

Proudly Operated by **Battelle** Since 1965

Evaluating Novel Networks: Combining Empirical and Predictive Test-beds in CENATE

Performance and Architecture Lab (PAL) Pacific Northwest National Laboratory

Darren Kerbyson Associate Division Director and Lab Fellow, High Performance Computing

Work with: Kevin J. Barker, Ryan Friese, Roberto Gioiosa, Nitin Gawande, Adolfy Hoisie, Gokcen Kestor, Andres Marquez, Matthew Macduff, Shuaiwen Leon Song, Nathan Tallent, Antonino Tumeo

MUG, August 16th-17th, 2016

Overview of Systems @ PNNL

Cascade (3.4PF): User facility for DOE SC BER

- 1440 2-socket 8-core lvybridge + 2-socket Intel Phi + 128GB/node, InfiniBand
- Constance (0.26PF): Institutional Computing

452 2-socket 12-core Haswell + 64GB/node, InfiniBand

- "On-ramp systems"
 - Nvidia K80's, Cloud Testbed, Hadoop cluster, KNL
- Testbeds (CENATE)
 - Seapearl (instrumented cluster), Data Vortex, DGX-1, HMC, Contutto, network testbed …
- MVAPICH available on most systems
 - Library of choice
 - Higher performing, easier to use, easier to install
 - Leading edge optimizations, binding processes support, SLURM integration,
 - Interest in monitoring tools: INAM, OEMT

Proudly Operated by Battelle Since 1965

2

Center of Advanced Technology Evaluation (CENATE)

- Pacific Northwest
 - Proudly Operated by **Battelle** Since 1965

- Advanced technology evaluations
- Instrumentation for power and performance

- Testbed infrastructure for high-throughput evaluation
- Predictive exploration: integration of results from empirical evaluations with modeling and simulation
 - Impact at scale; "what-ifs"; for DOE apps

Technology Fragmentation Across the Hardware/Software Stack

Proudly Operated by Battelle Since 1965

Technology Fragmentation Across the Hardware/Software Stack

Proudly Operated by Baffelle Since 1965

CENATE Covers a Multidimensional Technology Space

Proudly Operated by **Battelle** Since 1965

Advanced Measurement Laboratory (AML)

Proudly Operated by Battelle Since 1965

- AML provides infrastructure to measure
 - Early Engineering Boards
 - Subsystem Prototypes (e.g., HMC)
 - Small Systems
- AML measures
 - Performance
 - Time-to-solution
 - Performance counters
 - Power
 - System Wall Power
 - Internal Shunts and Hall-sensors
 - Temperature
 - Thermo-Couples
 - Thermal cameras
- Building up FPGA capabilities
 - Xilinx and Altera Toolkits
 - Mentor Graphic's Modelsim

SEAPEARL: Integrated Power, Performance, and Thermal Measurement

Critical needs

- Ability to study power consumption and thermal effects at scale
- Correlation of measurements to workload features (not steady state)
- Platform for development of modeling and optimization capabilities
- SEAPEARL: A Unique Resource
 - High-fidelity power measurement
 - Spatial: separate CPU from memory
 - Temporal: low sampling period of 1 ms
 - Coupled thermal information
 - Advanced architectures: x86 multicore and AMD Fusion (integrates CPU and GPU)
- Offline analysis and potential for online (dynamic) optimization

Proudly Operated by Baffelle Since 1965

CENATE: Establishing Best Practices for Measurements

- Integrating state-of-the-art measurements into Idiosyncratic systems
 - Best practices: Measurement is a science and a craft
- Multi-tier approach:
 - Tier 1: external, low-resolution, available to all system
 - Tier 2: internal, system specific, vendor based (e.g., RAPL, Amester, Data Vortex ...)
 - Tier 3: external, high-resolution, invasive, need vendor support (e.g., Power Insight)
- Measurements:
 - In-band: synchronous with apps (e.g., performance counters)
 - Out-of-band: asynchronous with apps (e.g., power meters)
- Interaction with vendors is essential:
 - Understand position of sensors
 - Access to "special" systems and proprietary software
- Multiple Metrics of interest:

Instrumentation Granularity Affects Insight

- Coarse spatial and temporal instrumentation may hide important information
 - e.g., peak power/temperature consumption
- Example for scalar pentadiagonal solver with 32 parallel threads
 - Peak power measured with 0.1 second granularity is much higher (9.7 W/core) than the one measured with 1 second granularity (7.8 W/core)

Evaluation Strategy: Need to Overcome Architectural Diversity

Proudly Operated by Battelle Since 1965

Solution-oriented:

- What is the best hardware/software solution for my problem?
- "Future proof": Same problems, different solutions
 - Leverage experiences gained from DARPA SEAK
 - Functional descriptions (input/output)
 - Input generators, output correctness checkers
- Problem interface is fixed; algorithm and architecture are variables
- End-user trade-off evaluation: performance versus power versus accuracy
- Encourage creative solutions, e.g., co-design
- Text Image Classification: Recognize handwritten digits

