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HOOMD-blue overview

• Highly-Optimized, Object-oriented Many-particle Dynamics, 
blue edition  

• Open-source GPU-accelerated, written in CUDA/C++/Python  

• Developed at UofM by Joshua Anderson (lead-developer) since 
March 2007 / CUDA 0.8 beta  

• Initial 0.60 release February 2008  

! ! J. A. Anderson, C. D. Lorenz, A. Travesset 
! ! General purpose molecular dynamics simulations fully implemented on graphics !
! ! processing units, Journal of Computational Physics 227 (2008), 5342–5359.!

!
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strength. Coexistence densities remain fairly constant at fF z
0.55 and fS z 0.68 up to an interaction strength of 3/kT z 0.8,
where the uid coexistence density drops almost to zero. A
compilation of coexistence results is shown in Fig. 3b, where a
phase diagram in 3/kT vs. f (both uid and solid, showing tie
lines between coexisting phases) is shown in the main panel
and in 3/kT vs.Pca

3/kT is shown in the inset. From our results it
can be seen that the system does not have stable gas–liquid
coexistence or a critical point. This is consistent with the
requirement for the range of our potential to be below 3.20a
(our range is 3.19a), which is the lower range limit for the
existence of a critical point.27

Phase diagrams in Fig. 3b are shown alongside predictions
for a system with a similar interaction range27 for qualitative
comparison. The range of the potential for our system, as
described in eqn (1)–(4), corresponds to 3.19a, while the system
depicted in red lines has a range of 3.02a. To compute the
equivalent densities we t our potential form to the double
Yukawa form used in the original reference with the particle
core size, s, as an adjustable parameter. Densities are corrected
with s to allow direct comparison between the two systems. The
interaction strength in the benchmark system is also converted

to an equivalent interaction strength, 3/kT, by making the
minimum of the pair potential energy the same between the two
potential functional forms. Osmotic pressure is converted by
means of using the equivalent core particle size in the non-
dimensional group, Pa3/kT. As can be seen in Fig. 3b, both
systems have comparable behavior in both coexistence densi-
ties and osmotic pressure. Given the difference in range we do
not expect the two systems to have exactly the same behavior.
The fact that coexistence densities and pressures are very close
to a benchmark system gives us condence in the use of the
sedimentation equilibrium methodology to be used in aniso-
tropic interaction systems.

Observed Janus particle phases

To analyze the phase behavior of Janus particles we have to rst
identify the types of structures accessible to the system. In the
isotropic case explored in Fig. 2 and 3, the two main structures
observed were a disordered uid and a close-packed solid. In
this work we study Janus particles with Janus balance values, as
dened in the Theory section, of a ¼ 105", 115", 125", and 135".
The chosen Janus balance values correspond to area coverages

Fig. 4 Observed phases from single patch Janus particle simulations. Fluid (panels (a), (d) and (g)) at f¼ 0.41, a¼ 105", 3/kT¼ 0.8; rotator close-
packed (RotCP) structure (panels (b), (e) and (h)) at f ¼ 0.69, a ¼ 105", 3/kT ¼ 0.8; and lamellar (panels (c), (f) and (i)) at f ¼ 0.68, a ¼ 105", 3/kT ¼
1.0. Panels (a–c) show renderings from simulation results showing attractive patches in blue. Panels (d–f) show the same configuration as in
panels (a–c) but showing only particle centers. Panels (g–i) show the same configurations as above showing orientation vectors.
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authors identified these two pathways by visual inspection of
simulation trajectories supported by tracking of the cluster size
distribution. This approach to assembly pathway inference,
however, cannot reveal the full microscopic mechanistic details
of the process. A systematic approach to assembly pathway
inference developed by Jankowski and Glotzer21,22 discovers
metastable structures by computing approximate partition
functions and identifies assembly pathways by constructing a
directed network over these states. The great strength of this
approach is that it recovers thermodynamic assembly pathways
independently of system dynamics, but by the same token
cannot capture the thermodynamically and kinetically mean-
ingful assembly pathways within a single unified framework.
We present a new approach to infer systematically self-

assembly pathways by nonlinear machine learning of molecular
simulation trajectories. By mimicking the true building block
dynamics within the simulations, we naturally recover assembly
pathways that reflect both the thermodynamics (what can
assemble?) and kinetics (how does it assemble?) of the process.
As we discuss below, the nonlinear machine learning technique
that we employ in this work, diffusion maps,38,39 circumvents
the technical difficulties that plague the application of linear
approaches such as principal components analysis (PCA)40 and
recovers kinetically meaningful order parameters that character-
ize the collective structural rearrangements driving the long-
time evolution of the assembly process.39 We demonstrate our
approach in an application to Brownian dynamics simulations
of the self-assembly of anisotropic patchy particles into
polyhedral aggregates as a well-characterized test system.27,28,41

Our approach is directly extensible to systems with arbitrary
dynamics and arbitrary particle geometries and chemistries. We
anticipate that the systematized recovery of self-assembly
pathways and mechanisms will provide a deeper understanding
of self-assembly processes of scientific and technological
importance and ultimately help to guide rational building
block design for the fabrication of materials with desirable
structural and functional properties.

