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Application Acceleration 
Center of Excellence (AACE)  

•  Established by The University of Tennessee (UT) in early 2011 
alongside the National Institute for Computational Sciences (NICS) 
within the Joint Institute for Computational Sciences (JICS) at Oak Ridge 
National Laboratory (ORNL) 

•  Tasked with exploring the application of emerging computing 
technologies to the acceleration of science and engineering  

•  An essential element of a sustainable software infrastructure for 
simulation in science and engineering 

•  Director: R. Glenn Brook 

Managed by UT-Battelle  
for the U.S. Dept. of Energy  



Beacon 
Cray Xtreme-X Supercomputer 

Peak Performance: 
210.1 TFLOP/s 

 Compute Nodes 48 
CPU model Intel Xeon 

E5-2670 

CPUs per node 2 8-core, 2.6GHz 
RAM per node 256 GB 
SSD per node 2 x 480 GB 

(RAID 0) 

Intel® Xeon Phi 
Coprocessors per 

node 

4 x 5110P 
60-core, 

1.053GHz 
8 GB GDDR5 

RAM 
Interconnect FDR InfiniBand 

Fat Tree 
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The Beacon Project 
•  Funded by NSF to port and 

optimize codes to the Intel 
Xeon Phi, followed by 
state-funded expansion  

•  Beacon is #1 on the Nov. 
2012 Green 500 List – 36 
nodes, 71.4% efficiency, 
2.499 GFLOPS/W 

•  Aggregate usage: 101 
projects, 921 users 

•  Batch usage:  60 projects, 
383 users 

•  More than 55 related 
publications to date 
reported by 35 projects 

• Open Call for Participation 



Beacon’s Architecture 
MIC-to-MIC Communication Paths 

Intramic: MIC0 – Mem à MIC0 

Intra-Node/Inter-MIC: 
MIC0 –PCIe1à MIC1 

MIC2 –PCIe2à MIC3 

MIC0 –PCIe1à Xeon1 –QPIà Xeon2 –PCIe2à 
MIC3 

Inter-Node/Inter-MIC: 
One Hop: Node1:(MIC0 –PCIe1à Xeon1) –IBà 
Node2:(Xeon1 –PCIe1à MIC1) 

1.5 Hops: 
Node1:(MIC0 –PCIe1à Xeon1) –IBà 
Node2:(Xeon1 –QPIà Xeon2 –PCIe2à MIC3) 

Two Hops:  
Node1:(MIC2 –PCIe2à Xeon2 –QPIà Xeon1) –
IBà Node2:(Xeon1 –QPIà Xeon2 –PCIe2à 
MIC3) 
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• Initial issues with widely varying IMPI performance 
for different communication paths 
– Appears to be mitigated in later versions of IMPI, but 

performance still well below peak 

• Limitations in SNB chipset affecting RDMA across 
different PCIe buses 
– Primary cause for widely varying IMPI performance, 

according to Intel 
– MVAPICH2-MIC offers proxy modes to address this 

• Does MVAPICH2-MIC provide a better performance 
than Intel MPI on Beacon? 

Why MVAPICH2-MIC? 



• Are we using MVAPICH2-MIC appropriately? 

• Are we using the best Intel MPI tuning (for a fair 
comparison)? 

• What is required to achieve improved performance 
with MVAPICH2-MIC? 

• Should we recommend MVAPICH2-MIC for 
performance optimization on Beacon and other 
machines with similar architectures? 

• Can we provide a set of associated best practices? 

Testing Concerns 



OSU MicroBenchmarks v4.4.1 

• Can we duplicate reported microbenchmark 
performance improvements using MVAPICH2-MIC? 