Output: label (0 to 9), error rate

Trade-off Evaluation

Proudly Operated by Battelle Since 1965

Sample Workloads

Numeric:

- nekbone, coMD, miniAMR, miniFE, SNAP, LULESH, MCB, AMG2013,
- UMT2013, RSBench, XSBench, HPCG,
- FFT, Space-Time Adaptive Processing, Synthetic Aperture Radar, Text Image Classification, Wide Area Motion Imaging, Image Fusion
- Machine Learning/Data Analytics:
 - Support Vector Machine, K-Nearest Neighbor, K-Means, Spectral Clustering, FP-Growth, MLP Neural Networks
- Graph Analytics:
 - Graph clustering, Vertex matching, page rank, Breadth-first-search

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

Testbed Classification

 Superconductive Processing (Single Flux Quantum (SFQ), Adiabatic Quantum Computing (AQC))

Networks: Data Vortex

- Novel network technology based on topology fundamentals
 - Ensures high probability of contention-free transport
 - Enables very small packet (64-bit) transport
 - Analyzing network performance/power for applications of interest: highdimensional PDE, FFTs, finely partitioned data-intensive applications
- Vortex Interface Controller (VIC)
 - FPGA + 32 MB static RAM
 - Preparation and packet buffering

The Data Vortex Switch Topology

"Exploring Data Vortex Network Architectures" R. Gioiosa, T. Warfel, J. Yin, A. Tumeo and D. Haglin, Hot Interconnects, Santa Clara, August 2016.

Networks and Storage: Scalability Cluster

- Advanced HPC scale out solutions with emphasis on network and storage exploration
- Aim to provide flexible test-bed to explore issues at scale
- Emulate large network within smaller node footprint

Physical

- Enable large-scale issues to be explored (collectives, contention, topology)
- Validation on larger network for modeling, and prediction at scale

Emulated

- Exploring a flexible network reconfiguration (OCS) option
 - Dynamic topology reconfiguration (system book, job submission, intra-job also possible)

Predictive modeling

scale

 First 128 network end-points scalability cluster system expected fall 2016 (15-month Technology Refresh Cycle)

Proudly Operated by Battelle Since 1965

Infiniband + OCS

- Re-cabling of system in 50ms
- Possible configurations:
 - A) OCS to side of IB

B) OCS between nodes and IB

ModSim within CENATE

Modeling and Simulation will be used to explore:

- System scales that cannot be directly measured
- Systems integrating disparate technologies
- Multiple alternative system configurations
- Quantify trade-offs between multiple metrics of interest:
 - Performance
 - Power and energy consumption
 - Impact of thermal variation, faults, and fault mitigation
- Modeling builds on the CENATE foundation:
 - Application-centric models are derived from workload applications
 - Models are parameterized using measurements taken on instrumented testbeds (micro-benchmarks isolate "atomic" performance characteristics)
 - Models are validated at small-scale
- Key contribution of modeling is insight:
 - Rapid turnaround from system specification to performance quantification
 - Issues in performance can be traced to root causes
 - Quantify interplay between application characteristics and system

CENATE Modeling @ Scale: Network Analysis

- Model impact of network topology on communication performance and energy
- Explore mainstream networks considered in DOE *Forward programs

2-Level Fat-tree R=8

Dragonfly R=8

** Note: Examples shown with small-radix switches.

3-Level Fat-tree R=6

Dragonfly+ R=8

Modeling Possible Future Silicon Photonics Networks

- Proudly Operated by **Battelle** Since 1965
- Disparate technologies from IBM (internode) and Oracle (intranode)
- Modeling enabled:
 - Possible "marriage" options to be explored overcoming separation barriers
 - Quantified advantages over expected future electrical networks
 - Analyzed in the context of key graph analytic applications

- Oracle Macrochip intra-node network
 - 64 compute/memory sites fully connected
 - 2 GB/s per site pair (128 GB total)
 - 32 ports I/O per macrochip (for internode)
 - IBM TOPS inter-node network
 - 64 node system
 - 256x 64x64 optical switch planes^{300%}
 - 16 wavelengths per fiber
 - 20 GB/s BW per wavelength
- Improvement due to:
 - Improved link bandwidth
 - Greater link concurrency
 - Varied topological routing

Proudly Operated by Baffelle Since 1965

- Empirical evaluation of current "interesting" technologies
 - From device to system level
- Predictive evaluation of possible systems
 - Scalability: from empirical evaluations at small scale
 - Future technologies
 - allow for the "virtual" integration of technologies (e.g. Silicon Photonics, DV +HMC)
- Application centric
- Network testbeds:
 - Data Vortex: One-sided MPI over DV ??
 - IB + OCS Cluster: handling dynamic topology changes (inter- or intra- job) ??
 - Silicon Photonics: Exploring potential (performance / Energy)