

Building `Cooler` MVAPICH2

ABHINAV VISHNU

MUG['] 15 August 19-21, 2015

Buckeyes: The Undisputed National Champions

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

November 28th, 2015

Acknowledgement

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

Akshay Venkatesh

Summer 2014 MUG'15, SC'15 – Best Student Paper Finalist

Contributors: Khaled Hamidouche Nathan Tallent DK Panda Darren Kerbyson Adolfy Hoisie

Motivation: Application Patterns

An application writer's wish

What he thinks is happening, Iterative-Temporal Pattern

What is actually happening, Iterative Non-Temporal Pattern

Non-iterative application

Existing Literature and Limitations

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

Adagio

- LLNL runtime for saving energy
- Slows down tasks (period between MPI calls) using DVFS
- Fails for several patterns
- Existing MVAPICH(2)
 - Collective algorithms for large data transfer
 - Most applications use small data

Per-call methods

- Sundriyal et al.
- Using Historical information
 - PMAC's Green Queue

Let's say we could model these applications ...

System factors

OS noise

- SC'03 (Petrini et al.)
- SC'10 (Hoefler et al.)
- Network Congestion
 - PPoPP'15 (Tallent et al.)
 - CCPE'10 (Vishnu et al.)
 - SC'13 (Bhatele et al.)
- System faults
 - IPDPS'15 (Song et al.)
- Combinations of system factors
- Static modeling is insufficient!

Pacific Northwest

NATIONAL LABORATORY

MPI is the Lowest Common Denominator

Pacific Northwest

NATIONAL LABORATORY

Communication Protocols from Energy Standpoint

- Eager-Send
 - A false positive
 - Copy and return

Receive

- Unexpected Queue search
- Channel search
 - Network and Shared Memory
- Use Power Lever
- Non-blocking messages
 - False Positives
- Progress Primitives
 - Consider a circular buffer of requests
 - Use time-out to continue search

An Example of using LogGP for maximizing True positives in EAM

(b)

hwest

Energy Efficient Collective Communication

Pacific Northwest

Proudly Operated by Battelle Since 1965

A process can observe slack in 1st or 2nd step, but none after that!

Processes can use communication modeling to use power levers at start Of an MPI call

Bounding Performance and Energy Loss

- Bounding performance loss
 - A power lever is used *only after* its threshold is crossed
 - Worst case occurs, when completion occurs right after a power lever is applied
 - Performance never degrades beyond user-specified threshold
 - In many cases, the cost of applying a lever is further amortized
- Bounding loss of energy savings
 - Worst case is when completion occurs right before a threshold can be breached

Performance Evaluation

65 NORTHUR NORTHUR TOTOLOGICAL

- Experimental Testbed
 - TACC Stampede
 - 6400 Nodes of Intel Sandybridge (Xeon E5-2680) + 1 MIC co-processor
 - Two level Fat Tree, InfiniBand FDR
- ► MVAPICH2 2.0.2
- Design Points
 - Optimistic (Current Default), Pessimistic and Energy Aware MPI (EAM)

Power Levers

- Interrupt driven execution (5us overhead, 66% power improvement)
- DVFS (Dynamic Voltage and Frequency Scaling)
 - Not available on any production systems (TACC, PNNL Cascade)
- Power Measurement
 - Modified Intel Running Average Power Limit (RAPL)
 - Distributed collection of on-board power counters
 - Handle wrap-around with time-out based collection

Summary of Results

Pacific Northwest

Proudly Operated by Baffelle Since 1965

	A 1' 4'				$\mathbf{D} = \mathbf{C} + \langle 0 \mathbf{Z} \rangle$	T (07)
	Application	Objective	Major MPI calls	Class	Benefits(%)	Loss(%)
1	\min FE	Unstructured	Allreduce	Iterative/Temporal	25%	1%
2	miniMD	Molecular dynamics	Create_cart, Barrier	Iterative/Temporal	26%	2%
3	miniGhost	FDM/FVM	Waitany, Allreduce	Iterative/Temporal	23%	0%
4	CloverLeaf	Euler equations on grids	Allreduce	Iterative/Temporal	12%	3%
5	CoMD	Molecular Dynamics	SendRecv, Barrier	Iterative/Temporal*	4%	4%
6	Hoomd-Blue	Many-parictle dynamics	Allreduce, Bcast	Iterative/Temporal	5%	0%
7	AMG	Parallel AMG	Allreduce, Allgather	Iterative/Non-Temporal	10%	1.15%
8	Sweep3D	Parallel Neutron Transport	Recv	Iterative/Non-Temporal	12%	1%
9	LULESH	hydrodynamic equations	Allreduce	Iterative/Non-Temporal	18%	0.5%
10	Graph500	Breadth-first search	Alltoall	Non-Iterative	41%	4%

*Application thought to be iterative-temporal, and behaves as non-temporal

- We can save energy on 10 different applications --- without knowing their internal computation and communication behaviour
 - And that is a good thing!
- Performance loss is <= 4%</p>
- Several applications are in 12-25% energy savings range
 - Without sweating for it

EAM is able to save similar energy as Pessimistic design

In several cases, Pessimistic degrades performance, while EAM does not

Performance benefits on three class of applications indicates that EAM will likely be beneficial for other applications!

Pacific Northwest

NATIONAL LABORATORY

Proudly Operated by Baffelle Since 1965

Pacific Northwest

Proudly Operated by Battelle Since 1965

Abhinav Vishnu

abhinav.vishnu@pnnl.gov

http://hpc.pnl.gov/people/vishnu

Protected Information | Proprietary Information