
GPU Direct Approach for Parallel
3D-FFT in Quantum ESPRESSO
Filippo SPIGA1,2 <fs395@cam.ac.uk>

1 High Performance Computing Service, University of Cambridge
2 Quantum ESPRESSO Foundation

Cambridge GPU system: Wilkes

•  128 nodes Dell T620, dual 6-core Intel Ivy Bridge 2.6 GHz

•  dual NVIDIA K20c per node, dual Mellanox Connect-IB FDR

•  NVIDIA driver 331.67 (CUDA 6.0), MOFED 2.1-1.0.6, FAST-
COPY kernel module

2

Quantum ESPRESSO

WHAT IS IT...

•  QUANTUM ESPRESSO is an integrated
suite of computer codes for atomistic
simulations based on DFT, pseudo-
potentials, and plane waves

•  QUANTUM ESPRESSO is free software
licensed as GPL. Everybody is free to
use it and welcome to contribute to its
development

•  Huge diffusion in both academia and
industries. Growing user community
thanks to dissemination actives and
international schools.

WHAT IS "SPECIAL" ABOUT IT...
•  Not a single "portion" of the code

takes the majority of the wall-time
•  Code profile varies based on the

input case, it can be...
–  3D-FFT dominant
–  hard solve eigen problem

•  Effort for a GPU porting that
–  leverage as much as possible library

eco-system (NVIDIA & 3rd parties)
–  avoid massive changes in the data

distribution

•  Other codes & tools built on top of
some shared building-blocks

3

g-vectors and z-sticks

Commonalities in (lot of) legacy ab-initio plane-wave codes...

•  main data distribution around g-vectors

•  #of g-vectors grows based on # atoms, # atomic species and pseudo-potential

•  g-vectors have a different "length", the code aims to distribute them
homogeneously across all MPI processes involved

•  g-vectors that fall "out of the sphere" are not considered, not even computed

•  from g-vector it is possible to build z-stick in G space by superposition of
multiple of them

4

3D-FFT peculiarities

Ny Nz FFT along x

Transform along X

0

1

2

3

PE 0
PE 1

PE 2
PE 3

Ec 4Ec

0 1 2 3 0
0 0 0

1
1 1 1

2
2 2

2

3
3 3

3

Transform along Z

~ Nx Ny / 5 FFT along z Nx Nz / 2 FFT along y

z

0

1

2

3

Transform along Y

Pa
ra

lle
l T

ra
ns

po
se

 ~
 N

x
N

y
N

z
/ (

5
N

p)
 d

at
a

ex
ch

an
ge

d
pe

r P
E

xyz x

y z

0

1

2

3

xy

5

H * psi

compute/update H * psi:
compute kinetic and non-local term (in G space)

complexity : Ni × (N × Ng+ Ng × N × Np)
Loop over (not converged) bands:

FFT (psi) to R space
 complexity : Ni × Nb × FFT(Nr)

 compute V * psi
 complexity : Ni × Nb × Nr

 FFT (V * psi) back to G space
 complexity : Ni × Nb × FFT(Nr)

 compute Vexx:
 complexity : Ni × Nc × Nq × Nb × (5 × Nr + 2×FFT(Nr))

N = 2×Nb (where Nb = number of valence bands)
Ng = number of G vectors
Ni = number of Davidson iteration

Np = number of PP projector
Nr = size of the 3D FFT grid
Nq = number of q-point (may be different from Nk)

6

Where/Why the (first) GPU porting failed

"Dumb" approach: replace FFT* with CUFFT, leave the (MPI) parallelism as-it-is

Problems:

•  CUFFT is (too) fast for our problem size (~150 double-complex)

•  moving data H2D & D&H is too expensive

Workarounds (and drawbacks):

•  use task-group to increase local computation...

•  more communication during the "transposition phase" if lot of bands involved

•  group batch of (full) 3D-FFT locally and compute...

•  more communication and more memory required

•  we lose GPU memory bandwidth advantage in assembling the FFT grid

7

GDR-aware 3D-FFT design

vloc_psi_k_init_

(a)sync copy of psi

init_psic_k_

tg_cft3s (invfft)

vec_prod_k

tg_cft3s (fwfft)

hpsi_update_k

checks

cft_1z_cuda_

fft_scatter

cft_2xy_cuda_

clean-up

pre-scatter

re-oredering / packing

MPI_alltoall(*psic_d,...)

re-ordering / un-pack

post-scatter

Special acknowledge NVIDIA intern D. Stosic (miniDFT)

8

Preliminary results (synthetic)
osu_alltoall, mvapich2/2.0-7_GDR/intel-14_cuda-6.0

0

50

100

150

200

250

300

350

400

450
without GDR
 with GDR
 with GDRCOPY

Size	
 without	
 GDR	
 	
 with	
 GDR	
 	
 with	
 GDRCOPY	

4	
 35.69	
 21.25	
 20.72	

8	
 37.66	
 20.88	
 20.59	

16	
 36.33	
 20.99	
 20.48	

32	
 37.46	
 21.26	
 21.22	

64	
 40.23	
 22.03	
 21.6	

128	
 44.17	
 22.29	
 22.42	

256	
 51.93	
 23.72	
 23.4	

512	
 69.09	
 24.27	
 24.39	

1024	
 98.74	
 26.31	
 26.02	

2048	
 168.03	
 29.6	
 29.39	

4096	
 162.68	
 38.74	
 38.32	

8192	
 225.64	
 61.72	
 62.53	

16384	
 376.26	
 94.42	
 94.31	

32768	
 232.3	
 167.04	
 167.47	

65536	
 423.54	
 362.71	
 363.51	

9

Preliminary results (QE prototype)
Si333, mvapich2-GDR-2.0b-3/intel-12.1_cuda-5.5

0.873196602

0.488123417

0.58314991
0.520709991 0.528679848

0.469670057

0

0.2

0.4

0.6

0.8

1

CPU GPU GPU, CUDA-AWARE GPU, CUDA-GDR GPU, CUDA-GDR +
LOOPBACK

GPU, CUDA-GDR +
FASTCOPY

10

Status of the work (in progress)

o  Validate design (for the right HW and the right software stack)

o  Extend to all cases...

•  "Wave" and "Smooth" grids, gamma and k-point, with/without task-group, ...

o  Working on fine-grain tuning (MV2_CUDA*, MV2_GPUDIRECT_*, ...)

o  Back-trace special scenarios and handle them

•  Not enough independent 3D-FFTs à group them using task-group

•  Too few independent 3D-FFTs à ignore GPUs

•  non-ideal PCIe topology à let MVAPICH2 team have fun ;-)

11

THANKS FOR YOUR ATTENTION

«What I cannot compute, I do not understand.»
(adapted from Richard P. Feynman)

12

