Caffe-MPI: A parallel Framework on the GPU Clusters

Shaohua Wu
Senior Software Engineer
wushh@inspur.com
Caffe-MPI

- What is Caffe-MPI?
 - Developed by Inspur
 - Open-source: https://github.com/Caffe-MPI/Caffe-MPI.github.io
 - Programmed by MVAPICH
 - Based on the Berkeley Vision and Learning Center (BVLC) single node version
 - A GPU Cluster version
 - Support 16+ GPUs to Train
Analysis of Caffe

- Caffe needs long training time for big data sets on a single node.
Caffe-MPI Architecture

• HPC Technology
 – Hardware arch: IB+GPU cluster+Lustre
 – Software arch: MPI+Pthread+CUDA

• Data parallel on GPU Cluster

<table>
<thead>
<tr>
<th>GPU Cluster Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPU master node</td>
</tr>
<tr>
<td>GPU Slave Node</td>
</tr>
<tr>
<td>Storage</td>
</tr>
<tr>
<td>network</td>
</tr>
<tr>
<td>Software</td>
</tr>
</tbody>
</table>
MPI Framework Design

- MPI Master-Slave model
 - Master Process: Multi Pthread Threads + CUDA Threads
 - Slave Process: CUDA Threads

Design of Master Process

• Master Process (0 process)
 – Three functions
 • Parallel read data and send data
 • Weight Computing and The parameter update
 • The parameter communication
Design of Slave Process

- Slave process
 - CPU
 - To receive training data from the master process
 - To send weight data (GPU-to-GPU)
 - To receive new net data (GPU-to-GPU)
 - GPU
 - ForwardBackward computing

- Slave Node
 - The number of Slave process = the number of GPU
Features of the Computing & Communication

- GPU parallel computing
- Computing & Communication asynchronous parallel
- Communication Optimization
 - GPU RDMA: Weight Data and Net data between GPUs

Total Time = \(\max(T_{\text{Read Data} + \text{Send Data}}, T_{\text{ForwardBackWord Computing} + \text{Weight Computing and Net Update} + \text{Net Send}}) \)
The Performance of Caffe-MPI

- Speed-up Ratio: \(16\text{GPU}/1\text{GPU}=10.45\times\)
- Scalability efficiency: 65%
Tuning 1: Change BatchSize

- Speed-up Ratio: 16GPU/1GPU = 10.74X
- Scalability efficiency: 67%
Tuning 2: Caffe-MPI+cuDNN

- 21% Performance improvement by cuDNN
- Speed-up: 16GPU vs. 1GPU = 12.66x
- Scalability: 79%

GoogleNet (Iterations = 4000, batch size = 64)
Tuning 3: Parallelizing Read and Send Data

- Parallelizing read training data from Lustre Storage and send data to different GPUs
 - GPU Cluster is divided into sub groups
 - Each group has a master node
 - Each master node read and send data in parallel with Multi Processes and Multi Threads

- Support large-scale GPU computing platform for large training data set
The Performance of Caffe-MPI

- Speed-up Ratio: 16GPU/1GPU = 13X
- Scalability efficiency: 81%
Caffe-MPI Plan

- Plan:
 - Support cuDNN 4.0
 - MPI tuning
 - Symmetric model
Conclusions

• Caffe-MPI
 – 13x performance improvements: 16 GPU vs. 1GPU
• Support 16+ GPU for large data sets
 – Improved master-slave model
• Open source
THANKS