
SYSTAP™, LLC
© 2006-2014 All Rights Reserved

Using MVAPICH2-GDR for multi-GPU
data parallel graph analytics

T. James Lewis

SYSTAP™, LLC
© 2006-2014 All Rights Reserved

Overview

1. Review of previous results
• Slides from MUG 2014

2. Recent issues
• Current CUDA driver/runtime reduced performance
• Single-node system performs worse than cluster

3. Future plans
• GPU accelerated graph database
• Translation from Scala DSL

SYSTAP™, LLC
© 2006-2014 All Rights Reserved

Slides from MUG 2014

Parallel Breadth First Search

on GPU Clusters

using MPI and GPUDirect

Speaker: Harish Kumar Dasari,

Scientific Computing and Imaging Institute, University of Utah

Advisor: Dr. Martin Berzins, SCI, University of Utah

In collaboration with Dr. Zhisong Fu, Bryan Thompson, Systap, LLC.

http://sourceforge.net/projects/mpgraph/

Introduction
● Breadth First Search: It is a graph search algorithm that begins at

the root vertex and explores all the connected vertices, traversing all

vertices of a particular level before traversing the vertices of the next

level

● At the end of the BFS we can find out the level of a vertex if it is

connected to the root element and also its predecessor

● Useful in social media, logistics and supply chains, e-commerce,

counter-terrorism, fraud detection etc.

Introduction

● Why BFS?

○ Least work/byte of the graph algorithms

○ Building blocks for many other graph problems

● Why GPUs?

○ High Performance: NVIDIA K40 peak performance: 1.43 Tflops

○ High Energy Efficiency

○ Central for next generation of architectures

Related Work
● Scalable GPU Graph Traversal - Single node multi-GPU, Merrill,

Garland et al.

○ Around 12x speedup over idealized multi-core CPU

○ 3 GTEPS on single node

● MapGraph, Fu, Thompson et al.

○ Generalized for many graph algorithms using Gather Apply Scatter

(GAS) abstraction

○ Provides an easy framework for the developer to develop solutions to

other graph problems like SSSP(Single Source Shortest Path),

PageRank etc.

Gather Apply Scatter

Related Work

● Breaking the Speed and Scalability barriers for graph

exploration on distributed-memory machines by Checconi,

Petrini et al from IBM

○ BFS on Bluegene supercomputers, uses CPUs

○ On Graph500 data sets, on the order of 240 edges

○ 254 billion edges/sec with 64k cores

○ Uses 2D partitioning and waves for communication

Partitioning of the Graph

● RMAT graph generated using the Graph500 generator

○ Scale Free

○ Follows power law, at least asymptotically

○ undirected edges are converted to directed edges

● 2-D Partitioning of directed edges with a square layout

● Each subgraph resides in GPU memory

● Bitmaps used to represent the frontiers

○ Bit is set to 1 to represent active vertex

A B

0 1

Bitmap

The Algorithm and Communication

● Each GPU Gij takes in its input frontier bitmap Ini
t and perform

BFS on its subgraph to produce Outij
t

● Parallel Scan for bitmaps along the row Ri to produce prefix

sum Prefixij in Bitwise-OR

The Algorithm and Communication

● The Prefix is used to determine the vertices the GPU is

assigned for predecessor updates

● Outi
t is broadcast across row Ri and also as Ini

t+1 across

column Ci

Experimental Setup

● 32 nodes and 64 NVIDIA K20c GPUs with 5GB DDR5 memory

● Two Mellanox InfiniBand SX6025 cards per node

● CUDA 5.5 used for these results

● Used GPUDirect support in MVAPICH2-GDR to avoid explicit copy

of messages to host memory

Results - Strong Scaling

● The scale of the problem remains the same as we increase the

computational resources (GPUs)

● GTEPS= Giga(Billion) Traversed Edges Per Second = 109 edges

per second

GPUs Scale Time GTEPS

16 25 0.075 2.5

25 25 0.066 6.3

36 25 0.059 15.0

64 25 0.047 29.1

Number of Vertices in graph = 2SCALE

Number of Directed Edges in graph = 32*2SCALE

Results - Weak Scaling

● Problem size grows proportional to the growth in computational

resources (GPUs)

● Each GPU has same amount of work?

GPUs Scale Time GTEPS

1 21 0.0254 14.3

4 23 0.0429 16.4

16 25 0.0715 18.1

64 27 0.1478 22.7

Number of Vertices in graph = 2SCALE

Number of Directed Edges in graph = 32*2SCALE

Communication vs Computation

For Weak Scaling

● Even if the work per GPU remains the same, the communication

costs grow

● Impacts weak Scalability

Breakdown of Timings

● Near constant communication times across iterations

● Load Imbalance in the first iterations

SYSTAP™, LLC
© 2006-2014 All Rights Reserved

Recent Issues

Reduced performance with version updates
Nvidia PSG cluster: 16 K40s across 4 nodes

• Cuda 5.5
• MVAPICH2-GDR 2.0b
• 18.74 GTeps

• Cuda 7.0
• MVAPICH2-GDR 2.1 rc2
• 9.13 GTeps

Only 48% of previous performance

SYSTAP™, LLC
© 2006-2014 All Rights Reserved

Recent Issues

Disappointing Single Node Performance
16 MPI processes

Scale 25 graph
• Cirrascale
• 8x K80 (16 GPU)
• Full PCIe-3 16x
• Cuda 7.0
• MVAPICH2-GDR 2.1 rc2
• 2.20 GTeps

• Nvidia PSG Cluster
• 4 Nodes, 16 K40
• Cuda 7.0
• MVAPICH2-GDR 2.1 rc2
• 9.13 GTeps

SYSTAP™, LLC
© 2006-2014 All Rights Reserved

Future Plans

• GPU accelerated graph database
• BlazeGraph graph database (Java)
• Accelerate SPARQL queries with GPU

• Translation from Scala DSL
• DSL defined operators
• Graph algorithms written in Scala
• Scala translated to native GPU code
• High performance without GPU experts

SYSTAP™, LLC
© 2006-2014 All Rights Reserved

Questions

