Application and Micro-benchmark Performance using MVAPICH2-X on SDSC Gordon Cluster

Mahidhar Tatineni (<u>mahidhar@sdsc.edu</u>)

MVAPICH User Group Meeting

August 27, 2014

NSF grants: OCI #0910847 Gordon: A Data Intensive Supercomputer

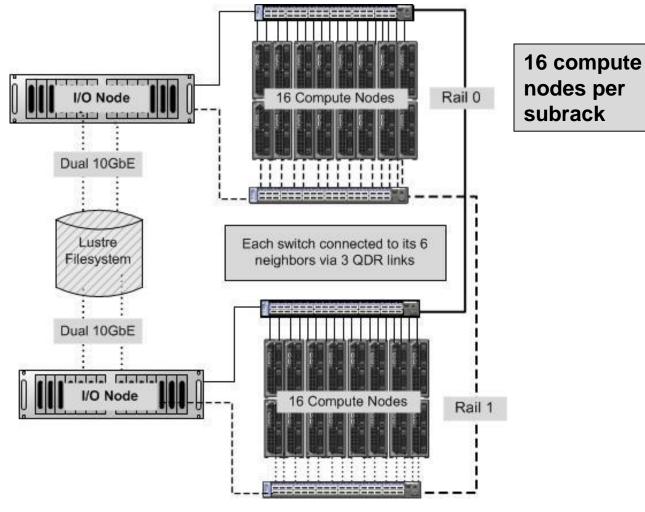
CCF-1213084 Unified Runtime for Supporting Hybrid Programming Models Heterogeneous Architecture

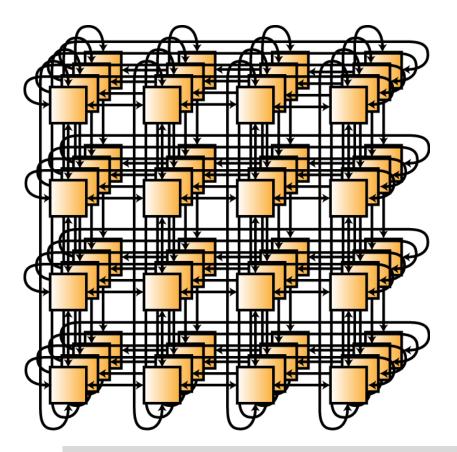
SAN DIEGO SUPERCOMPUTER CENTER at the UNIVERSITY OF CALIFORNIA, SAN DIEGO

on

Gordon – A Data Intensive Supercomputer

- Designed to accelerate access to massive amounts of data in areas of genomics, earth science, engineering, medicine, and others
- Appro integrated 1,024 node Sandy Bridge cluster
- 300 TB of high performance Intel flash
- Large memory supernodes via vSMP Foundation from ScaleMP
- 3D torus interconnect from Mellanox
- In production operation since February 2012
- Funded by the NSF and available through the NSF Extreme Science and Engineering Discovery Environment program (XSEDE)





Subrack Level Architecture

3D Torus of Switches

- Linearly expandable
- Simple wiring pattern
- Short Cables- Fiber Optic cables
 generally not required
- Lower Cost :40% as many switches, 25% to 50% fewer cables
- Works well for localized communication
- Fault Tolerant within the mesh with 2QoS Alternate Routing
- Fault Tolerant with Dual-Rails for all routing algorithms

3rd dimension wrap-around not shown for clarity

Gordon System Specification

INTEL SANDY BRIDGE	COMPUTE NODE	
Sockets	2	
Cores	16	
Clock speed	2.6	
DIMM slots per socket	4	
DRAM capacity	64 GB	
INTEL FLASH I/O NODE		
NAND flash SSD drives	16	
SSD capacity per drive/Capacity per node/total	300 GB / 4.8 TB / 300 TB	
Flash bandwidth per drive (read/write)	270 MB/s / 210 MB/s	
Flash bandwidth per node (write/read)	4.3 /3.3 GB/s	
SMP Super-Node		
Compute nodes	32	
I/O nodes	2	
Addressable DRAM	2 TB	
Addressable memory including flash	12TB	
GORDON		
Compute Nodes	1,024	
Total compute cores	16,384	
Peak performance	341TF	
Aggregate memory	64 TB	
INFINIBAND INTER	RCONNECT	
Aggregate torus BW	9.2 TB/s	
Туре	Dual-Rail QDR InfiniBand	
Link Bandwidth	8 GB/s (bidirectional)	
Latency (min-max)	1.25 µs – 2.5 µs	
DISK I/O SUBS	SYSTEM	
Total storage	/oasis/scratch (1.6 PB), /oasis/projects/nsf(1.5PB)	
I/O bandwidth	100 GB/s	
File system	Lustre	