2. THEORETICAL METHODS
2.1. Model. We model anisotropic “patchy particles” using

the model of Zhang and Glotzer41 in which each particle
comprises a large sphere decorated by smaller attractive surface
patches arranged in two coaxial annular rings (Figure 1). All
patchy particle visualizations were generated using VMD.42

This model has been used previously to study the reversible
self-assembly of a range of aggregates including tetrahedral,
octahedral, and icosahedral clusters.41 The patchy particle is
composed of three subspecies, denoted A, B, and C, that
together comprise a rigid body. The larger A-spheres represent
a spherical colloidal particle. The smaller B- and C-spheres that
adorn the A-sphere mediate the anisotropic interparticle
interactions. The B-spheres compose the ring closest to the
equator of the A-sphere, while the C-spheres make up the ring
closer to the pole. B−B and C−C interactions between spheres
in different particles are attractive, serving as anisotropic “sticky
patches”. We can alter the relative geometry of our patchy
particles by varying the polar angle of the B and C rings.
Following Zhang and Glotzer,41 we bias the assembly of
particular polyhedra by placing the sticky patches such that they
optimally contact in the geometry of an idealized aggregate. We
are interested in two simple, but nontrivial, target structures
upon which to test and validate our methodology: tetrahedral
aggregates as a simple test case for the assembly of small

polyhedral clusters and icosahedral aggregates as a toy model
for viral capsid formation that has been well-characterized by
Wilber et al.27,28 To favor icosahedral clusters, we place 14 B-
spheres at a polar angle of 70.6° and 11 C-spheres at a polar
angle 49.0°. To favor tetrahedral cluster formations, we place
11 B-spheres at a polar angle of 46.8° and 6 C-spheres at a
polar angle of 24.9°.
We treat the patchy particles as rigid bodies neglecting all

intraparticle interactions and model interparticle interactions
using potentials previously implemented by Glotzer and co-
workers.7,41 Interparticle B−B and C−C interactions are
modeled by a Lennard-Jones potential
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where σi is the diameter of particle i, εi the potential well depth
for particle type i, and r the interparticle separation. A−X,
where X ∈ {A,B,C}, and B−C interactions occur through a
surface shifted Weeks−Chandler−Andersen (WCA) potential
to account for excluded volume of the A spheres43
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where εij = (εiεj)
1/2 is defined according to the Berthelot

combining rule,44 Δij = (σi + σj)/2 − σ,45 and σ is a parameter.
We perform our simulations in dimensionless units such that σ
= σB = σC = 1, σA = 5, ε = εA = εB = εC = 1, and m = mA = mB =
mC = 1 where mi is the mass of sphere i. The reduced
temperature is defined as T* = kBT/ε, and reduced time as t* =
t/(mσ2/ε)1/2. We note that for this choice of parameters, ΔAA =
4, ΔAB = ΔAC = 2, and ΔBC = 0, which effectively prohibits A−A
overlaps, assuring that the patchy particles interact primarily by
specific B−B, C−C, and B−C interactions on the surface of the
A spheres.

Figure 1. Rigid body double-ring patchy particles employed in this
study.41 Panels (a) and (b) correspond to the structure of the
tetrahedral monomer and the idealized tetrahedral cluster, respec-
tively; (c) and (d) represent the icosahedral monomer and idealized
icosahedral cluster, respectively. A-spheres are gray, B-spheres red, and
C-spheres green.
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the phase must both choose a noncubic tiling and orient along
a longer axis of the cubic simulation box.
Per Figure 2, at Dr = 0.67 there is an order−order phase

transition between the Fddd phase and PL or HLM. At Dr =
0.5, there is an order−order phase transition between the Fddd
phase and R3̅m. In several regions, the Fddd network competes
for stability with the DG.
Long Micelle Phases. Tetragonally Arranged, Alternating

