
Enabling Technology Trends in High
Performance Computing

Karl W. Schulz, Ph.D.
Enterprise High Performance Computing Group, Intel

MVAPICH User Group Meeting w August 2015, Columbus, Ohio

Acknowledgements: Paul Besl, Chris Cantalupo, Boyd Davis, CJ Newburn, Ravi Murty,
James Reinders, Bob Chesebrough

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions.
Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist
you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2014, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks
of Intel Corporation in the U.S. and other countries.

2

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

Legal Disclaimer and Optimization Notice

Outline

•  Exascale challenges and motivation

•  Current generation many core architecture

•  Potential software items of interest

•  Future hardware directions

•  Sidebar - Community Supported HPC Repository

3

Motivation

Compute power appetite for
computational science is insatiable:

•  we always need more:
-  higher fidelity simulations
-  parametric design
-  multi-physics coupling

•  problem is further exacerbated with
emerging disciplines like UQ:
-  sampling algorithms
-  high-order (intrusive) applications
-  ensemble methods

Top500 has been outpacing Moore’s
Law for the last 20 years helping to
keep pace with computational
demand

But, there is a limit with CMOS
technology and the total power
budget we can apply to future
systems

Top500 History

June	
 2014	
 Top	
 500	
 List	

Source:	
 www.top500.org	

Top500 Combined Pflop/s History
Growth of Co-processor / Accelerators

Co
m

bi
ne

d
Pfl

op
s/

s

Intro.

4 of the current Top10
systems (June 2015) utilize
coprocessors or GPUs

Intel® Xeon Phi™ Architecture - Knights Corner

6

Exascale Motivated Architectures
Current generation Xeon Phi (Knights Corner)

Basic Design Ideas:
•  Leverage x86 architecture (a CPU with many cores)

•  Use x86 cores that are simpler, but allow for more
compute throughput

•  Leverage existing x86 programming models

•  Dedicate much of the silicon to floating point ops.,
keep some cache(s)

•  Keep cache-coherency protocol

•  Increase floating-point throughput per core (the power
efficiency argument)

•  Implement as a separate device

•  Strip expensive features (out-of-order execution,,
branch prediction, etc.)

•  Widened SIMD registers for more throughput (512 bit)

•  Fast (GDDR5) memory on card

Parallel Programming Models for Xeon Phi

On-Node: Predominant parallel programming model(s):
•  Fortran: OpenMP, MKL
•  C: OpenMP/Pthreads, MKL, Cilk
•  C++: OpenMP/Pthreads, MKL, Cilk, TBB

Off-Node:
•  thru host (who then uses MPI)

•  MPI directly

Other conveniences
•  MIC has familiar Linux-like environment
•  you can login into it via ssh
•  you can run “top”, debuggers, your native binary, etc
•  can access your files through NFS, Lustre
•  can run host-only, host+offload, native, or symmetric

Intel® Xeon Phi™ Coprocessor-based Clusters
Multiple Programming Models

offload

Offload

CPU Coprocessor

CPU Coprocessor

Native

CPU Coprocessor

CPU Coprocessor

Pthreads, OpenMP*, Intel® Cilk™ Plus,
Intel® Threading Building Blocks used
for parallelism within MPI processes

Data

Data

Data

Data

Data

Data

Symmetric

CPU Coprocessor

CPU Coprocessor

Data

Data

Data

Data

offload

New models

MPI Messages

Offload data transfers

* Denotes trademarks of others

MVAPICH2-MIC
available to run
native MPI code on
Phi

Example of Offload Execution

!dec$ offload target(mic:0) in(a, b, c) in(x) out(y)
!$omp parallel
!$omp single
 call system_clock(i1)
!$omp end single
!$omp do
 do j=1, n
 do i=1, n
 y(i,j) = a * (x(i-1,j-1) + x(i-1,j+1) + x(i+1,j-1) + x(i+1,j+1)) + &
 b * (x(i-0,j-1) + x(i-0,j+1) + x(i-1,j-0) + x(i+1,j+0)) + &
 c * x(i,j)
 enddo
 do k=1, 10000
 do i=1, n
 y(i,j) = a * (x(i-1,j-1) + x(i-1,j+1) + x(i+1,j-1) + x(i+1,j+1)) + &
 b * (x(i-0,j-1) + x(i-0,j+1) + x(i-1,j-0) + x(i+1,j+0)) + &
 c * x(i,j) + y(i,j)
 enddo
 enddo
 enddo
!$omp single
 call system_clock(i2)
!$omp end single
!$omp end parallel