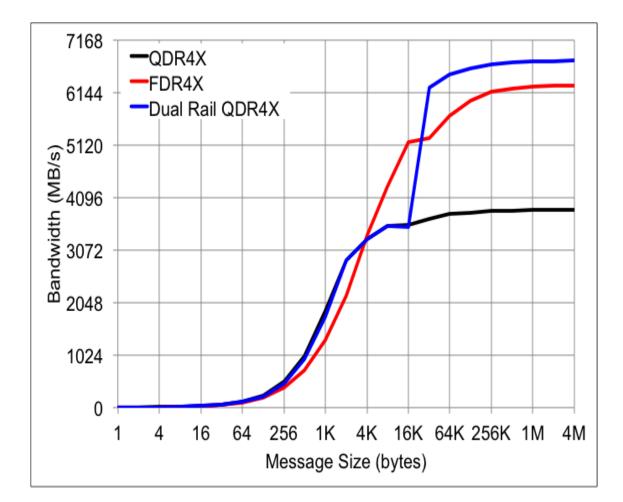
S

OSU Micro-Benchmark Results

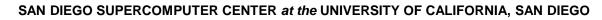
Software Environment Details

- MVAPICH2-X version 2.0 + Intel Compilers
 - Includes unified support for MPI, UPC, OpenShmem, and OpenMP
- UPC berkeley_upc, version 2.18.2
- GASNET version 1.22.4 (ibv conduit)
- OpenSHMEM release: 1.0f

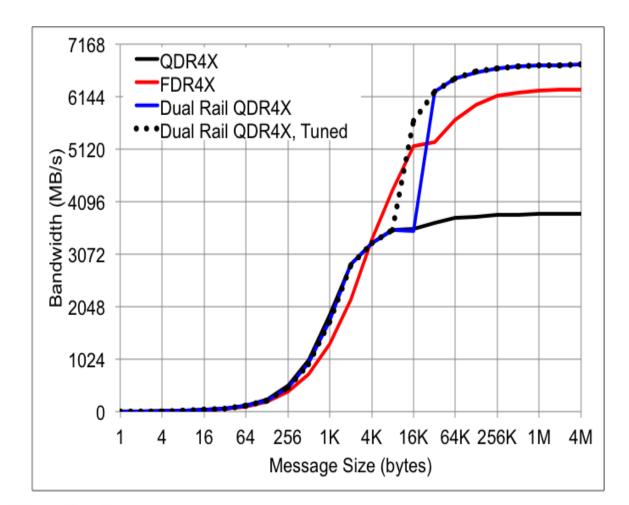
MVAPICH2 – Dual Rail Performance


- Results from XSEDE14 paper*
- Performance on OSU latency and bandwidth micro-benchmarks. Single and dual rail QDR InfiniBand, FDR InfiniBand compared.
- Evaluate the impact of railing sharing, scheduling, and threshold parameters

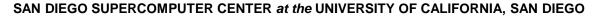
*Performance of Applications using Dual-Rail InfiniBand 3D Torus network on the Gordon Supercomputer Dong Ju Choi, Glenn K. Lockwood, Robert S Sinkovits, and Mahidhar Tatineni



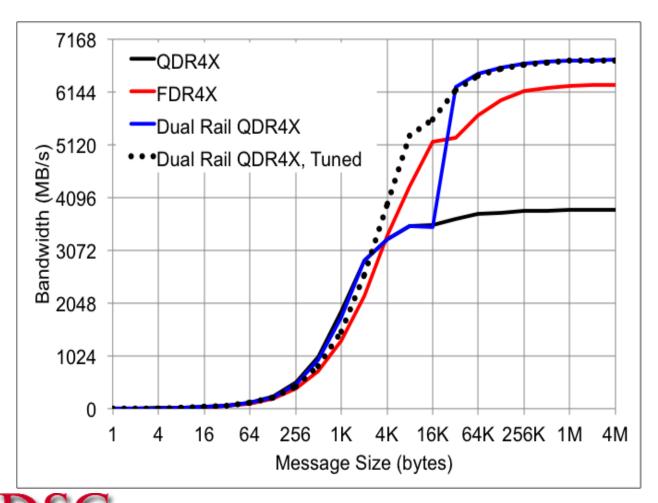
OSU Bandwidth Test Results for Single Rail QDR, FDR, and Dual-Rail QDR Network Configurations