Long Micelles. For a tether length of L = 8 at ϕ = 25%, Dr =
1.0, the TNPT system forms a tetragonal packing of long
cylindrical micelles (TLM). This phase was found in a small set
of simulations outside the range shown in Figure 2. This was
the only ordered phase observed for ϕ < 35%.
In this phase, both NPA and NPB form long micelles, as seen

in Figure 5f. The LM arrange tetragonally, rather than
hexagonally, and alternate NPA and NPB. The polymer tether
fills the space between the LM.
Hexagonally Arranged, Long Micelles. For a tether length

of L = 2 and 4, ϕ = 35−50%, Dr = 0.67 and 0.5, the TNPT

system forms hexagonally arranged long micelles (HLM). The
phase also forms for a tether length of L = 6, ϕ = 35, 45, 50%
and L = 8, ϕ = 45 and 50%, for Dr = 0.67, and L = 6, ϕ = 45
and 50%, for Dr = 0.5.
In the HLM phase, NPA form LMs that are hexagonally

arranged, as shown in Figure 5b. The tethers form a shell
around the LMs. NPB forms a honeycomb (HC) shaped bilayer
around the LM. As the tether increases in length, the shell
formed around the LM becomes thicker.
As seen in Figure 2, for L = 2 and L = 4, Dr = 0.67 and 0.5,

HLM was the only stable phase found. At L = 6 and 8, there is
an order−order phase transition between HLM and PL phases,
the Fddd network, and R3 ̅m.

R3̅m Micelles. A network phase of space group R3 ̅m (space
group No. 166) forms at a tether length L = 6 at ϕ = 40, 45,
50%, Dr = 0.5.
Within this phase, NPA forms a weaving long micelle type

structure. These structures have nearly straight sections that

Figure 4. Network phases. Three network structures. (a) Ia3 ̅d (space
group No. 230) double gyroid. (b) I4132 (space group No. 214)
alternating gyroid. (c) Fddd (space group No. 70) Fddd network.

Figure 5. LAM, PL, and LM phases. The left column shows
simulations results for the following phases: (a) lamellar phase, (b)
honeycomb plus long micelle phase, (c) lamellar plus perforated
lamellar phase, (d) lamellar plus short/long micelle phase, (e) (R3̅m)
perforated lamellar plus long micelle phase, and (f) tetragonally
arranged long micelle phase. The middle and right column illustrate
neighboring cross sections of the phase.
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FIG. S1. Snapshots from Movie 1. A binary system of N = 576 spinners, where half of the spinners rotate clockwise and the
other half rotate counter-clockwise. Simulation parameters: � = 0.5, !

0

= 1, T ⇤ = 0. The movie shows spinners (left column)
and vector plots of the short-time di↵usion �x(10t

0

) (right column) at three di↵erent times during spinodal decomposition.
The simulation starts from an initially mixed configuration (top row, t = 0) and proceeds through phase separation (middle
row, t = 1, 000t

0

), until in steady state two vertical stripes are formed (bottom row, t = 5, 000t
0

).

Nguyen et al. Phys Rev. Lett. 2014

Self-Assembly and Crystallization of Hairy ( f‑Star) and DNA-Grafted
Nanocubes
Christopher Knorowski* and Alex Travesset
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ABSTRACT: Nanoparticle superlattices are key to realizing
many of the materials that will solve current technological
challenges. Particularly important for their optical, mechanical
or catalytic properties are superlattices of anisotropic (non-
spherical) nanoparticles. The key challenge is how to program
anisotropic nanoparticles to self-assemble into the relevant
structures. In this Article, using numerical simulations, we
show that “hairy” ( f-star) or DNA grafted on nanocubes
provides a general framework to direct the self-assembly into
phases with crystalline, liquid crystalline, rotator, or noncrystalline phases with both long-range positional and orientational order.
We discuss the relevance of these phases for engineering nanomaterials or micromaterials displaying precise orientational order,
realization of dry superlattices as well as for the field of programmed self-assembly of anisotropic nanoparticles in general.

■ INTRODUCTION
Nanoparticle superlattices (NPS), arrangements of nano-
particles (NPs) into periodic structures, have direct applications
for novel fuel cell membranes, solar photovoltaics, carbon
dioxide storage, or catalytic materials among many others. The
optimal strategy to engineer NPS is self-assembly, where the
different components spontaneously assemble into the desired
material. Yet, direct self-assembly of NPs into NPS is
considerably difficult, as it only succeeds under very precise
environmental conditions.1−5 An alternative elegant route is to
program self-assembly by controlling NPs interactions through
a linker molecule such as DNA.6,7 Over the past few years,
DNA programmed self-assembly has proven to be an extremely
versatile and general strategy to engineer NPS.8−11

