify the computation
and the other is to manage computer
resources. Most scientists are familiar with
the former, whereas the latter is considered
to be primarily the concern of computer
engineers. The distinction is important as
it allows a clear separation of concerns:
scientists only need to know about the
complexity of models and mathematics, and
system engineers only need to focus on the
complexity of the computer.

In this ideal case, the programming
environment allows scientists to specify
the computational tasks in terms of
human-readable equations — descriptive
programming — that are independent of the
underlying system, which is portable across
many platforms. The Python programming
language, with its many associated libraries
and tools, provides such an environment,
but at the cost of performance. When the
computation is big and has to be scaled,
performance does matter. In this case
scientists have the choice of algorithms

© 2015 Macmillan Publishers Limited. All rights reserved

Mathematical description

Physical model

Schulthess, Nature Physics, vol 11, 369-373 (2015)

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 34

Physical model

Algorithmic description

Imperative code

Compilation

lap(i,j,k) = –4.0 * data(i,j,k) +
 data(i+1,j,k) + data(i-1,j,k) +
 data(i,j+1,k) + data(i,j-1,k);

Domain science & applied mathematics

Computer engineering

370 NATURE PHYSICS | VOL 11 | MAY 2015 | www.nature.com/naturephysics

COMMENTARY | FOCUS

Whereas this long-term sustained
exponential growth had profound impact
on the productivity of scientists and opened
many new avenues in physics research,
not all types of problems in scientific
computing have seen the same performance
improvements. For example, the sustained
performance of climate codes, as documented
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over
approximately the same period as the
Top500 project, has improved only by
a factor of 100 per decade (Peter Bauer,
manuscript in preparation). This is still an
exponential growth, but it demonstrates
the significant decrease in efficiency for
software applications in some fields. This
is more important, as meteorological and
climate simulations have been around since
the dawn of modern computing1. They rely
on complex, but typically well-engineered
computer codes that have been designed to
run on the top supercomputing systems. If
experts use computers inefficiently, what does
this say about the applications developed by
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in
physics today. I try to analyse the challenges
in writing efficient scientific software and
examine possible ways in which physicists
can deal with the rapidly increasing
complexity of computer architectures. To do
so it is important to first recall the main uses
of computing in physics.

Imperative code

Compilation

Physical modelMathematical description

Algorithmic description

Computer

Domain science and applied mathematics

Computer engineering

= − ∇p + ρg − 2Ω×(ρv) + F

= − (cpd /cvd��p∇· v + (cpd /cvd−1)Qh

= p· +Qh

= − ∇ · Fv − (Il + I f)
= ∇ · (P l,f + F l,f) + Il,f

= p[Rd (1+(Rυ/Rd−1) qυ− q l−qf)T]−1

ODS�L�M�N�� �±�����GDWD�L�M�N���
GDWD�L���M�N����GDWD�L���M�N����
GDWD�L�M���N����GDWD�L�M���N��

Wind ρv·

Pressure p·

Water ρq· υ

ρq· l,f

Density ρ

Temperature ρcpd T·

Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance)
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations),
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented
in a program (for example, stencil code), and subsequently compiled into machine code that executes
on a canonical computer architecture. The green line marks the separation of work. The physical
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright,
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern
computing, modelling and simulation
were used in physics in two ways. The
first and best known (which we call the
traditional way) is the use of computers
to solve challenging theoretical problems
that have no known analytical solution.
In this case, the theory is well understood
and the governing equations are solved
numerically with elaborate computational
methods to make quantitative and verifiable
predictions. Sometimes the numerical
solution of a theoretical problem may lead
to new insights in its own right, as was the
case with the discovery of the fluctuation
theorem2. This was an argument for defining
computer simulations as a third, independent
pillar of science, complementing theory
and experiment3. For our purpose, this
distinction is not necessary, as from a
computational point of view we are still
solving known equations. The simulations are
carefully planned — that is, the mathematical
analysis and algorithms are well known and
the elaborate computer codes, as in the case
of climate simulations, have been developed
and optimized. Scientists, and physicists
in particular, will not shy away from great
efforts in using cutting-edge technologies
to solve such problems, and they will use
imperative programming languages such as
C or FORTRAN with machine-level codes to
squeeze every last bit of performance out of a
computing system.

