
R. Glenn Brook
Chief Technology Officer, JICS

Director, AACE

Mitch Horton & Chad Burdyshaw
Computational Scientists, AACE

MVAPICH2-MIC
on Beacon:

Exploring Performance
on a Cluster with 4
Coprocessors per

Node

Application Acceleration
Center of Excellence (AACE)

•  Established by The University of Tennessee (UT) in early 2011
alongside the National Institute for Computational Sciences (NICS)
within the Joint Institute for Computational Sciences (JICS) at Oak Ridge
National Laboratory (ORNL)

•  Tasked with exploring the application of emerging computing
technologies to the acceleration of science and engineering

•  An essential element of a sustainable software infrastructure for
simulation in science and engineering

•  Director: R. Glenn Brook

Managed by UT-Battelle
for the U.S. Dept. of Energy

Beacon
Cray Xtreme-X Supercomputer

Peak Performance:
210.1 TFLOP/s

 Compute Nodes 48
CPU model Intel Xeon

E5-2670

CPUs per node 2 8-core, 2.6GHz
RAM per node 256 GB
SSD per node 2 x 480 GB

(RAID 0)

Intel® Xeon Phi
Coprocessors per

node

4 x 5110P
60-core,

1.053GHz
8 GB GDDR5

RAM
Interconnect FDR InfiniBand

Fat Tree

#1 on N
ovem

ber 2012 G
reen500 List

Hosted Accelerators:
Intel MICs

3

The Beacon Project
•  Funded by NSF to port and

optimize codes to the Intel
Xeon Phi, followed by
state-funded expansion

•  Beacon is #1 on the Nov.
2012 Green 500 List – 36
nodes, 71.4% efficiency,
2.499 GFLOPS/W

•  Aggregate usage: 101
projects, 921 users

•  Batch usage: 60 projects,
383 users

•  More than 55 related
publications to date
reported by 35 projects

• Open Call for Participation

Beacon’s Architecture
MIC-to-MIC Communication Paths

Intramic: MIC0 – Mem à MIC0

Intra-Node/Inter-MIC:
MIC0 –PCIe1à MIC1

MIC2 –PCIe2à MIC3

MIC0 –PCIe1à Xeon1 –QPIà Xeon2 –PCIe2à
MIC3

Inter-Node/Inter-MIC:
One Hop: Node1:(MIC0 –PCIe1à Xeon1) –IBà
Node2:(Xeon1 –PCIe1à MIC1)

1.5 Hops:
Node1:(MIC0 –PCIe1à Xeon1) –IBà
Node2:(Xeon1 –QPIà Xeon2 –PCIe2à MIC3)

Two Hops:
Node1:(MIC2 –PCIe2à Xeon2 –QPIà Xeon1) –
IBà Node2:(Xeon1 –QPIà Xeon2 –PCIe2à
MIC3)

Intel Xeon
E5-2670

Intel C600-A

16GB RAM

Intel Xeon Phi 5110P

Mellanox ConnectX-3
FDR Infiniband

Intel 520 SSD 480GB
SATA 3.0

Intel Xeon Phi 5110P

16GB RAM
16GB RAM
16GB RAM
16GB RAM
16GB RAM
16GB RAM
16GB RAM

DDR3-1600

PCIe 3.0 x16

PCIe 3.0 x16

PCIe 3.0 x8

Intel 520 SSD 480GB

ESI gen2 x4

SATA 3.0

Intel Xeon
E5-2670

16GB RAM

Intel Xeon Phi 5110P

Intel Xeon Phi 5110P
16GB RAM
16GB RAM
16GB RAM
16GB RAM
16GB RAM
16GB RAM
16GB RAM

DDR3-1600

PCIe 3.0 x16

PCIe 3.0 x16

Q
PI

8G
T/

s

Q
PI

8G
T/

s

• Initial issues with widely varying IMPI performance
for different communication paths
– Appears to be mitigated in later versions of IMPI, but

performance still well below peak

• Limitations in SNB chipset affecting RDMA across
different PCIe buses
– Primary cause for widely varying IMPI performance,

according to Intel
– MVAPICH2-MIC offers proxy modes to address this

• Does MVAPICH2-MIC provide a better performance
than Intel MPI on Beacon?

Why MVAPICH2-MIC?

• Are we using MVAPICH2-MIC appropriately?

• Are we using the best Intel MPI tuning (for a fair
comparison)?

