
NWChem and Global Arrays Applications
using MPI-3 RMA

Jeff Hammond

Extreme Scalability Group & Parallel Computing Lab
Intel Corporation (Portland, OR)

27 August 2014

Jeff Hammond ARMCI-MPI



Abstract (for posterity)

NWChem is a well-known quantum chemistry package designed for
massively parallel supercomputers. The basis for NWChem’s
parallelism is the Global Arrays programming model, which
supports distributed arrays, dense linear algebra, flexible one-sided
communication and dynamic load-balancing. The low-level
communication runtime of Global Arrays is called ARMCI. Dinan
and coworkers first mapped ARMCI to MPI-2 remote memory
access (RMA), which helped drive the development of the MPI-3
standard. We will describe our implementation of ARMCI using
MPI-3 RMA and performance results showing the scalability of
NWChem on multiple platforms. In particular, the MVAPICH2
implementation of MPI-3 delivers excellent performance and
scalability on InfiniBand systems.

Jeff Hammond ARMCI-MPI



Jeff Hammond ARMCI-MPI



Extreme Scalability Group Disclaimer

I work in Intel Labs and therefore don’t know anything about
Intel products.

I work for Intel, but I am not an official spokesman for Intel.
Hence anything I say are my words, not Intel’s. Furthermore, I
do not speak for my collaborators, whether they be inside or
outside Intel.

You may or may not be able to reproduce any performance
numbers I report.

Performance numbers for non-Intel platforms were obtained
by non-Intel people.

Hanlon’s Razor.

Jeff Hammond ARMCI-MPI



Collaborators

Jim Dinan (Intel) wrote the original version of ARMCI-MPI
targeting MPI-2 RMA while at Argonne.

Pavan Balaji (Argonne) is the MPICH team lead and has been
overseeing ARMCI-MPI development throughout.

Jeff Hammond ARMCI-MPI



Overview of Computational Chemistry

Jeff Hammond ARMCI-MPI



Atomistic simulation in chemistry

1 classical molecular dynamics (MD) with
empirical potentials

2 quantum molecular dynamics based upon
density-function theory (DFT)

3 quantum chemistry with wavefunctions
e.g. perturbation theory (PT), coupled-cluster
(CC) or quantum monte carlo (QMC).

Jeff Hammond ARMCI-MPI



Classical molecular dynamics

Image courtesy of Benôıt Roux via ALCF.

Solves Newton’s equations of
motion with empirical terms and
classical electrostatics.

Math: N-body

Programming model needs: Small
data, load-imbalanced,
latency-sensitive.

Software: NAMD (Charm++),
LAMMPS (MPI+X), Gromacs
(MPI+X).

Jeff Hammond ARMCI-MPI



Car-Parrinello molecular dynamics

Image courtesy of Giulia Galli via ALCF.

Forces obtained from solving an
approximate single-particle
Schrödinger equation.

Math: 3D FFT, dense linear
algebra.

Programming model needs:
Medium data, load-balanced,
bandwidth-intensive.

Jeff Hammond ARMCI-MPI



Quantum chemistry

Method
Property

Hartree-Fock Coupled
Cluster

Quantum
Monte Carlo

Physics Mean-field Many-body Diffusion Eqn.

Math Eigensolver,
Sparse,
Matrix-free

Tensor con-
tractions

Interpolation,
Monte Carlo

Data Modest Very large Large

Compute Irregular,
Dynamic

Static,
Block-sparse

Regular

Comm. Small Msg. Big Msg. Negligible

Dynamic, irregular computations and data in excess of one
process/node motivates the use of Global Arrays (more later).

Jeff Hammond ARMCI-MPI



Overview of NWChem

Jeff Hammond ARMCI-MPI



NWChem Overview

Open Source License: ECL* 2.0 — Apache* 2.0 with
patent modifications for academic users (see Wikipedia*
for details).

Wiki: http://www.nwchem-sw.org

Capability: Very diverse collection of quantum chemical
methodology and QM/MM.

Portability: Runs on laptops/workstations (Linux*, Mac*
and Cygwin*), clusters (e.g. InfiniBand*) and
supercomputers (e.g. Cray* and IBM* Blue Gene*).

Other names and brands may be claimed as the property of others.

Jeff Hammond ARMCI-MPI

http://www.opensource.org/licenses/ecl2.php
http://www.nwchem-sw.org


NWChem History and Design

Began at the dawn of the MPP age, before MPI*.

First MPP code in quantum chemistry; almost every code
imitates it now.

Designed to be object-oriented but had to use Fortran* 77.

Global Arrays programming model abstracted away explicit
communication, was data-centric (i.e. what do you need to do
with that matrix?).

