
Building `Cooler` MVAPICH2

ABHINAV VISHNU

MUG’ 15
 August 19-21, 2015

2

Buckeyes: The Undisputed National
Champions

November	 28th,	 2015	

3

Acknowledgement

Summer	
2014	

Contributors:	
Khaled	 Hamidouche	
Nathan	 Tallent	
DK	 Panda	
Darren	 Kerbyson	
Adolfy	 Hoisie	
	
	

Akshay	 Venkatesh	

MUG’13	

MUG’15,	 	
SC’15	 –	 Best	 Student	

Paper	 Finalist	 	

4

Motivation: Application Patterns

P0	

P1	
P2	
P3	

P0	

P1	
P2	
P3	

Compute	 Slack	

P0	

P1	
P2	
P3	

P0	

P1	
P2	
P3	

An	 applicaOon	 writer’s	 wish	 What	 he	 thinks	 is	 happening,	
IteraOve-‐Temporal	 PaUern	

What	 is	 actually	 happening,	
IteraOve	 Non-‐Temporal	 PaUern	

Non-‐iteraOve	 applicaOon	

August 27, 2015 5

Existing Literature and Limitations

!   Adagio
!   LLNL runtime for saving energy
!   Slows down tasks (period

between MPI calls) using DVFS
!   Fails for several patterns

!   Existing MVAPICH(2)
!   Collective algorithms for large

data transfer
!   Most applications use small data

!   Per-call methods
! Sundriyal et al.

!   Using Historical information
!   PMAC’s Green Queue

time

ra
nk

s

Predicted task completion time using previous
iterations

Actual task completion time

nw#

se#

(a) (b)

August 27, 2015 6

Let’s say we could model these
applications …

!   System factors
!   OS noise

!   SC’03 (Petrini et al.)
!   SC’10 (Hoefler et al.)

!   Network Congestion
!   PPoPP’15 (Tallent et al.)
!   CCPE’10 (Vishnu et al.)
!   SC’13 (Bhatele et al.)

!   System faults
!   IPDPS’15 (Song et al.)

!   Combinations of system factors
!   Static modeling is insufficient!

Bhatele	 et	 al.	 –	 SC’13	

MPI is the Lowest Common Denominator

August 27, 2015 7

MPI	

OFA/RoCE	 uGNI/
DMAPP	 PAMI	 	

Solvers	

ApplicaOons	

New	 ExecuOon	
Models/Runt.	

………………….	

+X,	 Y,	 Z	

!   Can we save the energy
!   Without any application

knowledge,
!   Without expecting

temporal patterns,
!   Within an MPI runtime,
!   Without performance

degradation?

August 27, 2015 8

Communication Protocols from Energy
Standpoint

!   Eager-Send
!   A false positive
!   Copy and return

!   Receive
!   Unexpected Queue search
!   Channel search

!   Network and Shared Memory
!   Use Power Lever

!   Non-blocking messages
!   False Positives

!   Progress Primitives
!   Consider a circular buffer of requests
!   Use time-out to continue search

Return
From
MPI Call

Start of
MPI Call

Υ0

δ0

Υ1

δ1

w

s

Current
value of
Slack

Current
value of
Slack

Final
value of
Slack

Return
From
MPI Call

Start of
MPI Call

Υ1

w

s

Final
value of
Slack

Υ0

(a) (b)

An	 Example	 of	 using	 LogGP	 for	 maximizing	
True	 posiOves	 in	 EAM	

August 27, 2015 9

Energy Efficient Collective
Communication

Rooted	 CollecOves	

Processes	 can	 use	 communicaOon	
modeling	 to	 use	 power	 levers	 at	 start	 	
Of	 an	 MPI	 call	

A	 process	 can	 observe	 slack	 in	 1st	
or	 2nd	 	 step,	 but	 none	 acer	 that!	