Systems of spherical NPs with isotropically distributed DNA
strands have been widely studied and exhibit a very rich phase
diagram,11 yet, many of the relevant NPS required in
applications can only be self-assembled if the components
(the NPs) display some degree of anisotropy. Precision NP
synthesis provides different ways of inducing NP anisotropy,
such as geometry (or shape), patchiness, etc.12 DNA
programmed self-assembly of NPs with different shapes such
as rods, prism, triangles, octahedra, and dodecahedra have
shown typical anisotropic NPS such as hexagonal and lamellar10

as well as linear mesostructures.13

In this paper, we provide a characterization of the phase
diagram and the dynamics of nanocubes (NCs), one of the
simplest anisotropic nanoparticles, with attached ssDNA
strands. We consider hard cubes, the case of ssDNA without
complementary base pairs (an f-star polymer system) and with
complementary strands (standard hybridization), as shown in
Figure 1. The studies will be entirely conducted by the model
previously developed by our group:14 Because of its success in

predicting equilibrium phases for spherical NPs, both for equal
radii14 as well as different radii,15,16 1D structures of triangular
prisms17 and the dynamics of self-assembly,16,18 in all cases with
nearly perfect agreement with experiments and without fitting
parameters, the model has earned an obvious status as a very

Received: June 20, 2013
Published: December 10, 2013

Figure 1. (a) Representation of the three NC systems studied in this
paper: hard, f-star, and standard hybridization. (b) Cartoon of NC
showing parameters L, ns, nl, r, and normal vector Z⃗. (c) Example
Gauss map for a single NC showing normal vectors of a cube mapped
onto a sphere S2.
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diagrams were obtained by repeating entire compression runs
many times and using different compression rates as well as
cycles over compression and expansion runs to ensure that the
process was quasistatic and represented a succession of
equilibrium states.
The resulting phase diagram is shown in Figure 3 for

isotropic pressure for system sizes ranging from 54 to 1400
NCs. The case λ = 0 corresponds to hard cubes and includes an
I-Liquid and a C-sc phase only (see snapshot in Figure 5). As a
function of λ the C-sc phase becomes unstable, being replaced
by a triclinic (tric) phase (snapshots in Figure 5), first as an I-
tric(R), which converges to C-tric at higher packing densities.
The equation of state is shown in Figure 3b as a function of
packing fraction ϕ. There is a small change in slope of the
equation of state when there is coexistence as clusters of solid
particles begin to nucleate from the liquid (Figure 3b, middle),
and a discontinuity in the equation of state at the disorder−
order transition. Discrimination between the disorder and order
transition is provided by the g(r) (Figure 3b, bottom), which
shows a disordered distribution for the liquid and distinct peaks
for the ordered structure in I-tric(R). A snapshot of a C-tric
phase for N = 512 NC and λ = 0.66 is shown in Figure 4. Two

different orientational domains can be seen in the system,
denoted by red and blue colors. The unit cell for the C-tric is
drawn in Figure 4, where angles α ≠ β ≠ γ. It was found that
the angles α, β, and γ did not significantly change as a function
of packing fraction, ϕ, but did show considerable variation as a
function of polymer length λ. As λ grows larger, the triclinic
unit cell approaches the bcc limit seen in spherical NPs.14

Explicit results are provided in Supporting Information S8.
Within the NVT ensemble, compression runs may result in

anisotropic pressures pxx ≠ pyy ≠ pzz with off-diagonal terms
being zero. For the case of high anisotropic pressure, the phase
diagram shows surprising new phases (Figure 6a). For small λ a
B-bcc phase is formed, where each NC is oriented in one of the
four discrete orientations that define the Bakos four-cube
compound,33 see snapshots and Gauss map in Figure 5 (see
also Supporting Information S4 and S5). As λ is increased to
≳1, the B-bcc phase is replaced by an A-bcc (Anti-C) phase,
where cube orientations on a cone of aperture angle α around
the six orientations defined by C orientational order are not
allowed; see Figure 5 for snapshot and the ideal Gauss map in
Figure 2. The typical anisotropic pressures that develop in the
A-bcc (R) and B-bcc are shown in Figure 6b.
Phases with anisotropic pressure are only found in

simulations with up to 128 NCs, but we note that we did
not attempt to simulate larger systems (using the NPE
ensemble with Berendsen thermostat) as it is technically
challenging to stabilize large anisotropic pressures. However,
because we repeatedly obtained such phases regardless of
compression rates, these phases are stable and not an artifact of
the boundary conditions.
The rotational diffusion coefficients Da (defined in eq 3) are

plotted in Figure 7. It is clear that the NCs rotate considerably,
and this is denoted with (R), rotator phases, in the phase
diagram Figures 3 and 6. The variations of f6, f4, Da, and Qαβ as
functions of packing fraction are shown in Figure 7. The hard
NCs systems show a transition from an I-liquid to a C-sc with
no evidence for an intermediate liquid crystalline cubatic phase
within ϕ = 0.52−0.56 (Figure 3), in disagreement with19,20 but
consistent with the presence of vacancies recently reported in
ref 21, although the system sizes investigated are smaller.
We find that there is significant competition between

orientational and positional order in these systems. The system
either has bcc positional order which allows for four

Figure 3. (a) Phase diagram for f-star NCs as a function of λ and ϕ (defined in eq 1) for isotropic pressure. (b) Equation of state (top) and fraction
of solid particles (middle) as a function of packing fraction, ϕ, for a system of NCs, λ = 0.66, during the transition from liquid C-tric under
compression. (Bottom) g(r) for the liquid and crystal at points A and B before and after the disorder−order transition. All lines are drawn to guide
the eye.