Kernel	
 of	
 a	
 finite-­‐difference	
 	

stencil	
 code	
 (f90)	

Things we are learning from current generation
Xeon Phi....

•  Performance tuning efforts on Xeon Phi repeatedly leading to
improvements for host Xeon as well

•  Wider vector units - we need to make sure we are taking advantage of
them:
-  Un-vectorized loops loose 4x performance on Sandy Bridge and

8x performance on Phi
-  Quick sanity check for evaluating code readiness for running on Phi

o  compile your application with and without vectorization
o  if a significant performance difference is not observed, likely want to spend some quality

time with the compiler (more on that later)

•  Thread affinitization even more important on Phi with 200+ threads to
manage - each application is a beautiful unique flower in this regard

•  OS scaling and SMP limits with Linux pushed with 60+ cores (eg. boot and
jitter)

10

Software: updates for an old friend

•  We know OpenMP has been a
popular defacto standard for
shared-memory parallelism in
computational science apps

•  Not originally intended to support
notion of “offloading” kernels

•  Also did not target SIMD
vectorization

•  Latest OpenMP 4.0 standard
endeavors to address some of
these issues

New items in OpenMP 4.0

•  Support for accelerators (or
heterogeneous devices)

•  Thread affinity

•  SIMD support for vectorization

•  Thread cancellation

•  Fortran 2003 support

•  Extended support for:
–  Tasking
–  Reductions
–  Atomics

From: E. Stotzer, “OpenMP 4.0 Acceleration”,
IXPUG’14, Austin, TX

12

OpenMP 4.0 - Support for Offload

•  Use target construct to:
§  transfer control from the host to the device (a la previous offload stanza)
§  establish a device data environment (if not done yet)

•  Host thread waits until offloaded region is completed
•  Newer Intel compiler toolchains have support for OpenMP 4.x

semantics

target Construct Example

• Use target construct to
– Transfer control from the host to the device
– Establish a device data environment (if not yet done)

• Host thread waits until offloaded region completed
– Use other OpenMP constructs for asynchronicity

#pragma omp target map(to:b[0:count]) map(to:c,d) map(from:a[0:count])
{

#pragma omp parallel for
for (i=0; i<count; i++) {

a[i] = b[i] * c + d;
}

}

host
target

host

From: E. Stotzer, “OpenMP 4.0 Acceleration”,
IXPUG’14, Austin, TX

OpenMP 4.0 - Support for SIMD directives

In this example, the
programmer asserts:

•  *p is loop invariant

•  A[] does not overlap with B[] or C[]

•  sum not aliased with B[] or C[]

•  sum should be treated as a reduction

•  Allow compiler to reorder for better vectorization

•  Vector code should be generated even if efficiency heuristic does not
indicate a gain in performance

13

#pragma omp simd reduction(+:sum)
for(i = 0; i < *p; i++) {
 A[i] = B[i] * C[i];
 sum = sum + A[i];
}

14

Additional Enhancements for current
generation Xeon Phi

•  hstreams is a library for concurrent streams in a
heterogeneous context
§  originally introduced with MPSS 3.4 as preview release
§  enables users to enqueue computation and communication in streams, enabling

concurrency among the host and one or more coprocessors, or among tasks
within a coprocessor

•  Performance improvements for hstreams coming in next
MPSS release (3.6)
§  includes ability to feed streams to cores on same host
§  offers improved load balancing using host/Phi
§  net effect, can get improved dgemm performance using host+Phi vs. current

automatic offload (AO)

15

Coming Hardware

•  Next Generation Intel® Xeon Phi™: Knights Landing

•  Next Generation Fabric: Intel® Omni-Path

16

Overview of Knights Landing

…

…

 .
 .
 .