Un-‐rooted	 CollecOves	

Stuck	 in	 1st	 step	

Stuck	 in	 2nd	 step	

Stuck	 in	 1st/2nd	 step	

August 27, 2015 10

Bounding Performance and Energy Loss

!   Bounding performance loss
!   A power lever is used *only after* its

threshold is crossed
!   Worst case occurs, when completion

occurs right after a power lever is
applied

!   Performance never degrades beyond
user-specified threshold

!   In many cases, the cost of applying a
lever is further amortized

!   Bounding loss of energy savings
!   Worst case is when completion occurs

right before a threshold can be
breached

Return
From
MPI Call

Start of
MPI Call

Υ0

δ0

Υ1

δ1

w

s

Current
value of
Slack

Current
value of
Slack

Final
value of
Slack

(a
)

August 27, 2015 11

Performance Evaluation

!   Experimental Testbed
!   TACC Stampede
!   6400 Nodes of Intel Sandybridge (Xeon E5-2680) + 1 MIC co-processor
!   Two level Fat Tree, InfiniBand FDR

!   MVAPICH2 – 2.0.2
!   Design Points

!   Optimistic (Current Default), Pessimistic and Energy Aware MPI (EAM)
!   Power Levers

!   Interrupt driven execution (5us overhead, 66% power improvement)
! DVFS (Dynamic Voltage and Frequency Scaling)

!   Not available on any production systems (TACC, PNNL Cascade)

!   Power Measurement
!   Modified Intel Running Average Power Limit (RAPL)

!   Distributed collection of on-board power counters
!   Handle wrap-around with time-out based collection

August 27, 2015 12

Summary of Results

!   We can save energy on 10 different applications --- without knowing
their internal computation and communication behaviour
!   And that is a good thing!

!   Performance loss is <= 4%
!   Several applications are in 12-25% energy savings range

!   Without sweating for it

Application Objective Major MPI calls Class Benefits(%) Loss(%)
1 miniFE Unstructured Allreduce Iterative/Temporal 25% 1%
2 miniMD Molecular dynamics Create cart, Barrier Iterative/Temporal 26% 2%
3 miniGhost FDM/FVM Waitany, Allreduce Iterative/Temporal 23% 0%
4 CloverLeaf Euler equations on grids Allreduce Iterative/Temporal 12% 3%
5 CoMD Molecular Dynamics SendRecv, Barrier Iterative/Temporal* 4% 4%
6 Hoomd-Blue Many-parictle dynamics Allreduce, Bcast Iterative/Temporal 5% 0%
7 AMG Parallel AMG Allreduce, Allgather Iterative/Non-Temporal 10% 1.15%
8 Sweep3D Parallel Neutron Transport Recv Iterative/Non-Temporal 12% 1%
9 LULESH hydrodynamic equations Allreduce Iterative/Non-Temporal 18% 0.5%
10 Graph500 Breadth-first search Alltoall Non-Iterative 41% 4%

Table 2: Summary of energy e�ciency results with EAM runtime. Performance degradation and energy improvements are
calculated using optimistic execution as baseline. * - Application classified as Iterative/ Temporal, but manifests itself as
Iterative/Non-temporal during empirical evaluation

7.1 MPI Software Stack
EAM is implemented using MVAPICH2-2.0 runtime —

a high performance MPI on InfiniBand. There are several
important considerations in implementing EAM. For porta-
bility reasons, a possible implementation choice is to use
PMPI — the weak bindings layer supported by MPI. How-
ever, EAM’s detailed design for point-to-point primitives,
communication protocols, and progress primitives requires
it to be integrated with Abstract Device Interface (ADI),
channel and device layers of MVAPICH2. In addition, sev-
eral changes are required at deepest layers of MVAPICH2
runtime — specific to the device — for state transitions
in rendezvous protocols. Similarly, the proposed design for
collective algorithms are implemented inside the collectives
layer of MVAPICH2, such that the existing performance
optimizations are used automatically. Hence, using PMPI
alone is insu�cient in implementing EAM. While this imple-
mentation choice reduces portability, the lessons learned in
implementing EAM can be directly used for MPI runtimes
of other interconnects, especially where ADI layer is used.

7.2 Power Levers
An important consideration for EAM is the power levers.

For completeness, we consider polling to be the baseline
power lever (�

polling

= 0,
polling

= 0). In this lever, EAM
runtime polls on completion queue(s), where send and re-
ceive completions are placed. MVAPICH2-2.0 provides this
power lever by default, also referred to as optimistic execu-
tion in section 8.

