

Paving the Road to Exascale

Gilad Shainer

August 2015, MVAPICH User Group (MUG) Meeting

Mellanox Connect. Accelerate. Outperform."

The Ever Growing Demand for Performance

Performance

Technology Development

SMP to Clusters

Single-Core to Multi-Core

The Road to Exascale Computing

Co-Design Architecture – From Discrete to System Focused

Exascale will be Enabled via Co-Design Architecture

Standard, Open Source, Eco-System Programmable, Configurable, Innovative

Software-Hardware Co-Design? Example: Breaking the Latency Wall

- Today: Network devices are in 100ns latency today
- Challenge: How to enable the next order of magnitude performance improvement?
- Solution: Co-Design mapping the communication frameworks on all active devices
- Result: reduce HPC communication frameworks latency by an order of magnitude

Co-Design Architecture Paves the Road to Exascale Performance

© 2015 Mellanox Technologies

6

The Road to Exascale – Co-Design System Architecture

- The road to Exascale requires order of magnitude performance improvements
- Co-Design architecture enables all active devices to become co-processors

7

Co-Design Architecture

The Elements of the Co-Design Architecture

Co-Design Implementation Via Offloading Technologies

© 2015 Mellanox Technologies

9

Mellanox Co-Design Architecture (Collaborative Effort)

Communication Frameworks (MPI, SHMEM/PGAS)

The Only Approach to Deliver 10X Performance Improvements

Mellanox InfiniBand Proven and Most Scalable HPC Interconnect

Paving the Road to Exascale

High-Performance Designed 100Gb/s Interconnect Solutions

InfiniBand Adapters Performance Comparison

Mellanox Adapters Single Port Performance	ConnectX-4 EDR 100G	Connect-IB FDR 56G
Uni-Directional Throughput	100 Gb/s	54.24 Gb/s
Bi-Directional Throughput	195 Gb/s	107.64 Gb/s
Latency	0.61 us	0.63 us
Message Rate (Uni-Directional)	149.5 Million/sec	105 Million/sec

ConnectX-3 Pro FDR 56G

51.1 Gb/s

98.4 Gb/s

0.64 us

35.9 Million/sec

EDR InfiniBand Performance – Commercial Applications

OptiStruct Performance (Engine_Assy.fem)

FDR InfiniBand EDR InfiniBand

LS-DYNA Performance

(neon_refined_revised)

FDR InfiniBand

FDR InfiniBand EDR InfiniBand

RADIOSS 13.0 Performance (NEON1M11, MPP)

Number of Nodes

EDR InfiniBand

EDR InfiniBand Performance – Weather Simulation

- Weather Research and Forecasting Model
- Optimization effort with the HPCAC
- EDR InfiniBand delivers 28% higher performance
 - 32-node cluster
 - Performance advantage increase with system size

FDR InfiniBand

THE WEATHER RESEARCH & FORECASTING MODEL

²⁰⁰⁰ Report to the second s second sec

WRF Performance (conus12km)

EDR InfiniBand

Lenovo EDR InfiniBand System (TOP500)

- "LENOX" EDR InfiniBand connected system at the Lenovo HPC innovation center
- EDR InfiniBand provides >20% higher performance versus over FDR on Graph500
 - At 128nodes

Unified Communication – X Framework (UCX)

The Next Generation HPC Software Framework To Meet the Needs of Future Systems / Applications

Exascale Co-Design Collaboration

The Next Generation

HPC Software Framework

Collaborative Effort Industry, National Laboratories and Academia

Lawrence Livermore National Laboratory

UCX Framework Mission

- Collaboration between industry, laboratories, and academia
- Create open-source production grade communication framework for HPC applications
- To enable the highest performance through co-design of software-hardware interfaces
- To unify industry national laboratories academia efforts

Co-design of Exascale Network APIs

cations erfaces

Production quality

Developed, maintained, tested, and used by industry and researcher community

Cross platform

Support for Infiniband, Cray, various shared memory (x86-64 and Power), GPUs

The UCX Framework

UC-S for Services

This framework provides basic infrastructure for component based programming, memory management, and useful system utilities

Functionality: Platform abstractions and data structures

UC-T for Transport

Low-level API that expose basic network operations supported by underlying hardware

Functionality: work request setup and instantiation of operations

High-level API uses UCT framework to construct protocols commonly found in applications

Functionality: Multi-rail, device selection, pending queue, rendezvous, tag-matching, software-atomics, etc.

UC-P for Protocols

UCX High-level Overview

Collaboration

- Mellanox co-designs network interface and contributes MXM technology
 - Infrastructure, transport, shared memory, protocols, integration with OpenMPI/SHMEM, MPICH

ORNL co-designs network interface and contributes UCCS project • InfiniBand optimizations, Cray devices, shared memory

NVIDIA co-designs high-quality support for GPU devices • GPU-Direct, GDR copy, etc.

IBM co-designs network interface and contributes ideas and concepts from PAMI

Lawrence Livermore National Laboratory

UCX Performance

Mellanox Multi-Host[™] Technology Next Generation Data Center Architecture

New Compute Rack / Data Center Architecture

The Network is The Computer

Multi-Host Dramatically Reduces Server Cost

Proprietary **Cache Coherent** Bus

> Modern CPUs with 8-20 cores don't require expensive SMP architectures.

> Additional parallelism achieved with higher level network based distributed programming techniques such as Hadoop Map-Reduce

Multi-Host 4-Socket Architecture

Expensive 4-Way CPU

- Massive but unused cache-coherent domain
- High overhead but un-necessary CPU bus
 - High pin count ,high power, complex layout
- Asymmetric (NUMA) of data access

- Low cost single-socket CPU
 - Clean, simple, cost-effective, software transparent
- Cache coherent domain: Multi-Core CPU
 - Eliminates pins, Lower power, Simpler layout
- Symmetric Data Access

ConnectX-4 on Facebook OCP Multi-Host Platform (Yosemite)

The Next Generation Compute and Storage Rack Design

© 2015 Mellanox Technologies

Compute Slots

Summary

Paving the Road to Exascale Computing

End-to-End Interconnect Solutions for All Platforms

Highest Performance and Scalability for

X86, Power, GPU, ARM and FPGA-based Compute and Storage Platforms

10, 20, 25, 40, 50, 56 and 100Gb/s Speeds

Smart Interconnect to Unleash The Power of All Compute Architectures

Technology Roadmap – One-Generation Lead over the Competition

Thank You

Mellanox Connect. Accelerate. Outperform.™