The second, and profoundly different, use
is the analysis of experimental data with the
help of modelling and simulations before the
theory and governing equations are known.
This is essentially what Johannes Kepler did
when he analysed Tycho Brahe’s planetary
orbit data with heliocentric elliptical models
to discover the three famous laws that
now carry his name — Newton’s theory
of gravitation, which explains Kepler’s
laws, came later. Scientists today use
computers to rapidly prototype models,
thereby assimilating in a matter of seconds
or minutes many orders of magnitude
more data than Kepler did in months of
laborious manual computations. Along with
the development of electronic computing
came large experimental facilities, which
significantly increased the importance of
systematic exploratory tools for data analysis.
This lead to a substantial improvement of
mathematical algorithms over the past few
decades, which, together with the emergence
of social media on the World Wide Web,
have made this exploratory use relevant
to areas outside of natural sciences, for
instance in economics and social sciences.
These have, in turn, led to the argument that
a fundamentally new, fourth paradigm of
science is emerging: ‘data science’3. For our
present purpose, however, this distinction
is again not necessarily important. But, for
this second exploratory use of modelling and
simulation scientists use more descriptive
programming languages like Python or
Ruby, and they rely on existing libraries even
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary
purposes: one is to specify the computation
and the other is to manage computer
resources. Most scientists are familiar with
the former, whereas the latter is considered
to be primarily the concern of computer
engineers. The distinction is important as
it allows a clear separation of concerns:
scientists only need to know about the
complexity of models and mathematics, and
system engineers only need to focus on the
complexity of the computer.

In this ideal case, the programming
environment allows scientists to specify
the computational tasks in terms of
human-readable equations — descriptive
programming — that are independent of the
underlying system, which is portable across
many platforms. The Python programming
language, with its many associated libraries
and tools, provides such an environment,
but at the cost of performance. When the
computation is big and has to be scaled,
performance does matter. In this case
scientists have the choice of algorithms

© 2015 Macmillan Publishers Limited. All rights reserved

Mathematical description

Schulthess, Nature Physics, vol 11, 369-373 (2015)

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 35

Science applications using a descriptive
and dynamic developer environment

Physical model
Mathematical description

Algorithmic description

Imperative code

Architecture 1

Compiler frontend

Optimisation / low-level libraries / runtime

Architecture specific backends

Architecture 2 Architecture N…

Multi-disciplinary  
co-design of tools,
libraries,
programming
environment

dynamic environment 
for model develop.

tools for 
high-performance  

scientific computing

Schulthess, Nature Physics, vol 11, 369-373 (2015)

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016

COSMO:

36

% Code Lines (F90) % Runtime

Runtime based 2 km production model 
 of MeteoSwiss

Original code (with OpenACC for GPU) Rewrite in C++ (with CUDA backend for GPU)

‣monolithic Fortran 90 code
‣ 250,000 lines of code

a legacy code migration project

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016

Stencil example: Laplace operator in 2D

37

lap(i,j,k) = –4.0 * data(i,j,k) +
 data(i+1,j,k) + data(i-1,j,k) +
 data(i,j+1,k) + data(i,j-1,k);

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 38

do k = kstart, kend
 do j = jstart, jend
 do i = istart, iend
 lap(i, j, k) = -4.0 * data(i, j , k) + &
 data(i+1, j, , k) + data(i-1, j , k) + &
 data(i , j+1, k) + data(i , j-1, k)
 end do
 end do
end do

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 39

1. Loop-logic defines stencil application domain and order
2. Stencil defines the operator to be applied

do k = kstart, kend
 do j = jstart, jend
 do i = istart, iend
 lap(i, j, k) = -4.0 * data(i, j , k) + &
 data(i+1, j, , k) + data(i-1, j , k) + &
 data(i , j+1, k) + data(i , j-1, k)
 end do
 end do
end do

Two main components of an operator on a structured grid

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 40

IJKRealField lapfield, datafield;

Stencil stencil;

StencilCompiler::Build(

pack_parameters(

 Param<lap, cInOut>(lapfield),

 Param<data, cIn>(datafield)

),

 concatenate_sweeps(

 define_sweep<KLoopFullDomain>(

 define_stages(

 StencilStage<Laplace, IJRangeComplete>()

