
Sayantan Sur, Intel

(in collaboration with Jithin Jose and Charles Archer)

1



2

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for 
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, 
and SSE3 instruction sets and other optimizations. Intel does not guarantee the availability, 
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. 

Microprocessor-dependent optimizations in this product are intended for use with Intel 
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel 
microprocessors. Please refer to the applicable product User and Reference Guides for more 
information regarding the specific instruction sets covered by this notice.

Notice revision #20110804 



3

Motivation
MPI defines twelve types of collective 
operations, along with their corresponding 
vector, datatype, blocking/non-blocking and 
some neighborhood variants

There are a multitude of algorithms that can 
be used depending on topology

Increasing desire to reduce processor 
overhead and offload the collectives to the 
fabric

EXPLOSION in underlying APIs trying to 
expose every use case!



4

The Open Fabrics Interfaces (libfabric) way

The OFIWG is creating extensible, open source framework that is aligned with 
application needs for high-performance

There is no dedicated collectives offload interface defined yet

If we did the desired solution should be:

• Derived from application requirements

• Make use of the existing framework

• Avoid specialized interfaces if possible

• Should be generic in nature as far as possible

• Should be high-performance!



5

Summary of Collective Implementation Techniques

Using MPI Send 
and Receive

Using high-level 
Collective Library

Using Fabric 
Specific Features

Generalized 
Pattern Offload

• Limited Offload

• Can compose all 
algorithms

• Algorithm 
innovation resides 
in MPI library

• No visibility of 
algorithm in MPI

• Does not compose 
with other 
operations

• Problem simply 
pushed down

• Easy for developers

• Good performance 
on one generation of 
hardware

• Disruption/panic on 
next generation

• Hard for developers

• Can use to compose 
many algorithms

• True offload when 
vendor supports it, 
otherwise similar to 
MPI send/receive

• Algorithm innovation 
remains in MPI



6

Tell me more about these Generalized Patterns!

Communication patterns such as: A sends to 
B, B sends to C, C sends to A

User can describe an operation and then 
schedule it for future execution while 
specifying dependencies 

Fabric can make progress on the schedule

User can just wait for the completion of the 
entire schedule (not on a per operation basis)

1 2 3 4

5 6 7 8

Completion of ops 1-4
Causes ops 5, 6, 7, 8 to start 

9 10

Completion of ops 5,6
Causes ops 9, 10 to start 

CUser waits
on this counter

Completion of ops 7, 8, 9, 10
Causes counter C to tick



7

What is new?

Collective communication primitives proposed by DK Panda’s group

• “Design and Evaluation of Communication Primitives with Overlap Using ConnectX-
2 Offload Engine”

• Raw CORE-Direct APIs were not sufficiently composable

• The work proposed operations such as: one-to-many multi-send, many-to-one 
receive, receive replicate, receive-reduce, etc.

• The OFI proposal allows composition of 1:N, and N:1 operations using 1:1 
operations, and proposes send-reduce as the fundamental new op

Current proposal is inspired by Torsten Hoefler’s cDAG and GOAL

• The OFI proposal adds persistence, and techniques to update operations in 
place (such as changing send/receive buffer pointers)



8

Changes proposed to OFI for primitive offloading 

1. Prepare a command for future execution

2. Arrange commands in required dependency

3. Call into OFI to create the schedule structures

4. Run the schedule

5. A way to “update” commands that are already in a schedule

6. A send atomic function

7. Flags to optimize schedule execution



9

Preparing a command for future execution

Define a new flag FI_SCHEDULE to prepare a command

A command is referenced by struct fi_context

fi_sendmsg(struct fid_ep *ep,

const struct fi_msg *msg,

flags | FI_SCHEDULE);

FI_SCHEDULE flag causes provider not to send out message, rather return some opaque 
data filled in the context structure