Figure 4. Snapshot of f-star C-tric at λ = 0.66 and packing fraction ϕ =
0.45 for isotropic pressure. There are two orientational domains found
within the crystal, drawn as blue and red. Purple cubes are part of
defects which do not follow the red or blue domains. The polymer is
hidden for clarity. (Top right) Unit cell for C-tric showing blue cube
orientation. (Bottom right) Definition of the primitive vectors.

Journal of the American Chemical Society Article
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shifted peaks arise (red curve) due to the symmetry of the en-
larged 41 knot (compare with Fig. 1B).
We can also derive an estimate for the “topological” free

energy barrier, which needs to be overcome in a “knot swapping”
event. This barrier essentially accounts for the obstruction caused
by entanglements. In Fig. 2B we have accumulated data from
simulations as shown in Fig. 2A to obtain a histogram of the time
series and a corresponding probability distribution. For κ = 20
kBT, the most likely state is the combined state, whereas the
separated states are metastable.
From Fig. 2B, the “topological” free energy is derived as

F =−kBT lnðPÞ. When the separated states are stable (as for flexible
chains with κ = 0 kBT in Fig. 3A), the system first needs to over-
come a barrier,ΔF1 =−kBT ln½Pðentrance to intertwined stateÞ=
Pðseparated stateÞ$, to reach the metastable intertwined state. Then
a second barrier, ΔF2 =−kBT ln½Pðentrance tointertwined stateÞ=
Pðintertwined stateÞ$, needs to be overcome to finally swap posi-
tions or go back to the original state. If the intertwined state is
stable (as in κ = 20 kBT in Fig. 3B), the system needs to overcome
ΔF2 to escape into the metastable separated state. In all cases, the
barriers only amount to 2–5 kBT, which would be accessible in
experiments. Can we alter this barrier? Fig. 3A shows free energy
profiles from simulations with different angular stiffness at the
same wall distance. While, in the case of the lowest stiffness, the
separated states are more likely, the intertwined state is more
probable at larger stiffnesses as indicated above. Fig. 3B also shows
free energy profiles from simulations in which the walls were
placed closer together (to 0:5Ree and 0:75Ree). While the free
energy barrier decreases only slightly for 0:75Ree, the separated
states nearly vanish when the two knots are pushed together by the
smaller distance of the walls (at 0:5Ree).

Discussion and Conclusion
In conclusion, we present a mechanism that allows for two molec-
ular knots to diffuse through each other and swap positions along
a strand. The corresponding free energy barrier in our simulations
only amounts to a few kBT and should be attainable in experiments
similar to ref. 17 (with loose composite knots) and, potentially, in
vivo. The barrier can be altered by changing the chain stiffness as
well as the wall distance to make the “tunneling” event more or less
probable. To what extent this peculiar diffusion mechanism might
affect DNA behavior in nano-manipulation experiments will be
investigated in future studies. Materials and Methods

Model and Simulation Details. Themodelwe apply is essentially a discrete variant
of the well-known worm-like chain model (with excluded volume interactions),
which has been used extensively to characterize mechanical properties of DNA
(25, 26, 32, 33). We start with a standard bead-spring polymer model from ref.
28, which does not allow for bond crossings. All beads interact via a cut and
shifted Lennard−Jones potential (Eq. 1). Adjacent monomers interact via the
finitely extensible nonlinear elastic (FENE) potential (Eq. 2). Chain stiffness is
implemented via a bond angle potential (Eq. 3), where angle θi is measured
between the beads i−1, i, and i+ 1. For the interaction with the wall, we also
apply the repulsive part of the Lennard−Jones potential (Eq. 4), where di is the
orthogonal distance from the respective wall to bead i. For simplicity, we define
the normal vector of the walls to coincide with the x axis of our system.
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Fig. 1. (Left) Snapshot pictures taken before (A), while (B), and after (C) 31
(green) and the 41 (red) knots interchange positions along the strand. (Right)
Simplified representation.