)

)

)

);

stencil.Apply();

enum { data, lap };

template<typename TEnv>

struct Laplace

{

 STENCIL_STAGE(Tenv)

 STAGE_PARAMETER(FullDomain, data)

 STAGE_PARAMETER(FullDomain, lap)

 static void Do()

 {

 lap::Center() =

 -4.0 * data::Center() +

 data::At(iplus1) +

 data::At(iminus1) +

 data::At(jplus1) +

 data::At(jminus1);

 }

};

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 41

enum { data, lap };

template<typename TEnv>

struct Laplace

{

 STENCIL_STAGE(Tenv)

 STAGE_PARAMETER(FullDomain, data)

 STAGE_PARAMETER(FullDomain, lap)

 static void Do()

 {

 lap::Center() =

 -4.0 * data::Center() +

 data::At(iplus1) +

 data::At(iminus1) +

 data::At(jplus1) +

 data::At(jminus1);

 }

};

IJKRealField lapfield, datafield;

Stencil stencil;

StencilCompiler::Build(

pack_parameters(

 Param<lap, cInOut>(lapfield),

 Param<data, cIn>(datafield)

),

 concatenate_sweeps(

 define_sweep<KLoopFullDomain>(

 define_stages(

 StencilStage<Laplace, IJRangeComplete>()

)

)

)

);

stencil.Apply();

Stencil Loop logic

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 42

Architecture dependent backend

• The same user-level code can be
compiled with different, architecture
dependent backends

• multi-core CPU (x86) – SIMD
• kij-storage
• ij-blocking
• Coarse: OpenMP theads
• Fine: vectorisation by compiler

• GPU (Tesla) – SIMT
• ijk-storage
• Coarse: CUDA thread blocks
• Fine: CUDA threads
• software managed caching

STELLA backends

•  The same high-level user code can be
compiled using different backends

•  CPU (x86 multi-core)
•  kij-storage
•  ij-blocking
•  Coarse: OpenMP threads
•  Fine: vectorization by compiler

•  GPU (NVIDIA)
•  ijk-storage
•  Coarse: CUDA thread blocks
•  Fine: CUDA threads
•  software managed caching

A single switch
chooses the

STELLA backend

Horizontal IJ-plane

Block0 Block1

Block2 Block3

Coarse-grained parallelism"

Fine-grained
parallelism
(vectorization)"

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016

COSMO: old and new (refactored) code

43

main (current / Fortran)

physics
(Fortran)

dynamics (Fortran)

MPI

system

main (new / Fortran)

physics
(Fortran) 

with OpenMP /
OpenACC

dynamics (C++)

MPI or whatever

system

Generic
Comm.
Library

boundary
conditions &
halo exchg.

stencil library

X86 GPU

Shared
Infrastructure

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 44

Science applications using a descriptive
and dynamic developer environment

Physical model
Mathematical description

Algorithmic description

Imperative code

Architecture 1

Compiler frontend

Optimisation / low-level libraries / runtime

Architecture specific backends

Architecture 2 Architecture N…

Multi-disciplinary  
co-design of tools,
libraries,
programming
environment

dynamic environment 
for model develop.

tools for 
high-performance  

scientific computing

Schulthess, Nature Physics, vol 11, 369-373 (2015)

iPython/notebook 
JUPYTER

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 45

References and Collaborators

• Peter Messmer and his team at the NVIDIA co-design lab at ETH Zurich
• Teams at CSCS and Meteo Suisse, group of Christoph Schaer @ ETH Zurich
• O. Fuhrer, C. Osuna, X. Lapillonne, T. Gysi, B. Cumming, M. Bianco, A. Arteaga, T. C. Schulthess,
“Towards a performance portable, architecture agnostic implementation strategy for weather
and climate models”, Supercomputing Frontiers and Innovations, vol. 1, no. 1 (2014), see superfri.org

• G. Fourestey, B. Cumming, L. Gilly, and T. C. Schulthess, “First experience with validating and
using the Cray power management database tool”, Proceedings of the Cray Users Group 2014
(CUG14) (see arxiv.org for reprint)