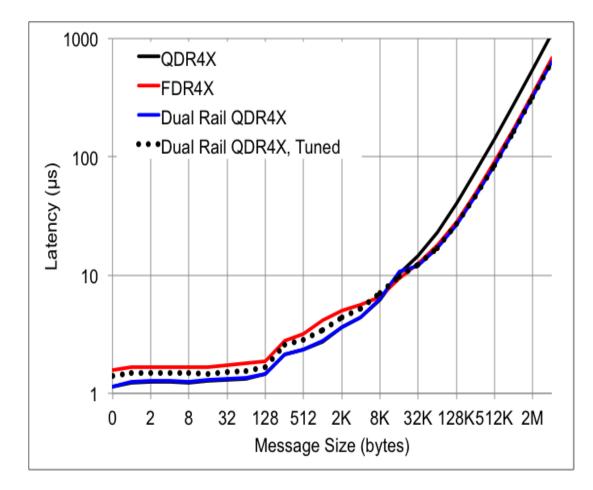
- Single rail FDR
 performance is much
 better than single rail
 QDR for message sizes
 larger than 4K bytes
- Dual rail QDR performance exceeds FDR performance at sizes greater than 32K
- FDR showing better performance between 4K and 32K byte sizes due to the rail-sharing threshold



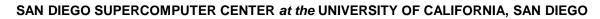
OSU Bandwidth Test Performance with MV2_RAIL_SHARING_LARGE_MSG_THRESHOLD=8K

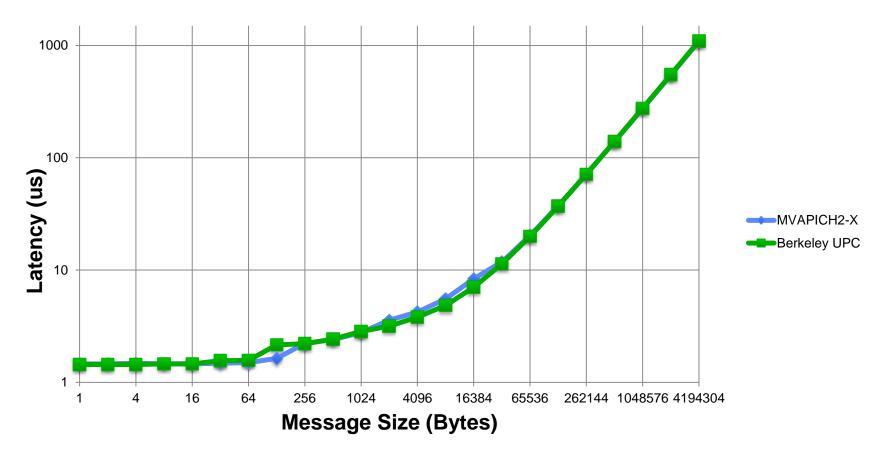


- Lowering the rail sharing threshold bridges the dual-rail QDR, FDR performance gap down to 8K bytes.

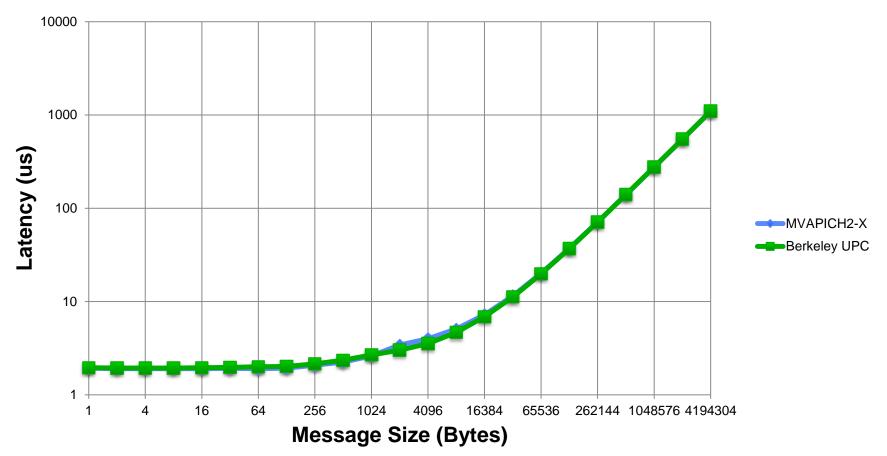

OSU Bandwidth Test Performance with MV2_RAIL_SHARING_LARGE_MSG_THRESHOLD=8K And MV2_RAIL_SHARING_POLICY = ROUND_ROBIN