A B

C D

Fig. 2. (A) Distance between the respective “knot centers” as a function of
simulation time. The positions around +100 correspond to configurations in
which the two knots are separated. At −100, the knots are also separated, but
positions along the strand are interchanged. The transition region in which the
knots are entangled and pass through each other is located around 0. (B) Cor-
responding probability profile (blue) obtained fromA. Interestingly, a triple peak
forms in the intertwined state. Simulations in which the 41 knot passes through
the enlarged 31 knot only contribute a single peak (green), while, for the op-
posite situation, two peaks arise (red). (C) “Size” of the trefoil (green) and the
figure-eight knot (red) as a function of simulation time. The same section was
chosen as in A. “Swapping events” and attempted events are accompanied by
a considerable enlargement of one of the two knots to around the combined
equilibrium size of both knots (blue line), while the other knot, which diffuses
along the big knot, only grows a bit. (D) Corresponding probability profile
obtained from C. The data shown in A and C are smoothed by applying a run-
ning average. For details and implications, see Materials and Methods. Fig. S1
also shows the raw data.

Trefz et al. PNAS | June 3, 2014 | vol. 111 | no. 22 | 7949
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Tethered nanospheres!
Langevin dynamics

Phillips, C. L. et al., Soft Matter 6, 1693 (2010)

Tethered nanorods!
 Rigid-body dynamics

Nguyen, T. D. et al., ACS Nano 4, 2585-94 (2010)

Surfactant coated surfaces !
Dissipative particle dynamics

Pons-Siepermann, I. C., Soft matter 6 3919 (2012)

Self-propelled colloids!
Non-equilibrium MD

Nguyen N., Phys Rev E 86 1, 2012

Truncated Tetrahedra!
Hard particle MC

Damasceno, P. F. et al., ACS Nano 6, 609 (2012)

Arbitrary polyhedra!
Hard particle MC

Damasceno, P. F. et al., Science 337, 453 (2012)

Interacting nanoplates!
Hard particle MC with interactions

Hard disks - hexatic!
 Hard particle MC

Engel M. et al., PRE 87, 042134 (2013)Ye X. et al., Nature Chemistry cover article (2013)

Molecular Dynamics Monte Carlo
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Diblock Copolymers on Multi-GPU

191 There is a small but measurable discontinuity Δg0 in g0

192 across the ODT in Fig. 1, as expected for a first-order
193 transition. The smallness of the discontinuity (Δg0 ≃ 0.008,
194 or 7%) indicates that the degree of AB contact is similar in
195 the disordered and ordered phases near the ODT. This
196 suggests that the disordered phase has a local structure
197 rather similar to that of the ordered phase, with well-defined
198 A and B domains and a similar AB interfacial area per
199 volume, but without long-range order. The SCFT predic-
200 tion for g0ðχeNÞ (dashed line) is given by the spatial average
201 of the product ϕAðrÞϕBðrÞ of the predicted local volume
202 fractions of A and Bmonomers. This yields g0 ¼ 0.25 in the
203 disordered phase, at χeN < 10.495. Interestingly, SCFT
204 predictions for g0 are poor in the disordered phase near the
205 ODT but show excellent agreement with simulations in the
206 ordered phase. SCFT thus accurately predicts the extent of
207 AB contact within the ordered phase but is intrinsically
208 incapable of handling the strong short-range correlations in
209 the disordered phase.
210 Figure 2 shows the free energy per chain g vs χeN for four
211 values of N̄. These were calculated by numerically integrat-
212 ing simulation results for ∂g=∂α within each phase, setting
213 g ¼ 0 at α ¼ 0 by convention, and equating values of g in
214 the two phases at the observed ODT. Three of the plots show
215 overlapping results for pairs of simulations with matched
216 values of N̄, again demonstrating universality. In the range
217 10.495 < χeN < ðχeNÞODT in which the disordered phase
218 develops strong correlations, simulation results fall well
219 below the SCFT prediction for a homogeneous phase
220 (the straight line) and actually lie much closer to SCFT
221 predictions for the ordered phase. Interestingly, SCFT
222 predictions for g are rather accurate within the ordered
223 phase for all but the lowest value of N̄ shown here and seem
224 to become more so with increasing N̄. This agreement does
225 not follow trivially from the observed accuracy of SCFT
226 predictions for g0 in the ordered phase, since the value of g at