• B. Cumming, G. Fourestey, T. Gysi, O. Fuhrer, M. Fatica, and T. C. Schulthess, “Application centric
energy-efficiency study of distributed multi-core and hybrid CPU-GPU systems”, Proceedings of
the International Conference on High-Performance Computing, Networking, Storage and Analysis,
SC’14, New York, NY, USA (2014). ACM

• T. Gysi, C. Osuna, O. Fuhrer, M. Bianco and T. C. Schulthess, “STELLA: A domain-specific tool for
structure grid methods in weather and climate models”, to be published in Proceedings of the
International Conference on High-Performance Computing, Networking, Storage and Analysis, SC’15,
New York, NY, USA (2015). ACM

http://superfri.org
http://arxiv.org

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 46

What we compare to establish the baseline

• Three machine types
• Cray XE6 with AMD Barcelona – state of the art in 2012
• Cray XC40 with Intel Xeon (Haswell) – state of the art in 2015
• Cray CS Storm with Intel Xeon (Haswell) and NVIDIA K80 GPU – state of the art in 2015

• Two implementations of the COSMO model
• Standard F90 with MPI – used by German Weather Service and others
• Refactored, hybrid F90 + C++ with MPI & CUDA / OpenMP – used by MeteoSwiss

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016

Origin of factor 40 performance improvement

47

• Past production system installed in 2012
• New Piz Kesch/Escha installed in 2015

• Processor performance (X86)
• Algorithms & system utilisation
• General software performance
• Port to GPU architecture
• Increase in number of processors
• Total performance improvement

• Bonus: simulation running on GPU is 3x
more energy efficient compared to
conventional state of the art CPU

Performance of COSMO running on new “Piz Kesch” compared to (in Sept. 2015)
(1) previous production system – Cray XE6 with AMD Barcelona
(2) “Piz Dora” – Cray XE40 with Intel Haswell (E5-2690v3)

Moore’s Law

Software  
refactoring

~40x

2.8x
2.8x

1.3x
2.3x
1.7x

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016

A factor 40 improvement with similar physical
footprint & ~30% reduction in power consumption

48

Albis & Lema (in production through 3/2016) New system: Kesch & Escha

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016

Origin of factor 40 performance improvement

49

• Past production system installed in 2012
• New Piz Kesch/Escha installed in 2015

• Processor performance
• Algorithms & system utilisation
• General software performance
• Port to GPU architecture
• Increase in number of processors
• Total performance improvement

• Bonus: simulation running on GPU is 3x
more energy efficient compared to
conventional state of the art CPU

Performance of COSMO running on new “Piz Kesch” compared to (in Sept. 2015)
(1) previous production system – Cray XE6 with AMD Barcelona
(2) “Piz Dora” – Cray XE40 with Intel Haswell (E5-2690v3)

~40x

2.8x
2.8x

1.3x
2.3x
1.7x = 11x

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016

So what is the baseline for exascale?

50

The state-of the art implementation of COSMO running at
DWD (Deutscher Wetterdienst) on multi-core hardware.

The refactored version of COSMO running at MeteoSwiss
on multi-core or GPU accelerated hardware.

~10x

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 51

1km-scale global simulations at exascale*?

• Today: 1km regional (refactored) models run at time compression ~100
• If we could implement a global model with same efficiency, we can weak-scale to globe
• Beyond weak scaling we will need;

• time compression ~1,000 for climate model in production
• time compression ~10,000 for spin up of coupled model

• We need to accelerate the computation by 100x compared to present day
simulations

*Exascale here is used for the timeline: DOE plans to deliver exascale supercomputers in 2023

• Example of COSMO, ICON (assuming the latter is as efficient at the former)
• Maybe speed up another factor 2 in strong scaling with current algorithms
• Expected improvements in hardware (2019) ~3x
• Maybe there is another factor 2 in hardware by early 2020s

• In the best of cases will need at least another factor 10 from somewhere else
• consider methods / algorithms
• co-design a more appropriate computing system?

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016

Conclusion

52

The answer depends on what you 2016 baseline is!

But for sure we will need more than exascale to solve our real problems  
(e.g. climate and meteorology)

Is it realistic to have the exascale systems we need  
in 2020 (China) or 2023 (USA/Japan)?

Outside the box solutions are needed

T. SchulthessMUG’16, Columbus, Tuesday, August 16, 2016 53