• What is required to achieve improved performance
with MVAPICH2-MIC?

• Should we recommend MVAPICH2-MIC for
performance optimization on Beacon and other
machines with similar architectures?

• Can we provide a set of associated best practices?

Testing Concerns

OSU MicroBenchmarks v4.4.1

• Can we duplicate reported microbenchmark
performance improvements using MVAPICH2-MIC?

• Which benchmarks should we use?
– osu_bibw

• Bi-directional bandwidth measures the maximum sustainable
aggregate bandwidth by two nodes

– Also tested the following, but chose to limit presentation to
osu_bibw – similar comparison results
• osu_alltoall
• osu_latency (point to point)

• Machine-wide regression testing for communication
fabric and MPI stack

Bi-Bandwidth Intra-MIC regression
test over all Beacon MIC’s

An osu_bibw
regression test
was run over all
available MICs.

The plot shows
the mean value
bracketed by min
and max values
at each message
size.

Why is IMPI so
much slower
within the MIC?

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 1 32 1024 32768 1.04858x106

Bi
-B

an
dw

id
th

 (G
B/

s)

Messsge Size (Bytes)

OSU Bi-Bandwith Microbenchmark
Intra-MIC on 172 Phis (Ave, Min, Max)

Comparing MVAPICH2-MIC with Intel-MPI

MVAPICH2-MIC
Intel-MPI

(M
B

/s
)

~6
.2

5x

Bi-Bandwidth Inter-Node/Inter-MIC

OSU Bi-Bandwidth
microbenchmark profile
of Inter-Node/Inter-MIC
pathways after tuning
MVAPICH2-MIC proxy
parameters for best
performance on
Beacon.

These results were not
immediately translated
to application
performance.

~3
x

Cartesian Stencil App

To determine why applications were not seeing performance improvements
under MVAPIC2-MIC, we implemented a simplified, point-to-point
Cartesian communicator (no computation or I/O) as an analog to large-
scale parallel field solvers.

With this experimental application, we investigated the following questions:

•  Is cache optimization necessary for MVAPICH performance?
–  Investigated the use of cache optimization through MPI buffer alignment.

•  Do number of ranks/MIC have an impact on MVAPICH performance?
–  Reduced the analysis to 1D stencil cases with periodic boundaries (2 neighbors for

each rank) to allow for linear scaling of ranks to investigate the effect of rank sizes on
MPI performance.

•  What inter-node proxy settings are appropriate for Beacons architecture?
–  Experimented with inter-node proxy settings to determine optimal configuration for

Beacon

Stencil App: MVAPICH2-MIC Performance With
and Without MPI Buffer Alignment

Prior to implementing
MPI buffer alignment,
MVAPICH2-MIC
performance was
worse than Intel-MPI
for all communication
pathways.

After aligning buffers,
performance for
MVAPICH2-MIC was
~3 times that of IMPI

Effect of Ranks/MIC on Intra-MIC Bi-Bandwidth
Performance

Increasing the
ranks/MIC quickly
degraded
MVAPICH2-MIC
performance.

Intel-MPI
performance was
not affected by
ranks/mic

Inter-Node/Inter-MIC
MVAPICH2-MIC Inter-Node Proxy Comparison

Inter-Node proxy
settings for
MVAPICH2-MIC were
critical to performance
on Beacon.

Setting proxy=1
degrades performance
on all pathways
except One-Hop

Setting proxy=2 did
not significantly
degrade One-Hop
performance and was
critical for all other
pathways.

Stencil App Summary

To determine why applications were not seeing performance improvements
under MVAPIC2-MIC, we implemented a simplified application which
involved only point-to-point communications and no computation.
Lessons learned:
•  MPI message buffers must be aligned to page boundaries for best performance.

–  Necessary for Inter-Node and Inter-MIC performance with MVAPICH2-MIC
–  Does not affect Intel-MPI performance

•  Intra-MIC performance of MVAPIC2-MIC degrades as MPI ranks increase
–  Must minimize MPI ranks per MIC for good MVAPICH2-MIC performance
–  Intel-MPI is minimally effected

•  MV2_MIC_PROXY_INTER_NODE_MODE=2 provides best overall performance
on Beacons architecture, with minimal impact to performance for MIC’s on the
primary PCIe bus.

•  In general, IMPI provides more consistent but slower performance than properly
tuned MVAPICH2-MIC.