• Which benchmarks should we use? 
– osu_bibw 

• Bi-directional bandwidth measures the maximum sustainable 
aggregate bandwidth by two nodes 

– Also tested the following, but chose to limit presentation to 
osu_bibw – similar comparison results 
• osu_alltoall 
• osu_latency (point to point) 

• Machine-wide regression testing for communication 
fabric and MPI stack 



Bi-Bandwidth Intra-MIC regression 
test over all Beacon MIC’s 

An osu_bibw 
regression test 
was run over all 
available MICs. 
 
The plot shows 
the mean value 
bracketed by min 
and max values 
at each message 
size. 
 
Why is IMPI so 
much slower 
within the MIC? 
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Bi-Bandwidth Inter-Node/Inter-MIC 

OSU Bi-Bandwidth 
microbenchmark profile 
of Inter-Node/Inter-MIC 
pathways after tuning 
MVAPICH2-MIC proxy 
parameters for best 
performance on 
Beacon. 
 
These results were not 
immediately translated 
to application 
performance. 
 

~3
x 



Cartesian Stencil App 

To determine why applications were not seeing performance improvements 
under MVAPIC2-MIC, we implemented a simplified, point-to-point 
Cartesian communicator (no computation or I/O) as an analog to large-
scale parallel field solvers.  

With this experimental application, we investigated the following questions: 

•  Is cache optimization necessary for MVAPICH performance? 
–  Investigated the use of cache optimization through MPI buffer alignment. 

•  Do number of ranks/MIC have an impact on MVAPICH performance? 
–  Reduced the analysis to 1D stencil cases with periodic boundaries (2 neighbors for 

each rank) to allow for linear scaling of ranks to investigate the effect of rank sizes on 
MPI performance. 

•  What inter-node proxy settings are appropriate for Beacons architecture? 
–  Experimented with inter-node proxy settings to determine optimal configuration for 

Beacon 

 



Stencil App: MVAPICH2-MIC Performance With 
and Without MPI Buffer Alignment 

Prior to implementing 
MPI buffer alignment,  
MVAPICH2-MIC 
performance was 
worse than Intel-MPI 
for all communication 
pathways. 
 
After aligning buffers, 
performance for 
MVAPICH2-MIC was 
~3 times that of IMPI  



Effect of Ranks/MIC on Intra-MIC Bi-Bandwidth 
Performance 

Increasing the 
ranks/MIC quickly 
degraded 
MVAPICH2-MIC 
performance.  
 
Intel-MPI 
performance was 
not affected by 
ranks/mic 



Inter-Node/Inter-MIC 
MVAPICH2-MIC Inter-Node Proxy Comparison 

Inter-Node proxy 
settings for 
MVAPICH2-MIC were 
critical to performance 
on Beacon. 
 
Setting proxy=1 
degrades performance 
on all pathways 
except One-Hop 
 
Setting proxy=2 did 
not significantly 
degrade One-Hop 
performance and was 
critical for all other 
pathways. 



Stencil App Summary 

To determine why applications were not seeing performance improvements 
under MVAPIC2-MIC, we implemented a simplified application which 
involved only point-to-point communications and no computation. 
Lessons learned: 
•  MPI message buffers must be aligned to page boundaries for best performance.  

–  Necessary for Inter-Node and Inter-MIC performance with MVAPICH2-MIC 
–  Does not affect Intel-MPI performance 

•  Intra-MIC performance of MVAPIC2-MIC degrades as MPI ranks increase 
–  Must minimize MPI ranks per MIC for good MVAPICH2-MIC performance 
–  Intel-MPI is minimally effected 

•  MV2_MIC_PROXY_INTER_NODE_MODE=2 provides best overall performance 
on Beacons architecture, with minimal impact to performance for MIC’s on the 
primary PCIe bus. 

•  In general, IMPI provides more consistent but slower performance than properly 
tuned MVAPICH2-MIC. 