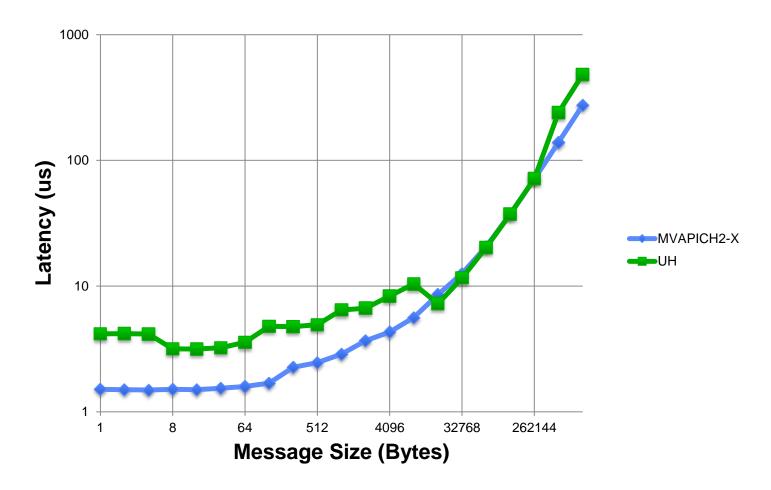
- Adding explicit roundrobin tasks to communic ate over different rails


OSU Latency Benchmark Results for QDR, Dual-Rail QDR with Round Robin Option, FDR


- Distributing messages across HCAs using the round-robin option increases the latency at small message sizes.

- Again, the latency results are better than the FDR case.