Livermore Unstructured Lagrangian
Explicit Shock Hydrodynamics (LULESH)*

LULESH is a highly simplified application, hard-coded to only solve a
simple Sedov blast problem with analytic answers – but represents the
numerical algorithms, data motion, and programming style typical in
scientific C or C++ based applications

•  LULESH code explicitly pads the MPI communication buffers to align
with the page size in order to optimize performance

•  The case run in this test is a 90x90x90 element cube distributed among
8 nodes using 1 MIC/Node. The average message size is 17 KB

•  Characterized on Xeon processors (not MIC’s) using Intel-MPI and Intel
Trace Analyzer.

–  MPI portion is only 3% of run time:
–  65% MPI_Wait
–  26% MPI_Allreduce
–  5% MPI_Isend

* Karlin, A. Bhatele, B. Chamberlain, J. Cohen, Z. Devito, M. Gokhale, R. Haque, R. Hornung, J. Keasler, D. Laney, E. Luke, S. Lloyd,
J. McGraw R. Neely, D. Richards, M. Schulz, C. H. Still, F. Wang, D. Wong. LULESH Programming Model and Performance Ports Overview,
December 2012, pages 1-17,

LULESH MPI Timing Comparison
One-Hop and Two-Hop cases

Timing of
MPI_Allreduce and
MPI_Isend calls

~60% reduction in
message passing
time for best and
worst case internode
communication
topologies

*These results are taken from a single run per case so some variation is expected

General Astrophysical
Simulation System (GenASiS)*

•  The case tested here was a finite	 volume,	 2nd	 order	 approximate	 Riemann	
solver,	 with	 2nd	 order	 TVD	 Runge-‐Ku=a	 method	
–  1D problem with 4096 cells distributed over 8 nodes using 1 MIC/

Node	
–  Nearest	 neighbor	 ghost	 exchange,	 Allreduce	 for	 Dme	 step	 determinaDon	 	

•  GenASiS does not currently align MPI buffers for cache optimization.

•  Characterized on Xeon processors using Intel-MPI and Intel Trace
Analyzer.

–  MPI portion is ~10% of run time.
–  64% MPI_Allreduce
–  35% MPI_Wait and MPI_Barrier

*Christian Y. Cardall, Reuben D. Budiardja, Eirik Endeve, Anthony Mezzacappa, "GenASiS: GENERAL ASTROPHYSICAL
SIMULATION SYSTEM. I. REFINABLE MESH", The Astrophysical Journal Supplement Series, 210:17 (29pp), 2014 February

GenASiS is a MulDphysics	 code	 developed	
for	 large	 scale	 astrophysics	 simulaDons	

GenASiS Timing Comparison
One-Hop and Two Hop Cases

GenASiS does not
currently align MPI
buffers for cache
optimization.

This is the likely
reason for lack of
speedup.

*These results are taken from a single run per case so some variation is expected

Basic Local Alignment Search Tool
(mpiBLAST)

NCBI BLAST compares nucleotide or protein sequences to sequence
databases and calculates the statistical significance of matches.

BLAST can be used to infer functional and evolutionary relationships
between sequences as well as help identify members of gene families.

mpiBLAST is a parallel/distributed implementation of NCBI BLAST

•  mpiBLAST uses MPI ranks to distribute the tasks in two ways:

–  The search database of biological sequences is partitioned and distributed to the ranks
which allows large databases to be held in the collective memory of the MPI ranks
(replication groups)

–  input query sequences are distributed between replication groups.
–  A super master is used get queries to and from the master to the workers to distribute

the queries
–  communicating search results: different methods include back to a centralized location

or writing cooperatively with other search ranks in a replication group with MPI-IO

•  mpiBLAST does not optimize MPI buffer for cache, but the testing was done
intra-MIC, so this condition will not inhibit performance

mpiBlast MPI Timing Comparison
(Intra-MIC)

~20% faster at 32
ranks

Increasing ranks/
MIC does not
affect performance
in the same way
as seen with the
stencil app.

Parallel 3D Fast Fourier Transforms
(P3DFFT)*

Parallel Three-Dimensional Fast Fourier Transforms, dubbed P3DFFT, is a
library for large-scale computer simulations on parallel platforms. 3D FFT is
an important algorithm for simulations in a wide range of fields, including
studies of turbulence, climatology, astrophysics and material science.