Uses its own memory allocator, IO layer, runtime database,
hooks resource managers, low-level timers, and
communication runtime (ARMCI).

Other names and brands may be claimed as the property of others.

Jeff Hammond ARMCI-MPI



Devil’s Advocate

Object-oriented Fortran 77? Are you insane?

There was a time before MPI-1? And we had computers then?

It can’t be that hard to rewrite the code.

To which I say:

Yes, it would be lovely to rewrite NWChem in C++.

Since NWChem abstracts away communication in GA, you
shouldn’t see MPI either.

Rewriting 1+ MLOC is highly nontrivial.

New codes have to be validated.

And then there is the science. . .

Other names and brands may be claimed as the property of others.

Jeff Hammond ARMCI-MPI



Large coupled-cluster excited-state calculation

Systems with hundreds of electrons can be modeled using
CR-EOMCCSD(T).

J. Chem. Phys. 132, 154103 (2010).

Jeff Hammond ARMCI-MPI

http://link.aip.org/link/JCPSA6/v132/i15/p154103/s1


Charge-transfer excited-states of biomolecules

CR-EOMCCSD(T)/6-31G* — 1 hour on 256 cores (2009/2010)

Lower levels of theory are not reliable.

Joint work with Karol Kowalski (PNNL) and Benôıt Roux (UC/Argonne).

Jeff Hammond ARMCI-MPI



CCSD-LR Dynamic Polarizability

1080 b.f. — 40 hours on 1024 processors (2007)

J. Chem. Phys. 129, 226101 (2008).

Jeff Hammond ARMCI-MPI

http://link.aip.org/link/jcpsa6/v129/i22/p226101/s1


Quadratic response hyperpolarizability

CCSD/d-aug-cc-pVTZ – 812 b.f. – 20 hours on 1024 processors
(2008)

Lower levels of theory are not reliable for this system.

J. Chem. Phys. 130, 194108 (2009).

Jeff Hammond ARMCI-MPI

http://jcp.aip.org/resource/1/jcpsa6/v130/i19/p194108_s1


Large Fifth-rung DFT (B2PLYP)

2154 b.f. — 7 hours on 256 cores (2008/2009)

Organometallics 29, 1750-1760 2010.

Jeff Hammond ARMCI-MPI



Overview of Global Arrays

Jeff Hammond ARMCI-MPI



Data model

GA supports N-dimensional (N < 8) distributed arrays with regular
(blocked and block-cyclic) and irregular (user-defined) distributions
in all dimensions.

Direct local access is permitted but the primary programming
model is Get-Compute-Update.

Jeff Hammond ARMCI-MPI



GA Template for Matrix Multiplication

Pseudocode for C i
j = Ai

k ∗ Bk
j :

for i in I blocks:

for j in J blocks:

for k in K blocks:

if NXTVAL(me):

Get block a(i,k) from A

Get block b(k,j) from B

Compute: c(i,j) += a(i,k) * b(k,j)

Accumulate c(i,j) block to C

GA default template is dynamically load-balanced effectively and
weak-scales, but ignores locality and topology, may communicate
excessively and ignores higher-level structure.

Jeff Hammond ARMCI-MPI



GA to ARMCI

GA operations act on handle,
global indices.

ARMCI operations act on rank,
virtual addresses, size.

MPI P2P ops act on rank, virtual
address, size, datatype.

MPI RMA operations on handle,
offset, datatype.

Not all GA calls map to ARMCI. Math routines call ScaLAPACK
and use collective or two-sided comm.

Jeff Hammond ARMCI-MPI



The ARMCI Problem

Jeff Hammond ARMCI-MPI



Attempts at portability of ARMCI

ARMCI is the bottleneck to porting NWChem to any new platform.
Nothing else comes close anymore (thanks to Linux*, GCC*, etc.).

TCP/IP performs poorly and isn’t available on some
supercomputers.

Frantically writing a native port for every network - expensive.

Cray*-oriented MPI Send+Spawn implementation of ARMCI -
fragile.

Cluster-oriented MPI Send+Threads implementation of
ARMCI - slow.

ARMCI-MPI - requires MPI-RMA to function and perform.

Other names and brands may be claimed as the property of others.