Livermore Unstructured Lagrangian 
Explicit Shock Hydrodynamics (LULESH)* 

 
LULESH is a highly simplified application, hard-coded to only solve a 
simple Sedov blast problem with analytic answers – but represents the 
numerical algorithms, data motion, and programming style typical in 
scientific C or C++ based applications 

•  LULESH code explicitly pads the MPI communication buffers to align 
with the page size in order to optimize performance 

•  The case run in this test is a 90x90x90 element cube distributed among 
8 nodes using 1 MIC/Node. The average message size is 17 KB 

•  Characterized on Xeon processors (not MIC’s) using Intel-MPI and Intel 
Trace Analyzer. 

–  MPI portion is only 3% of run time: 
–  65% MPI_Wait 
–  26% MPI_Allreduce 
–  5%   MPI_Isend 

 

* Karlin, A. Bhatele, B. Chamberlain, J. Cohen, Z. Devito, M. Gokhale, R. Haque, R. Hornung, J. Keasler, D. Laney, E. Luke, S. Lloyd,  
J. McGraw R. Neely, D. Richards, M. Schulz, C. H. Still, F. Wang, D. Wong. LULESH Programming Model and Performance Ports Overview,  
December 2012, pages 1-17,  



LULESH MPI Timing Comparison 
One-Hop and Two-Hop cases 

Timing of 
MPI_Allreduce and 
MPI_Isend calls 
 
~60% reduction in 
message passing 
time for best and 
worst case internode 
communication 
topologies 
 

*These results are taken from a single run per case so some variation is expected 



General Astrophysical 
Simulation System (GenASiS)* 

•  The case tested here was a finite	  volume,	  2nd	  order	  approximate	  Riemann	  
solver,	  with	  2nd	  order	  TVD	  Runge-‐Ku=a	  method	  
–  1D problem with 4096 cells distributed over 8 nodes using 1 MIC/

Node	  
–  Nearest	  neighbor	  ghost	  exchange,	  Allreduce	  for	  Dme	  step	  determinaDon	  	  

•  GenASiS does not currently align MPI buffers for cache optimization. 

•  Characterized on Xeon processors using Intel-MPI and Intel Trace 
Analyzer. 

–  MPI portion is ~10% of run time. 
–  64% MPI_Allreduce 
–  35% MPI_Wait and MPI_Barrier 

*Christian Y. Cardall, Reuben D. Budiardja, Eirik Endeve, Anthony Mezzacappa, "GenASiS: GENERAL ASTROPHYSICAL 
SIMULATION SYSTEM. I. REFINABLE MESH", The Astrophysical Journal Supplement Series, 210:17 (29pp), 2014 February 

GenASiS is a MulDphysics	  code	  developed	  
for	  large	  scale	  astrophysics	  simulaDons	  
 



GenASiS Timing Comparison 
One-Hop and Two Hop Cases 

GenASiS does not 
currently align MPI 
buffers for cache 
optimization.  
 
This is the likely 
reason for lack of 
speedup. 
 
 
 

*These results are taken from a single run per case so some variation is expected 



Basic Local Alignment Search Tool 
(mpiBLAST) 

NCBI BLAST compares nucleotide or protein sequences to sequence 
databases and calculates the statistical significance of matches.  

BLAST can be used to infer functional and evolutionary relationships 
between sequences as well as help identify members of gene families. 

mpiBLAST is a parallel/distributed implementation of NCBI BLAST 
 
•  mpiBLAST uses MPI ranks to distribute the tasks in two ways: 

–  The search database of biological sequences is partitioned and distributed to the ranks 
which allows large databases to be held in the collective memory of the MPI ranks 
(replication groups)  

–  input query sequences are distributed between replication groups. 
–  A super master is used get queries to and from the master to the workers to distribute 

the queries 
–  communicating search results: different methods include back to a centralized location 

or writing cooperatively with other search ranks in a replication group with MPI-IO 

•  mpiBLAST does not optimize MPI buffer for cache, but the testing was done 
intra-MIC, so this condition will not inhibit performance 



mpiBlast MPI Timing Comparison 
(Intra-MIC) 

~20% faster at 32 
ranks 
 
Increasing ranks/
MIC does not 
affect performance 
in the same way 
as seen with the 
stencil app. 