Another possible power lever available on InfiniBand and
other high speed networks is interrupt-driven execution. This
lever achieves core-idling by relinquishing the CPU and block-
ing on a network event. When a send/receive completion
occurs, the process is re-scheduled for computation. This
power lever is e↵ective, if the overhead can be amortized
over slack. Specifically, for the testbed (TACC Stampede)
used in this paper, we observed that � is ⇡ 5µs resulting in �
to be 100µs (with an acceptable degradation of 5%). We also
observed that interrupt-driven execution reduces the power
consumption () by a maximum of 66% in comparison to
the polling mode.

Another power lever which can be used is DVFS. In prac-
tice, this lever requires super-user access, which makes it
di�cult (if not impossible) to be deployed/used on produc-
tion systems, such as the one used in this paper. While
several home grown clusters have reported success on small-

medium scale with DVFS, the super-user restriction makes
it di�cult to use DVFS on every cluster, unlike interrupt-
driven execution which is available on all InfiniBand clusters.
We considered several large scale production systems such
as TACC Stampede, and PNNL Cascade. However, none of
them provided DVFS support. Due to the unavailability on
production system(s), we used interrupt-driven execution as
the primary power lever. Nevertheless, if DVFS becomes
available in user-space with reasonable overhead, it can be
used with minimal changes in the EAM design.

7.3 Power Measurement
The aggregate power consumption of EAM, optimistic and

pessimistic execution is measured using Intel Running Av-
erage Power Library (RAPL) interface [22]. RAPL provides
fine grained measurement of power consumption, albeit it
is restricted to only CPU socket and memory. We build a
thin measurement layer to collect power information on each
socket (de-duplication), handle wraparounds by periodic ac-
cumulation (⇡ 30s), and aggregate them at MPI_Finalize

using reduction.

7.4 Putting It All Together
In this section, we demonstrate the use of communication

models with power levers using an example of RDMA-Write
rendezvous protocol. Figure 5a shows the state transitions
for a send message in the RDMA-Write based rendezvous
protocol. A message size threshold (32KBytes) is used to
decide between using an eager or rendezvous protocol. Using
an eager protocol typically leads to a false positive on the
sender side, unless a communication bu↵er is unavailable
(section 4.1).
In the rendezvous protocol, the sender initiates an RTS

message, and waits for a CTS message from the receiver.
The expected time for receiving the CTS message is de-
pendent up on the degree of synchronization between the
sender and receiver. The communication model predicts the
expected time (w = 2 · l ⇡ 2µs), which is a mis-prediction if
the receiver is delayed. As shown in the figure 5a, the sender
uses L

0

, followed by addition power levers (L
1

· · · L|L|�1

), as
slack increases. When CTS message arrives (shown by solid
red lines), EAM uses the communication model to predict
the expected communication time for sending the data. At
this point, the sender can precisely calculate the expected
communication time. Using this value it selects all the possi-
ble power levers, such that their threshold (�) is lesser than

*ApplicaOon	 thought	 to	 be	 iteraOve-‐temporal,	 and	 behaves	 as	 non-‐temporal	

13

Evaluation at 2K and 4K processes

!   EAM is able to save similar energy as Pessimistic design
!   In several cases, Pessimistic degrades performance, while EAM does not

!   Performance benefits on three class of applications indicates that EAM will
likely be beneficial for other applications!

0

0.2

0.4

0.6

0.8

1

1.2

1.4

lulesh
minighost

sweep3D

E
ne

rg
y

Pessimistic
EAM

0

0.5

1

1.5

2

lulesh
minighost

sweep3d

S
pe

ed
up

Pessimistic
EAM

0

0.2

0.4

0.6

0.8

1

1.2

1.4

comd
sweep

minighost

cloverleaf

minife
amg-27pt

amg-pde

amg-7pt

graph500

lj-minimd
c omd

lj-minimd

eam-minimd

eam-minimd
c omd

E
ne

rg
y

Pessimistic
EAM

0

0.5

1

1.5

2

comd
sweep

minighost

cloverleaf

minife
amg-27pt

amg-pde

amg-7pt

graph500

lj-minimd
c omd

lj-minimd

eam-minimd

eam-minimd
c omd

S
pe

ed
up

Pessimistic
EAM

Abhinav Vishnu

abhinav.vishnu@pnnl.gov

http://hpc.pnl.gov/people/vishnu

 Protected Information | Proprietary Information