 .
 .
 .

Integrated Intel® Omni-Path

Over 60 Cores

Processor Package

. . .
. . .

. . .

. . .
 . . .

 . . .
 . . .

Compute
§  Intel® Xeon® Processor Binary-Compatible
§  3+ TFLOPS1, 3X ST2 (single-thread) perf. vs KNC

§  2D Mesh Architecture

§  Out-of-Order Cores

On-Package Memory

§  Over 5x STREAM vs. DDR43

§  Up to 16 GB at launch

Platform Memory
Up to 384 GB DDR4 (6 ch)

Omni-Path
(optional)

§  1st Intel processor to integrate

I/O Up to 36 PCIe 3.0 lanes

Overview of Knights Landing (KNL)

•  Microarchitecture based on 14 nanometer manufacturing process
•  Based on Intel® Silvermont with HPC enhancements
•  4 Threads / Core
•  Deep out-of-order buffers
•  Gather/scatter in hardware
•  Advanced branch prediction
•  2D Core mesh architecture
•  Binary compatible with Intel® Xeon® Processors

•  Standalone bootable processor (running the host OS) and a PCIe coprocessor

•  Integrated high performance on-package memory (MCDRAM library)

•  Flexible memory modes for the on package memory including cache and flat

•  Support for Intel® Advanced Vector Extensions 512 (Intel® AVX-512)

•  70+ cores, 3+ TeraFLOPS of double-precision peak theoretical performance
per single socket node

•  No MPSS on KNL bootable processor - everything running natively

•  Binary compatibility with Xeon (except TSX)

17

Overview of Knights Landing (KNL) - On Package
Memory

•  AKA ‘on-package memory’, ‘high-bandwidth memory’, MCDRAM
•  Partnership with Micron Technology

•  > 400 GB/s

•  Up 16GB (at launch)

•  NUMA support

•  Over 5x energy efficiency, 3x density vs. GDDR5

•  Multiple usage models, including ‘L3 cache’ and ‘flat’

•  Direct memory allocation can be coordinated with use of memkind
library

Note: Introduces a new degree of freedom exposed for
applications and MPI

A Heterogeneous Memory Management
Framework

•  The memkind library

•  Defines a plug-in architecture

•  Each plug-in is called a “kind” of
memory

•  Built on top of jemalloc: the FreeBSD
OS default heap manager

•  Partition is defined by functions that
provide inputs for operating system
calls

•  High level memory management
functions can be over-ridden as well

•  Available via github:
https://github.com/memkind

•  The hbwmalloc interface

•  The high bandwidth memory interface

•  Implemented on top of memkind
interface

•  Simplifies memkind plug-in (kind)
selection

•  Uses all kinds featuring on package
memory on the Knights Landing
architecture

•  Provides support for 2MB and 1GB
pages

•  Select fallback behavior when on
package memory does not exist or is
exhausted

•  Check for existence of on package
memory memkind library can be used today to

simulate high-bandwidth memory

MCDRAM as Cache Flat Mode

•  Upside
§  No software modifications required.
§  Bandwidth benefit.

•  Downside
§  Latency hit to DDR.
§  Limited sustained bandwidth.
§  All memory is transferred DDR ->

MCDRAM -> L2.
§  Less addressable memory.

•  Upside
§  Maximum bandwidth and latency

performance.
§  Maximum addressable memory.
§  Isolate MCDRAM for HPC

application use only.

•  Downside
§  Software modifications required to

use DDR and MCDRAM in the same
application.

§  Which data structures should go
where?

§  MCDRAM is a limited resource and
tracking it adds complexity.