The returned context structure is used later to execute the message

Works similarly for recv, rma, all other types of transactions



10

Arranging the commands

Schedule is expressed as a tree

Child nodes are executed after parent nodes are done executing

struct fi_sched_ops {
struct fi_context *ops;
uint32_t num_ops;
struct fi_sched_ops *edges;
uint32_t num_edges;
uint64_t flags;
void *reserved[8];

}

Concurrent set of ops
(context structures obtained
using FI_SCHEDULE)

Sub-trees that are executed
When the ops are complete

Useful for the provider
when BFS parsing the tree



11

Updating the commands and Send Atomic

In collective operations, the arguments change between calls, but the schedule 
remains the same

• Simply call sendmsg/recvmsg with FI_SCHEDULE flag

• The command will be updated “in place”

Define a new sendmsg() call in fi_ops_atomic

fi_atomic_send(struct fid_ep *ep, const struct fi_msg_tagged *msg, 

enum fi_op op, uint64_t flags);

The semantics of this call are just like send, with the addition that after the 
match occurs, op is applied to the matching receive buffer



12

Optimizing the Schedule Execution

Schedules are offloaded, and one of the primary issues to deal 
with is managing early arrivals – sender arrives before receive 
is posted

• There may be situations where the same receive buffer 
(R) appears in multiple levels of the tree, the second 
receive cannot be posted before the first is complete

Useful if app can declare that there are no such dependencies 
and schedule has been globally pre-posted

• FI_SCHEDULE_RECV_DISJOINT: all receive buffers are 
disjoint

• FI_SCHEDULE_REMOTE_READY: the remote side is 
already executing this schedule 

1 2 3 R

R 4 5 6

Strict dependency

Level 1

Level 2

Together, they help
avoid early arrivals



13

Example of how to use Eager mode in blocking 
collectives

MPI Communicator Creation:

1. Allocate three* sets buffers for 
small message allreduce

2. Create three fid_sched with flags
DISJOINT | REMOTE_READY

3. The schedules start with a receive 
operation, so until the first receive 
is matched, it doesn’t advance

4. Run two schedules – they will wait 
until the first matches

MPI Allreduce invocation:

1. Issue the first matching send 
operation

2. Post a schedule for the next 
invocation

3. Wait for current schedule to end

Posting of schedule 
overlapped with execution of 

Allreduce!
* = wait for next slide



14

Why do we need three sets of buffers?

Want to overlap the posting of schedule with execution of Allreduce

If we had only two sets of buffers and posted the schedule AFTER starting

Start iteration 1

Waiting for end of iteration 1

Start iteration 2

Post fid_sched for 
iteration 2

RACE!



15

Example of how to use for non-blocking collectives 

MPI Communicator Creation:

1. Create N fid_sched with flags
zeroed

2. Use NULL as buffer pointers

MPI Allreduce invocation:

1. Choose ith among N fid_sched

2. Update the buffer pointer in the 
schedules with the user buffer 
provided in invocation

3. Post the schedulePre-allocated fid_sched allow for 
certain number of concurrent 

non-blocking collectives



16

Conclusions and future work

A prototype implementation available on top of libfabric sockets provider:

• https://github.com/sayantansur/libfabric/tree/schedule

Work is progressing on expressing MPI collective algorithms into DAGs

Proposal will be brought up for discussion within OFIWG

• Participation is completely open and interested folks are welcome to 
contribute to the discussion

Performance evaluation with capable libfabric providers



Legal Notices and Disclaimers

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software 
or service activation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. 

Tests document performance of components on a particular test, in specific systems. Differences in hardware, 
software, or configuration will affect actual performance. Consult other sources of information to evaluate performance 
as you consider your purchase. For more complete information about performance and benchmark results, visit 
http://www.intel.com/performance.

Intel, the Intel logo, Xeon and Xeon Phi and others are trademarks of Intel Corporation in the U.S. and/or other 
countries. *Other names and brands may be claimed as the property of others. 

© 2016 Intel Corporation. 

17