227the ODT has been calculated by integrating ∂g=∂α through
228the disordered phase, in which SCFT predictions for g0 are
229poor. Physically, the main components of g are free energies
230arising from AB contact and chain stretching. Only the
231extent of AB contact is directly reflected by the value of g0.
232Our results thus imply that SCFT accurately describes both
233main components of g in the ordered phase, although not in
234the disordered phase near the ODT.
235The main plot of Fig. 3 shows a compilation of results for
236ðχeNÞODT from all simulations plotted vs N̄, using our
237nonlinear fits for χeðαÞ. The inset shows a corresponding
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F2:1FIG. 2 (color online). Free energy per chain g vs χeN at four
F2:2different values of N̄, plotted using a nonlinear approximation for
F2:3χeðαÞ. Solid lines are SCFT predictions for gðχeNÞ. The straight
F2:4solid line is the SCFT prediction gðχeNÞ ¼ χeN=4 for a homo-
F2:5geneous phase. Vertical dotted lines show the SCFT ODT at
F2:6χeN ¼ 10.495. Vertical dashed lines show actual ODTs. Where
F2:7data are shown for two systems, the ODT is shown for the system
F2:8with larger N.
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F1:1 FIG. 1 (color online). Plot of g0 ≡ ∂g=∂ðχeNÞ vs χeN for
F1:2 models S1-64 and S2-16 with matched N̄ ≃ 960. The dashed
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F1:5 simple linear approximation χeðαÞ≃ zα=kBT.
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F3:1FIG. 3 (color online). Values of χeN at the ODT vs N̄, for all
F3:2simulations. Bead-spring model results are shown as open
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Diblock copolymer melts

Glaser, J., Medapuram, P., Beardsley, T. M., Matsen, M. W., & Morse, D. C.!
Universality of Block Copolymer Melts. PRL, 113, 068302 (2014)



THE GLOTZER GROUP

Virus capsid particles

Crystalline self-assembly of 
4096 hard convex polyhedra!

(virus capsids)
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GPU Molecular Dynamics in 1 slide
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But this is all you need to write.

from hoomd_script import *!
!
init.read_xml(filename=‘init.xml’)!
!
lj = pair.lj(r_cut=2.5)!
lj.pair_coeff.set('A', 'A', epsilon=1.0,!
                            sigma=1.0)!
!
integrate.mode_standard(dt=0.005)!
integrate.nvt(T=1.2, tau=0.5)!
!
run(10e3)



14x
one K40 GPU vs one 10c Xeon E5-2680v2

100x over a single CPU core 1/7 the power consumption 5x perf/$
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Features in HOOMD-blue v1.0

Pair forces 
• Lennard Jones 
• Gaussian 
• CGCMM 
• Morse 
• Table 
• Yukawa 
• PPPM electrostatics 
• Orientation-Averaged Ewald 

(code not publicly available) 
Jha, P. K. et al., Journal of Chemical 
Theory and Computation 6, 3058-3065 
(2010)

Bond forces 
• Harmonic 
• FENE 
• Table 

Angle forces 
• Harmonic 
• CGCMM 
• Table 

Dihedral/Improper forces 
• Harmonic 
• Table

Integration 
• NVT (Nosé-Hoover) 
• NPT 
• NPH 
• Brownian Dynamics 
• Dissipative Particle Dynamics 
• NVE 
• FIRE energy minimization 
• Rigid body dynamics

Many-body forces 
• EAM

Simulation types 
• 2D and 3D 
• Triclinic box 
• Replica exchange (via script)

Hardware support 
• All recent NVIDIA GPUs 
• Multi-GPU with MPI!
• Multi-CPU with MPI

Snapshot formats  
• MOL2 
• DCD 
• PDB 
• XML
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Next up, Hard particle Monte Carlo

• Hard Particle Monte Carlo plugin 
for HOOMD-blue 

• 2D Shapes 
• Disk 
• Convex (Sphero)polygon 
• Concave polygon 
• Ellipse 

• 3D Shapes 
• Sphere 
• Ellipsoid 
• Convex (Sphero)polyhedon 

• NVT and NPT ensembles 
• Frenkel-Ladd free energy 
• Parallel execution on a single GPU 
• Domain decomposition across 

multiple nodes (CPUs or GPUs)

H

β-Mn
cP20 (A13)

#P04

[100]

Damasceno et al., Science (2012)

Engel M. et al., PRE 87, 042134 (2013)

Damasceno, P. F. et al., ACS Nano 6, 609 (2012)

Damasceno et al., Science (2012)
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Overlap checks

⊖
=

Separating planes

XenoCollide/GJK

1001.842 - 1000.967 = 0.875

�~r

• Disk/sphere - trivial 
• Convex polygons - separating axis 
• Concave polygons - brute force 
• Spheropolygons -  XenoCollide/GJK 
• Convex polyhedra -  XenoCollide/GJK 
• Ellipsoid / Ellipse: Matrix method 
• Compute delta in double, convert to 

single for expensive overlap check
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Easy and flexible to use

from hoomd_script import *!
from hoomd_plugins import hpmc!
!
init.read_xml(filename=‘init.xml’)!
!
mc = hpmc.integrate.convex_polygon(seed=10, d=0.25, a=0.3);!
mc.shape_param.set('A', vertices=[(-0.5, -0.5), (0.5, -0.5),!
                                  (0.5, 0.5), (-0.5, 0.5)]);!
!
run(10e3)



4x
one K40 GPU vs one 10c Xeon E5-2680v2

40x over a single CPU core 1/2 the power consumption 1.4x perf/$
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MC performance scaling

GPU: Tesla K20X, CPU: Xeon E5-2680 (XSEDE Stampede)
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Summary capabilities

• Fast, versatile, easy-to-use Molecular Dynamics 
on GPUs and CPUs 
!