Jeff Hammond ARMCI-MPI



ARMCI-MPI with MPI-2

Jeff Hammond ARMCI-MPI



NWChem with ARMCI-MPI (MPI-2)

 0

 0.75

 1.5

 2.25

 3

 3.75

 4.5

 192  224  256  288  320  352  384
 0

 17

 34

 51

 68

 85

 102

C
C

S
D

 T
im

e
 (

m
in

)

(T
) 

T
im

e
 (

m
in

)

Number of Cores

InfiniBand Cluster

ARMCI-MPI CCSD
ARMCI-Native CCSD

ARMCI-MPI (T)
ARMCI-Native (T)

Jeff Hammond ARMCI-MPI



NWChem with ARMCI-MPI (MPI-2)

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  2048  4096  6144  8192  10240  12288

C
C

S
D

 T
im

e
 (

m
in

)

Number of Cores

Cray XT5

ARMCI-MPI CCSD
ARMCI-Native CCSD

Jeff Hammond ARMCI-MPI



NWChem with ARMCI-MPI (MPI-2)

 0

 5

 10

 15

 20

 25

 30

 35

 0  256  512  768  1024

C
C

S
D

 T
im

e
 (

m
in

)

Number of Nodes

Blue Gene/P

ARMCI-MPI CCSD
ARMCI-Native CCSD

Jeff Hammond ARMCI-MPI



NWChem with ARMCI-MPI (MPI-2)

 0

 3

 6

 9

 12

 15

 18

 744  1488  2232  2976  3720  4464  5208  5952
 0

 5

 10

 15

 20

 25

 30

C
C

S
D

 T
im

e
 (

m
in

)

(T
) 

T
im

e
 (

m
in

)

Number of Cores

Cray XE6

ARMCI-MPI CCSD
ARMCI-Native CCSD

ARMCI-MPI (T)
ARMCI-Native (T)

Jeff Hammond ARMCI-MPI



Issues with MPI-2

Lacked atomics - NXTVAL is RMW(long)
many-to-one.

Nonblocking impossible.

Local and remote completion must be combined.

No ability to exploit symmetric or other special
memory.

Separate memory model constrains usage, is
rarely necessary.

No way to aggregate synchronization except for
Win fence.

Jeff Hammond ARMCI-MPI



MPI-3 RMA in a nutshell

Added RMW and CAS.

Request-based local completion.

Flush local, Flush, Flush all, Flush all local.

Win allocate (and Win allocate shared).

New memory model, shared-memory can be
used.

Win lock all (shared).

Jeff Hammond ARMCI-MPI



ARMCI-MPI with MPI-3

Jeff Hammond ARMCI-MPI



Expected changes

RMA should improve NXTVAL latency; however, MCS
mutex-based implementation was fair, did not overwhelm
target.

Separation of local and remote completion should improve
bandwidth on some networks.

Nonblocking support should improve performance when
accessing multiple ranks at once.

Allocating window memory should allow for better
intranode performance.

Jeff Hammond ARMCI-MPI



Observed changes

NWChem is not particularly sensitive to NXTVAL except
negative effects from overwhelming target as a
consequence of strong-scaling, rapid injection.

IB and Cray* networks are end-to-end complete; no
obvious win from local completion.

Approximately 4x reduction in comm time on Tianhe-2
(Galaxy Express*) at scale with the George Tech quantum
chemistry code.

Shared-memory optimizations hit numerous bugs and had
to be disabled by default in ARMCI-MPI.

MPI-3 does not change asynchronous progress situation,
which remains problematic.

Other names and brands may be claimed as the property of others.

Jeff Hammond ARMCI-MPI



ARMCI-MPI over MPI-2

Jeff Hammond ARMCI-MPI



ARMCI-MPI over MPI-3

Jeff Hammond ARMCI-MPI



ARMCI-MPI over MPI-3

Jeff Hammond ARMCI-MPI



“The best performance improvement is the

transition from the nonworking state to the

working state.” – John Osterhout

Jeff Hammond ARMCI-MPI



ARMCI-MPI Osterhout Performance

No native ARMCI port on Tianhe-2; ARMCI-MPI3 scaled to
8000 nodes.

No native ARMCI port on Blue Gene/Q*; ARMCI-MPI2
scaled to thousands of nodes.

ARMCI native InfiniBand* port extremely unstable; segfaults
nearly all the time for large-memory jobs. ARMCI-MPI able to
run near the memory limit without crashing.

ARMCI native DMAPP* port extremely unstable; fails every
time in TCE. ARMCI-MPI running to 80K cores without
crashing.

Other names and brands may be claimed as the property of others.

Jeff Hammond ARMCI-MPI



Final remarks

MVAPICH2* has supported MPI-3 for a long time and
enabled otherwise impossible science with NWChem.

ARMCI-MPI enabled portability of NWChem and other
quantum chemistry codes to new platforms without delay.

MPI-3 is not yet a clear win over MPI-2 because of
implementation issues (bugs).

When ARMCI native port exists and works, it’s usually faster.

Please see http://wiki.mpich.org/armci-mpi/index.php/Main Page
for details.

Other names and brands may be claimed as the property of others.

Jeff Hammond ARMCI-MPI