Quick hbwmalloc Examples (C/Fortran)

21

#include <hbwmalloc.h>
float *fv;
fv = (float *)malloc(sizeof(float)*1000);

Allocate 1000 floats from DDR

#include <hbwmalloc.h>
float *fv;
fv = (float *)hbw_malloc(sizeof(float)*1000);

Allocate 1000 floats from MCDRAM

c Declare arrays to be dynamic
 REAL, ALLOCATABLE :: A(:), B(:), C(:)

!DIR$ ATTRIBUTES FASTMEM :: A

 NSIZE=1024
c
c allocate array ‘A’ from MCDRAM
c
 ALLOCATE (A(1:NSIZE))
c
c Allocate arrays that will come from DDR
c
 ALLOCATE (B(NSIZE), C(NSIZE))

Similar example in
Fortran using Intel
Parallel Studio
toolchain

Intel® Omni-Path Architecture Product Portfolio

Custom
Mezz

& PCIe
Cards

Custom
Switches

Standard
PCIe

Board1
[code name
Chippewa

Forest]

HFI
ASIC

Host Fabric Interface (HFI)

“Wolf River” (HFI) Silicon
 2 x 100 Gbps, 50 GB/sec Fabric Bandwidth

“Prairie River” Switch Silicon
 48 ports, 9.6Tb/s, 1200 GB/sec Fabric Bandwidth

Switch

Intel® Xeon®
processor and

Intel® Xeon Phi™
coprocessor

with integrated
Host Fabric

Interface (HFI)

Intel® Omni-Path
Director Class

Switch1

[code name
Sawtooth Forest]

1 Will be available as both a reference design and Intel-branded product

Intel® Omni-Path
Edge Switch1

[code name
Eldorado Forest]

Switch
ASIC

Cables

 Passive
Copper &

Active
Optical

Cable (AOC)

Product Line

AOC*

Passive
Cu 
Cable

Host Layer Optimization:
Higher Messaging Rates, Low End-to-End Latency

•  High MPI & PGAS messaging rate
-  4th generation PSM tuned MPI Library

-  Improves HPC application performance & scaling

•  Low end-to-end latency that stays low at scale
-  Connectionless implementation with hardware assist for Verbs

-  Improves application performance at scale
-  Excellent file system throughput

23

Intel® Xeon®
Processor

HFI PC
Ie

C

ar
d

Knights
Landing (KNL)

Processor

HFI

Knights
Landing (KNL)

HFI

PC
Ie

 C
ar

d

Future 14nm
Processor

HFI

In Planning

Future 14nm
Processor

HFI

PC
Ie

 C
ar

d

FUTURE

Host Fabric
Interconnect

(HFI)
Options

TODAY

Omni-Path + MVAPICH2

•  Good news is that MV2 should work out of the box with PSM
(Sayantan’s talk has more details)

•  I have personally run with MV2 over Omni-Path between
•  KNL<-> KNL

•  KNL <-> Haswell

•  Quick reminder on effect
of using PSM on today’s
 True Scale hardware

24

0"

500"

1000"

1500"

2000"

2500"

3000"

3500"

1" 16" 256" 4096" 65536" 1048576"

Ba
nd

w
id
th
)(M

B/
s)
)

Message)Size)(Bytes))

MVAPICH23OFA"

MVAPICH23PSM"

Intel True Scale QDR - MVAPICH2 2.1

Announced	
 Future	
 Systems	

Supercomputers	
 with	
 Knights	
 Landing	

>9300	
 Knights	
 Landing	
 nodes	

Open	
 science	
 system	

*Source:	
 NERSC.gov	
 announcement	
 April	
 29,	
 2014	
 .	
 DOE-­‐-­‐NaKonal	

Energy	
 Research	
 ScienKfic	
 CompuKng	
 Center	

Other	
 brands	
 and	
 names	
 are	
 the	
 property	
 of	
 their	
 respecKve	

owners.	
 Knights	
 Landing:	
 Next	
 generaKon	
 Intel®	
 Xeon	
 PhiTM	

processor	
 and	
 Intel®	
 Xeon	
 PhiTM	
 coprocessor	
 	

System	
 name:	
 Cori	
 	
 System	
 name:	
 Trinity	

	

Mix	
 of	
 Haswell	
 and	
 Knights	
 Landing	

*Source:	
 nnsa.energy.gov	
 announcement	
 July	
 10,	
 2014	
 and	
 HPC	
 Wire	

July	
 10,2014	

Announced	
 Future	
 Systems	

Follow-­‐on	
 hardware	
 generaDons	

connected and communicating via a high-performance system fabric to achieve

landmark throughput. The nodes will be linked to a dedicated burst buffer and a

high-performance parallel storage solution.