• Open-source, download from  
http://codeblue.umich.edu/hoomd-blue 
!

• HOOMD 2.0: Hard particle Monte Carlo
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Advent of GPUs in HPCAccelerators in HPCAdvent of Accelerators 

18.1% 16.2% 

Performance share of accelerators in 
the Top500 systems 

VSCSE-Day3 5 

no
 a

cc
el

er
at

or
s
Performance share of accelerators  

in TOP500 supercomputers

courtesy of D.K. Panda, OSU

Intel Xeon Phi

Nvidia Kepler

Nvidia Fermi

slide courtesy of D.K. Panda
TOP500 Nov ‘13
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Titan (#2 TOP500) at Oak Ridge National Laboratories

Cray XK7, 18,688 compute nodes 512 XIO service nodes 
3D-torus Cray Gemini interconnect!
Node configuration: 16-core 2.2 GHz AMD Opteron 6274, 32 GB ECC DDR3 SDRAM and 
NVIDIA Kepler K20X card connected via PCI-e2.0
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Scaling bottlenecks in spatial domain decomposition

6 GB/s
CPU CPU

GPU GPU

6 GB/s

Latency

2880 cores
GPU Memory 250 GB/s

4-8 cores

Network 
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Latency optimizations

• Launch latency (many kernels)!

• Communication latency (PCIe, Infiniband)!

• Synchronization latency (MPI collectives, many ranks)

Pair NVT pack

Comm Comm

Thermo unpack Pair

Collective
MPI

GPU

50 μs

Profile of 1 MD time step asynchronous execution

pack/unpack on GPU auto-tune kernel
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Strong Scaling of a LJ Liquid (N=10,976,000)

Benchmarks courtesy of Trung Nguyen, ORNL

HOOMD-blue: 1 MPI rank/node 
LAMMPS: up to 16 ranks/node
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Weak scaling up to 108,000,000 particles
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Scaling efficiency
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Remote Direct Memory Access

GPUDirect RDMA

ͻ Fastest possible communication 
between GPU and other PCI-E 
devices 

ͻ Network adapter can directly read 
data from GPU device memory 

ͻ Avoids copies through the host 

ͻ Allows for better asynchronous  
communication 

VSCSE-Day3 19 

GPU-Direct RDMA with CUDA 5/6 

InfiniBand 

GPU 

GPU 
Memory 

CPU 

Chip 
set 

System 
Memory 

 

MVAPICH2-GDR 2.0b is available for users 
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Wilkes cluster (#2 Green 500) at University of Cambridge

9 

The Wilkes Cluster at University of Cambridge 

• The University of Cambridge in partnership with Dell, NVIDIA and Mellanox 
– The UK’s  fastest  academic  cluster, deployed November 2013  

• Produces a LINPACK performance of 240TF  
– on the Top500 position of 166 in the November 2013 list 

• Ranked most energy efficient air cooled supercomputer in the world  
• Ranked second in the worldwide Green500 ranking 

– Extremely high performance per watt of 3631 MFLOP/W 
• Architected to utilize the NVIDIA RDMA communication acceleration 

– Significantly increase the system's parallel efficiency 

Dell T620 Cluster, 128 nodes, 3631 MFLOP/W!
Intel Xeon E5-2630v2 6C 2.600GHz!
Node configuration: 2x Infiniband FDR, 2x NVIDIA K20
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HOOMD with GPUDirect RDMA
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MVAPICH2 2.0 GDR data!
courtesy of D.K. Panda and Rong Shi, OSU

XSEDE Stampede GPU partition (Host Memory)
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Summary

• Multi-GPU support in HOOMD 1.0 enables large-
scale simulations 

• Strong Scaling is latency-limited, works on 1000’s 
of GPUs 
!

• GPUDirect RDMA is a promising technology, and 
MPI3 RMA may be the way to fully take 
advantage of it
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URL & Outlook

Questions?

HOOMD 1.1+:!
• Anisotropic pair potentials 
• Multi-GPU rigid bodies 
• … your feature!

http://codeblue.umich.edu/hoomd-blue

http://codeblue.umich.edu/hoomd-blue

