HPC Approach to Training Neural Networks in Deep Learning

Patrick LeGresley on behalf of the entire Baidu Silicon Valley AI Lab (SVAIL)

MVAPICH User Group Meeting August 20, 2015

Machine Learning

Helps us find things

Assists us

Facilitates communication

Drive us around?

Serve drinks?

Machine Learning in Practice

Deep Learning

 Instead of feature extraction and hand tuning via domain experts, use lots of data and let model determine the features

Artificial Neuron

Inputs

Artificial Neural Network

- In a realistic network there will typically be many layers, each with millions of neurons, resulting in billions of connections
- But fundamentally just a complicated function that takes an input and computes an output
 Bai Research

Why Speech?

Speech is a Universal Interface

Samsung Galaxy Gear Smartwatch

Baidu Eye

Amazon Echo

Traditional Approaches for Speech

- Hands on development of feature identification by domain experts
- Small, incremental improvements
- Some approaches may not generalize well, e.g. tonal vs. non-tonal languages

Mel-Frequency Cepstrum Coefficients (MFCC) Minh N. Do, University of Illinois

Deep Learning for Speech

Linear spectrogram

Artificial Neural Network

Transcription

Bidirectional Recurrent Neural Networks

- Combines the outputs of two RNNs, one going in each direction of the input
- Useful where temporal dependencies are important

Model Training

 Process of computing the values for the weights in the network

Labeled training data

 Formulated as a large scale optimization problem: adjust the weights to minimize the error for the labeled data

Gradient Based Optimization

- Gradient of the output error with respect to all of the weight values can be computed analytically using a process called *back propagation* (the chain rule)
- Typically split data into *minibatches* and use Stochastic Gradient Descent (SGD) so working set fits in memory

Training Data and Computational Costs

- Thousands of hours of labeled training data
- Can also add noise and create synthesized data

- Training one model requires 10s of exaFLOP of computations (using 16 or 32 bit floating point)
- Want to train many models to experiment with different layer configurations, non-linearities, etc.

Traditional Approach

DistBelief (Dean et al. 2012)

Deterministic Results

- Lock-less, asynchronous approaches achieve performance at the expense of determinism
- These approaches can also mask weird bugs
- We feel that results should be replicable and that non-determinism is a bug
- Both performance and determinism can be achieved by adopting HPC practices

SVAIL HPC Infrastructure

- Software: CUDA, MPI, Majel (SVAIL internal library)
- Hardware:

Titan X x8

Mellanox Interconnect

Majel

- C++ library for multi-dimensional, contiguous in memory arrays
- Python bindings
- CPU / GPU aware
- Manages memory pool for dynamic memory, and provides a GPU fallback allocator
- Supports various vector / matrix operations, and convolution

– Use NVIDIA and Nervana Systems libraries for GPU

 Reduction operations (on single GPU and distributed CPU or GPU memory)

Parallelism

Model Parallel

Distributed Array

- Reduces per GPU memory requirement
- More latency sensitive
- Can be combined with model / data parallel
- Better scalability

Performance

- Efficiency
 - 60-65% of GPU FMA peak using a single GPU
 - ~50% of peak using 8 GPUs in one node
- Model training time is a few days

Accuracy

SVAIL Mandarin Speech Performance

CER = Character Error Rate

Challenges and Opportunities

- Memory Allocation Takeover
- Machine Topology
- CUDA Aware MPI

Memory Allocation Takeover

Possible to provide finer grain control over when it is used?

Machine Topology

• What common things can be done to make life easier for application developers?

CUDA Aware MPI

• Seems immature in terms of both features and performance

Summary

- Concepts in neural networks are remarkably simple
- The systems team in our AI lab works toward achieving
 - Deterministic results
 - Application performance ≥ 50% of hardware theoretical peak
 - Strong scaling for multiple GPUs across multiple nodes
- AI, via HPC, will impact hundreds of millions of people!
- We are always looking for more systems researchers with backgrounds in parallel computing, computer architecture, storage, etc.

Find Out More

Deep Learning Tutorial

http://deeplearning.stanford.edu/tutorial/

- Deep Speech: Scaling up end-to-end speech recognition <u>http://arxiv.org/abs/1412.5567</u>
- Baidu Research: Making Progress in Multi-Lingual Speech Recognition

http://usa.baidu.com/multi-lingual-speech-recognition/

Speech Transcription Demo

