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Motivation: Application Patterns 
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Existing Literature and Limitations 

!   Adagio 
!   LLNL runtime for saving energy 
!   Slows down tasks (period 

between MPI calls) using DVFS 
!   Fails for several patterns 

!   Existing MVAPICH(2) 
!   Collective algorithms for large 

data transfer 
!   Most applications use small data 

!   Per-call methods 
! Sundriyal et al. 

!   Using Historical information 
!   PMAC’s Green Queue 
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Let’s say we could model these 
applications … 

!   System factors 
!   OS noise 

!   SC’03 (Petrini et al.) 
!   SC’10 (Hoefler et al.) 

!   Network Congestion 
!   PPoPP’15 (Tallent et al.) 
!   CCPE’10 (Vishnu et al.) 
!   SC’13 (Bhatele et al.) 

!   System faults 
!   IPDPS’15 (Song et al.) 

!   Combinations of system factors 
!   Static modeling is insufficient! 

Bhatele	  et	  al.	  –	  SC’13	  
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MPI	  

OFA/RoCE	   uGNI/
DMAPP	   PAMI	  	  

Solvers	  

ApplicaOons	  

New	  ExecuOon	  
Models/Runt.	  

………………….	  

+X,	  Y,	  Z	  

!   Can we save the energy  
!   Without any application 

knowledge,  
!   Without expecting 

temporal patterns,  
!   Within an MPI runtime, 
!   Without performance 

degradation? 
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Communication Protocols from Energy 
Standpoint 

!   Eager-Send 
!   A false positive 
!   Copy and return 

!   Receive 
!   Unexpected Queue search 
!   Channel search 

!   Network and Shared Memory 
!   Use Power Lever 

!   Non-blocking messages 
!   False Positives 

!   Progress Primitives 
!   Consider a circular buffer of requests 
!   Use time-out to continue search  

Return 
From 
MPI  Call 

Start of 
MPI  Call 

Υ0 

δ0 

Υ1 

δ1 

w 

s 

Current 
value of 
Slack 

Current 
value of 
Slack 

Final 
value of 
Slack 

Return 
From 
MPI  Call 

Start of 
MPI  Call 

Υ1 

w 

s 

Final 
value of 
Slack 

Υ0 

(a) (b) 

An	  Example	  of	  using	  LogGP	  for	  maximizing	  
True	  posiOves	  in	  EAM	  
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Energy Efficient Collective 
Communication 

Rooted	  CollecOves	  

Processes	  can	  use	  communicaOon	  
modeling	  to	  use	  power	  levers	  at	  start	  	  
Of	  an	  MPI	  call	  

A	  process	  can	  observe	  slack	  in	  1st	  
or	  2nd	  	  step,	  but	  none	  acer	  that!	  

Un-‐rooted	  CollecOves	  

Stuck	  in	  1st	  step	  

Stuck	  in	  2nd	  step	  

Stuck	  in	  1st/2nd	  step	  
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Bounding Performance and Energy Loss 

!   Bounding performance loss 
!   A power lever is used *only after* its 

threshold is crossed 
!   Worst case occurs, when completion 

occurs right after a power lever is 
applied 

!   Performance never degrades beyond 
user-specified threshold 

!   In many cases, the cost of applying a 
lever is further amortized 

!   Bounding loss of energy savings 
!   Worst case is when completion occurs 

right before a threshold can be 
breached 
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Performance Evaluation 

!   Experimental Testbed 
!   TACC Stampede 
!   6400 Nodes of Intel Sandybridge (Xeon E5-2680) + 1 MIC co-processor 
!   Two level Fat Tree, InfiniBand FDR 

!   MVAPICH2 – 2.0.2 
!   Design Points 

!   Optimistic (Current Default), Pessimistic and Energy Aware MPI (EAM) 
!   Power Levers 

!   Interrupt driven execution (5us overhead, 66% power improvement) 
! DVFS (Dynamic Voltage and Frequency Scaling) 

!   Not available on any production systems (TACC, PNNL Cascade) 

!   Power Measurement 
!   Modified Intel Running Average Power Limit (RAPL) 

!   Distributed collection of on-board power counters 
!   Handle wrap-around with time-out based collection 



August 27, 2015 12 

Summary of Results 

!   We can save energy on 10 different applications --- without knowing 
their internal computation and communication behaviour 
!   And that is a good thing! 

!   Performance loss is <= 4% 
!   Several applications are in 12-25% energy savings range  

!   Without sweating for it 

Application Objective Major MPI calls Class Benefits(%) Loss(%)
1 miniFE Unstructured Allreduce Iterative/Temporal 25% 1%
2 miniMD Molecular dynamics Create cart, Barrier Iterative/Temporal 26% 2%
3 miniGhost FDM/FVM Waitany, Allreduce Iterative/Temporal 23% 0%
4 CloverLeaf Euler equations on grids Allreduce Iterative/Temporal 12% 3%
5 CoMD Molecular Dynamics SendRecv, Barrier Iterative/Temporal* 4% 4%
6 Hoomd-Blue Many-parictle dynamics Allreduce, Bcast Iterative/Temporal 5% 0%
7 AMG Parallel AMG Allreduce, Allgather Iterative/Non-Temporal 10% 1.15%
8 Sweep3D Parallel Neutron Transport Recv Iterative/Non-Temporal 12% 1%
9 LULESH hydrodynamic equations Allreduce Iterative/Non-Temporal 18% 0.5%
10 Graph500 Breadth-first search Alltoall Non-Iterative 41% 4%