UPC memput – MVAPICH2-X, Berkeley UPC Two nodes, 1 task/node

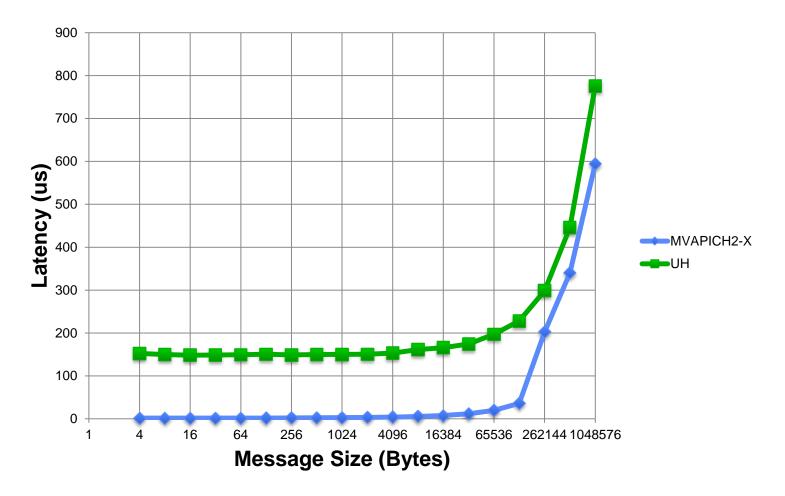

UPC memget - MVAPICH2-X, Berkeley UPC Two nodes, 1 task/node

OpenSHMEM Put – MVAPICH2-X, OpenSHMEM V1.0f Two tasks, 1 task/node

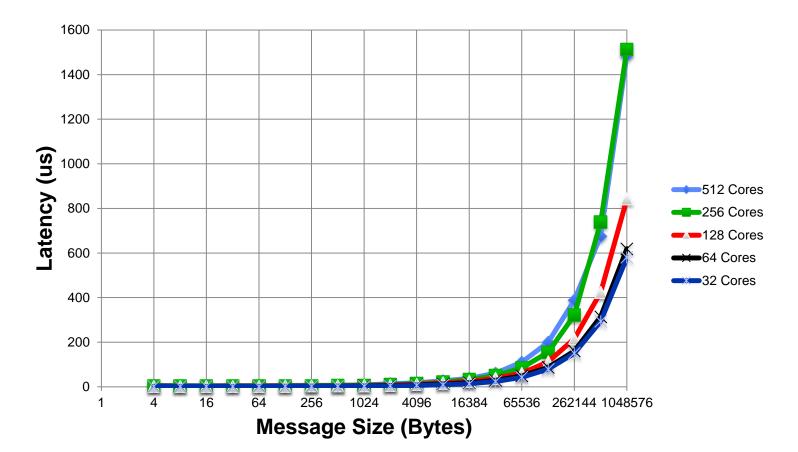
OpenSHMEM - OSU Atomics Benchmarks

	MV2X-Ops/s	MV2X-Latency	UH- Ops/s	UH-Latency
shmem_int_fadd	0.31	3.19	0.18	5.50
shmem_int_finc	0.40	2.53	0.20	5.04
shmem_int_add	0.42	2.36	0.22	4.60
shmem_int_inc	0.41	2.44	0.01	69.22
shmem_int_cswap	0.38	2.66	0.21	4.83
shmem_int_swap	0.40	2.49	0.22	4.53
shmem_longlong_fadd	0.38	2.61	0.22	4.58
shmem_longlong_finc	0.42	2.41	0.01	71.51
shmem_longlong_add	0.42	2.38	0.23	4.42
shmem_longlong_inc	0.42	2.38	0.22	4.62
shmem_longlong_cswap	0.42	2.39	0.21	4.75
shmem_longlong_swap	0.40	2.50	0.03	33.10

OpenSHMEM Barrier – MVAPICH2-X, OpenSHMEM V1.0f


Tasks (Two nodes)	MVAPICH2-X (Latency in us)	Release Openshmem (UH) (Latency in us)*
2	1.87	15.85
4	2.44	77.97
8	2.71	191.90
16	3.29	430.99
32	7.01	1009.97

*Release OpenSHMEM version run with gasnet_ibv conduit. No optimizations attempted and further work may be needed.



OpenSHMEM Broadcast 2 Nodes, 8 tasks/node (16 tasks total)

OpenSHMEM Broadcast – OSU Benchmark; MVAPICH2-X

#1 NAS Parallel Benchmarks: (a) 2.4 UPC version - GWU/HPCL http://threads.hpcl.gwu.edu/sites/npb-upc

(b) 3.2 OpenSHMEM version – University of Houston https://github.com/jeffhammond/openshmem-npbs

#2 CP2K (Hybrid MPI + OpenMP) [Ongoing]

#3 PSDNS (Hybrid MPI + SHMEM) [Ongoing]

NPB CLASS D CG – UPC Version, MVAPICH2-X

Cores (Nodes)	Time (in secs)
32 (2)	385.54
64 (4)	229.46
128 (8)	100.08
256 (16)	64.39

CG: Conjugate Gradient, irregular memory access and communication

NPB, CLASS C IS – UPC Version, MVAPICH2-X

Cores (Nodes)	Time (in secs)
16 (1)	1.52
32 (2)	1.11
64 (4)	0.90
128 (8)	0.74
256 (16)	0.46

IS: Integer Sort, random memory access

NPB CLASS D MG, UPC Version, MVAPICH2-X

Cores (Nodes)	Time (in secs)
32 (2)	46.89
64 (4)	34.77
128 (8)	18.14
256 (16)	8.85
512 (32)	6.07

MG: Multi-Grid on a sequence of meshes, long- and shortdistance communication, memory intensive

NPB CLASS D SP, OpenSHMEM Version, MVAPICH2-X

Cores (Nodes)	Time (in secs)
16	2535.42
64	699.16
256	144.68

SP: Scalar Penta-diagonal solver

NPB CLASS D MG, OpenSHMEM Version, MVAPICH2-X

Cores (Nodes)	Time (in seconds)
16 (1)	169.95
32 (2)	93.97
64 (4)	35.90
128 (8)	19.48
256 (16)	9.81

MG: Multi-Grid on a sequence of meshes, long- and shortdistance communication, memory intensive

Ongoing/Future Work

- Further investigate performance results, look into OpenSHMEM v1.0f aspect.
- Testing at larger scales (Gordon, Stampede, Comet)
- Hybrid code performance
 - PSDNS MPI + OpenSHMEM version (Dmitry Pekurovsky)
 - CP2K MPI + OpenMP
- Big Thanks to Dr. Panda's team for their excellent work and support for MVAPICH2, MVAPICH2-X!