Parallel 3D Fast Fourier Transforms 
(P3DFFT)* 

Parallel Three-Dimensional Fast Fourier Transforms, dubbed P3DFFT, is a 
library for large-scale computer simulations on parallel platforms. 3D FFT is 
an important algorithm for simulations in a wide range of fields, including 
studies of turbulence, climatology, astrophysics and material science.  

This project was initiated at San Diego Supercomputer Center (SDSC) at 
UC San Diego by its main author Dmitry Pekurovsky, Ph.D. 
•  P3DFFT uses 2D, or pencil, decomposition. This overcomes an 

important limitation to scalability inherent in FFT libraries implementing 
1D (or slab) decomposition:  

–  the number of processors/tasks used to run this problem in parallel can be as large as 
N^2, were N is the linear problem size. This approach has shown good scalability up to 
131,072 cores. P3DFFT is optimized for large data sets. 

•  P3DFFT message passing buffers are aligned to optimize cache 
•  IB errors when using MV2_MIC_PROXY_INTER_NODE_MODE=2 

 

 

*D. Pekurovsky, “P3DFFT: a framework for parallel computations of Fourier transforms in three dimensions”,  
SIAM Journal on Scientific Computing 2012, Vol. 34, No. 4, pp. C192-C209 
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P3DFFT MPI Timing Comparison 
One-Hop configuration 

~90% decrease in 
MPI communication 
time at message 
size of 8MB 
 
~40% decrease for 
message sizes of 
135MB 
 
Fixed problem size 
with increasing 
ranks (2MIC’s/
Node) from right to 
left 

32 ranks 
16 nodes 

16 ranks 
8 nodes 

8 ranks 
4 nodes 

4 ranks 
2 nodes 

MV2_MIC_PROXY_INTER_NODE_MODE=1 
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P3DFFT MPI Timing Comparison 
Two-Hop configuration 

MV2-MIC ~65% 
faster for message 
size of 8MB 
 
IMPI ~50% faster 
for 17MB messages 
 
IMPI ~55% faster 
for 135MB 
messages 
 
Fixed problem size 
with increasing 
ranks (2MIC’s/
Node) from right to 
left 

32 ranks 
16 nodes 

16 ranks 
8 nodes 

8 ranks 
4 nodes 

4 ranks 
2 nodes 

MV2_MIC_PROXY_INTER_NODE_MODE=1 



Observations 

• MVAPICH2-MIC performs exceptionally well on benchmarks 
• MPI performance gains have been achieved for some 

applications under certain conditions 
– MPI buffer alignment with cache is required for MVAPICH2-MIC 

performance 
–  Appropriate proxy settings must be chosen for a given architecture 
– Ranks/MIC must be kept as small as possible for best performance 

• Several test applications did not run under certain conditions 
with our MVAPICH2-MIC implementation 
–  P3DFFT worked Intra-MIC and with Inter-Node proxy=1 but not with 

Inter-Node proxy=2 
– mpiBLAST did not run for Inter-Node or Inter-MIC cases under 

MVAPICH2-MIC 
– GROMACS did not run Inter-Node or Inter-MIC under MVAPICH2-MIC 

 



Conclusions 

• MVAPICH2-MIC provides significant performance 
improvements under certain conditions 

• Porting application code to achieve performance under 
MVAPICH2-MIC will probably require additional effort 
–  Simply swapping modules and recompiling is not sufficient. 

•  IMPI works reliably with consistent performance, but it is 
slower than well-tuned MVAPICH2-MIC 

• Unresolved issues with MVAPICH2-MIC on Beacon: 
–  Switching between MV2_MIC_PROXY_INTER_NODE_MODE=1 or 2 

dynamically is not supported. 
–  Errors occur in internode mode for some applications. 
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