Table 2: Summary of energy e�ciency results with EAM runtime. Performance degradation and energy improvements are
calculated using optimistic execution as baseline. * - Application classified as Iterative/ Temporal, but manifests itself as
Iterative/Non-temporal during empirical evaluation

7.1 MPI Software Stack
EAM is implemented using MVAPICH2-2.0 runtime —

a high performance MPI on InfiniBand. There are several
important considerations in implementing EAM. For porta-
bility reasons, a possible implementation choice is to use
PMPI — the weak bindings layer supported by MPI. How-
ever, EAM’s detailed design for point-to-point primitives,
communication protocols, and progress primitives requires
it to be integrated with Abstract Device Interface (ADI),
channel and device layers of MVAPICH2. In addition, sev-
eral changes are required at deepest layers of MVAPICH2
runtime — specific to the device — for state transitions
in rendezvous protocols. Similarly, the proposed design for
collective algorithms are implemented inside the collectives
layer of MVAPICH2, such that the existing performance
optimizations are used automatically. Hence, using PMPI
alone is insu�cient in implementing EAM. While this imple-
mentation choice reduces portability, the lessons learned in
implementing EAM can be directly used for MPI runtimes
of other interconnects, especially where ADI layer is used.

7.2 Power Levers
An important consideration for EAM is the power levers.

For completeness, we consider polling to be the baseline
power lever (�

polling

= 0, 
polling

= 0). In this lever, EAM
runtime polls on completion queue(s), where send and re-
ceive completions are placed. MVAPICH2-2.0 provides this
power lever by default, also referred to as optimistic execu-
tion in section 8.

Another possible power lever available on InfiniBand and
other high speed networks is interrupt-driven execution. This
lever achieves core-idling by relinquishing the CPU and block-
ing on a network event. When a send/receive completion
occurs, the process is re-scheduled for computation. This
power lever is e↵ective, if the overhead can be amortized
over slack. Specifically, for the testbed (TACC Stampede)
used in this paper, we observed that � is ⇡ 5µs resulting in �
to be 100µs (with an acceptable degradation of 5%). We also
observed that interrupt-driven execution reduces the power
consumption ( ) by a maximum of 66% in comparison to
the polling mode.

Another power lever which can be used is DVFS. In prac-
tice, this lever requires super-user access, which makes it
di�cult (if not impossible) to be deployed/used on produc-
tion systems, such as the one used in this paper. While
several home grown clusters have reported success on small-

medium scale with DVFS, the super-user restriction makes
it di�cult to use DVFS on every cluster, unlike interrupt-
driven execution which is available on all InfiniBand clusters.
We considered several large scale production systems such
as TACC Stampede, and PNNL Cascade. However, none of
them provided DVFS support. Due to the unavailability on
production system(s), we used interrupt-driven execution as
the primary power lever. Nevertheless, if DVFS becomes
available in user-space with reasonable overhead, it can be
used with minimal changes in the EAM design.

7.3 Power Measurement
The aggregate power consumption of EAM, optimistic and

pessimistic execution is measured using Intel Running Av-
erage Power Library (RAPL) interface [22]. RAPL provides
fine grained measurement of power consumption, albeit it
is restricted to only CPU socket and memory. We build a
thin measurement layer to collect power information on each
socket (de-duplication), handle wraparounds by periodic ac-
cumulation (⇡ 30s), and aggregate them at MPI_Finalize

using reduction.

7.4 Putting It All Together
In this section, we demonstrate the use of communication

models with power levers using an example of RDMA-Write
rendezvous protocol. Figure 5a shows the state transitions
for a send message in the RDMA-Write based rendezvous
protocol. A message size threshold (32KBytes) is used to
decide between using an eager or rendezvous protocol. Using
an eager protocol typically leads to a false positive on the
sender side, unless a communication bu↵er is unavailable
(section 4.1).
In the rendezvous protocol, the sender initiates an RTS

message, and waits for a CTS message from the receiver.
The expected time for receiving the CTS message is de-
pendent up on the degree of synchronization between the
sender and receiver. The communication model predicts the
expected time (w = 2 · l ⇡ 2µs), which is a mis-prediction if
the receiver is delayed. As shown in the figure 5a, the sender
uses L

0

, followed by addition power levers (L
1

· · · L|L|�1

), as
slack increases. When CTS message arrives (shown by solid
red lines), EAM uses the communication model to predict
the expected communication time for sending the data. At
this point, the sender can precisely calculate the expected
communication time. Using this value it selects all the possi-
ble power levers, such that their threshold (�) is lesser than

*ApplicaOon	  thought	  to	  be	  iteraOve-‐temporal,	  and	  behaves	  as	  non-‐temporal	  
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Evaluation at 2K and 4K processes 

!   EAM is able to save similar energy as Pessimistic design 
!   In several cases, Pessimistic degrades performance, while EAM does not 

!   Performance benefits on three class of applications indicates that EAM will 
likely be beneficial for other applications! 
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