

Caffe-MPI: A parallel Framework on the GPU Clusters

Shaohua Wu Senior Software Engineer wushh@inspur.com

Caffe-MPI

- What is Caffe-MPI?
 - Developed by Inspur
 - Open-source: https://github.com/Caffe-MPI/Caffe-MPI.github.io
 - Programmed by **MVAPICH**
 - Based on the Berkeley Vision and Learning Center (BVLC) single node version
 - A GPU Cluster version
 - -Support 16+ GPUs to Train

Analysis of Caffe

INSPUC 浪潮

 Caffe needs long training time for big data sets on a single node.

Caffe-MPI Architecture

- HPC Technology
 - Hardware arch: IB+GPU cluster+Lustre
 - Software arch: MPI+Pthread+CUDA
- Data parallel on GPU Cluster

MPI Framework Design

MPI Master-Slave model

- Master Process: Multi Pthread Threads+CUDA Threads
- Slave Process: CUDA Threads

Xing. More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server.

Design of Master Process

- Master Process (0 process)
 - Three functions
 - Parallel read data and send data
 - Weight Computing and The parameter update
 - The parameter communication

Design of Slave Process

- Slave process
 - CPU
 - To receive training data from the master process
 - To send weight data(GPU-to-GPU)
 - To receive new net data(GPU-to-GPU)
 - GPU
 - ForwardBackward computing
- Slave Node
 - The number of Slave process = the number of GPU

Inspur 浪潮 Features of the Computing & Communication

- GPU parallel computing
- Computing & Communication asynchronous parallel
- Communication Optimization
 - GPU RDMA: Weight Data and Net data between GPUs

Total Time=max(T_{Read Data+Send Data}, T_{ForwardBackWord Computing+ Weight Computing and Net Update+ Net Send}

<u>The Performance of Caffe-MPI</u>

- Speed-up Ratio: 16GPU/1GPU=10.45X
- Scalability efficiency: 65%

Tuning 1: Change BatchSize

- Speed-up Ratio: 16GPU/1GPU=10.74X
- Scalability efficiency: 67%

Tuning 2 : Caffe-MPI+cuDNN

- 21% Performance improvement by cuDNN
- Speed-up: 16GPU vs. 1GPU = 12.66x
- Scalability: 79%

Inspur線 Tuning 3: Parallelizing Read and Send Data

- Parallelizing read training data from Lustre Storage and send data to different GPUs
 - GPU Cluster is divided into sub groups
 - Each group has a master node
 - Each master node read and send data in parallel with Multi Processes and Multi Threads
- Support large-scale GPU computing platform for large training data set

The Performance of Caffe-MPI

- Speed-up Ratio: 16GPU/1GPU=13X
- Scalability efficiency: 81%

INSPUC 浪潮

Caffe-MPI Plan

- Plan:
 - Support cuDNN 4.0
 - MPI tuning
 - Symmetric model

Conclusions

- Caffe-MPI
 - 13x performance improvements: 16 GPU vs. 1GPU
- Support 16+ GPU for large data sets
 - Improved master-slave model
- Open source

THANKS