A second system, named Theta, will be delivered in 2016. Theta will be based on

Intel’s second-generation Xeon Phi processor and will serve as an early production

system for the ALCF.

System Features Mira Aurora

 Compute Nodes 49,152 >50,000

 Processor PowerPC A2 1600 MHz 3rd Generation Intel Xeon Phi

 System Memory 768 TB >7 PB DRAM and persistent
memory

 System Interconnect IBM 5D torus interconnect
with VCSEL photonics

 2nd Generation Intel Omni-
Path Architecture with silicon
photonics

 File System Capacity 26 PB GPFS >150 PB Lustre

 Intel Architecture (x86-64)
Compatibility

 No Yes

 Peak Power Consumption 4.8 MW 13 MW

Source: http://aurora.alcf.anl.gov

Sidebar: Interest in Community Supported
HPC Repository?

27

Many sites spend considerable effort aggregating a large suite of open-source
projects on top of their chosen Linux distribution to provide a capable HPC
environment for their users

•  necessary to obtain HPC focused packages that are either absent or do not keep pace from Linux distro
providers

•  local packaging or customization frequently tries to give software versioning access to users (e.g. via
modules or similar equivalent)

They frequently leverage a mix of external and in-house tools for:

•  provisioning, software installations/upgrades, config management schemes, and system diagnostics
mechanisms.

•  although the functionality is similar, the implementations across sites is often different which can lead to
duplication of effort

On the developer side, many successful projects must engage in continual triage and
debugging regarding configuration and installation issues on HPC systems

Motivation for Community Effort

from ISC’15 BoF Session

Q: is there enough overlap in the software packages being assembled, the
deployment use cases, and management strategies such that a community
driven effort could help to provide a centralized element for HPC systems?

•  Are there opportunities for sufficient reuse (say if minimal packaging guidelines
and procedures can be established)?

•  Would a community model be of interest?

•  What is on the wish list for such a community effort?

Motivation (cont.)

from ISC’15 BoF Session

Provisioning
System(s)

Resource
Manager(s)

RAS Performance
Tools

I/O Services

Development
Toolchains

Scientific
Libraries

System
Management

Fabric
Management

Hardware

Base OS

Benchmarking
/Diagnostics

Mission: to provide an integrated collection of HPC-centric
components that can be used to provide a full-featured
reference HPC software stack

Components should range across the entire HPC software ecosystem.

Community Mission and Vision

from ISC’15 BoF Session

Vision
•  to provide a collection of pre-packaged binary components that, when

combined with a supported base operating system, can be used to install
and manage HPC systems throughout their lifecycle

•  to foster a nimble release cycle capable of supporting relevant new
hardware configurations in a timely fashion

•  to provide additional distribution/integration mechanisms for leading
research groups releasing open-source software

•  to allow and promote multiple system configuration recipes that leverage
community reference designs

•  to foster identification and development relevant interfaces between
supported components that allows for simple component replacement and
customization

Community Mission and Vision

Related BoF submitted to SC’15 - please
ping if interested

Summary

•  Reviewed some of the trends and directions Intel is taking on path towards exascale

•  Call for interest/community involvement in establishing HPC oriented repositories

•  And speaking of community....

I would like to commend DK and his team:
-  they consistently go well above and beyond the role of traditional academic

software providers
-  MVAPICH has evolved into production software that is supporting science in

virtually all disciplines on systems around the world
-  performance is critical and the team consistently delivers novel methods to improve

performance on fast-changing hardware
-  the HPC community benefits tremendously from this effort:

 MPI_Send(&THANK_YOU,100000,MPI_INT,OSU,42,MPI_COMMUNITY);

Thanks for your Time!
Questions? karl.w.schulz@intel.com