This project was initiated at San Diego Supercomputer Center (SDSC) at
UC San Diego by its main author Dmitry Pekurovsky, Ph.D.
•  P3DFFT uses 2D, or pencil, decomposition. This overcomes an

important limitation to scalability inherent in FFT libraries implementing
1D (or slab) decomposition:

–  the number of processors/tasks used to run this problem in parallel can be as large as
N^2, were N is the linear problem size. This approach has shown good scalability up to
131,072 cores. P3DFFT is optimized for large data sets.

•  P3DFFT message passing buffers are aligned to optimize cache
•  IB errors when using MV2_MIC_PROXY_INTER_NODE_MODE=2

*D. Pekurovsky, “P3DFFT: a framework for parallel computations of Fourier transforms in three dimensions”,
SIAM Journal on Scientific Computing 2012, Vol. 34, No. 4, pp. C192-C209

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 20 40 60 80 100 120 140

C
om

m
un

ic
at

io
n

Ti
m

e
(S

ec
on

ds
)

Message Size (MB)

P3DFFT (Not Hybrid) - Constant Total MPI Message Size (Strong Scaling)
One Rank per Phi - mic0,mic1 - Varying Number of Nodes and Number of Ranks

Intel-MPI
MVAPICH2-MIC

P3DFFT MPI Timing Comparison
One-Hop configuration

~90% decrease in
MPI communication
time at message
size of 8MB

~40% decrease for
message sizes of
135MB

Fixed problem size
with increasing
ranks (2MIC’s/
Node) from right to
left

32 ranks
16 nodes

16 ranks
8 nodes

8 ranks
4 nodes

4 ranks
2 nodes

MV2_MIC_PROXY_INTER_NODE_MODE=1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100 120 140

C
om

m
un

ic
at

io
n

Ti
m

e
(S

ec
on

ds
)

Message Size (MB)

P3DFFT (Not Hybrid) - Constant Total MPI Message Size (Strong Scaling)
One Rank per Phi - mic2,mic3 - Varying Number of Nodes and Number of Ranks

MVAPICH2-MIC
Intel-MPI

P3DFFT MPI Timing Comparison
Two-Hop configuration

MV2-MIC ~65%
faster for message
size of 8MB

IMPI ~50% faster
for 17MB messages

IMPI ~55% faster
for 135MB
messages

Fixed problem size
with increasing
ranks (2MIC’s/
Node) from right to
left

32 ranks
16 nodes

16 ranks
8 nodes

8 ranks
4 nodes

4 ranks
2 nodes

MV2_MIC_PROXY_INTER_NODE_MODE=1

Observations

• MVAPICH2-MIC performs exceptionally well on benchmarks
• MPI performance gains have been achieved for some

applications under certain conditions
– MPI buffer alignment with cache is required for MVAPICH2-MIC

performance
–  Appropriate proxy settings must be chosen for a given architecture
– Ranks/MIC must be kept as small as possible for best performance

• Several test applications did not run under certain conditions
with our MVAPICH2-MIC implementation
–  P3DFFT worked Intra-MIC and with Inter-Node proxy=1 but not with

Inter-Node proxy=2
– mpiBLAST did not run for Inter-Node or Inter-MIC cases under

MVAPICH2-MIC
– GROMACS did not run Inter-Node or Inter-MIC under MVAPICH2-MIC

Conclusions

• MVAPICH2-MIC provides significant performance
improvements under certain conditions

• Porting application code to achieve performance under
MVAPICH2-MIC will probably require additional effort
–  Simply swapping modules and recompiling is not sufficient.

•  IMPI works reliably with consistent performance, but it is
slower than well-tuned MVAPICH2-MIC

• Unresolved issues with MVAPICH2-MIC on Beacon:
–  Switching between MV2_MIC_PROXY_INTER_NODE_MODE=1 or 2

dynamically is not supported.
–  Errors occur in internode mode for some applications.

Acknowledgements

• Raghu Chandrasekar, Khaled Hamidouche, and MVAPICH
core developers – assistance installing, debugging, and
using MVAPICH2-MIC on Beacon

• DK Panda – access to beta versions, support from his team,
and invitation to speak today

•  Intel – various forms of past and present support in
deploying and operating Beacon efficiently

Contact Information

R. Glenn Brook, Ph.D.
Chief Technology Officer
Director, Application Acceleration Center of Excellence
Co-Director, Intel Parallel Computing Center
Joint Institute for Computational Sciences
University of Tennessee & Oak Ridge National Laboratory
glenn-brook@tennessee.edu

