Overview of MVAPICH2 and MVAPICH2-X: Latest Status and Future Roadmap

MVAPICH2 User Group (MUG) Meeting

by

Dhabaleswar K. (DK) Panda
The Ohio State University
E-mail: panda@cse.ohio-state.edu
http://www.cse.ohio-state.edu/~panda
Trends for Commodity Computing Clusters in the Top 500 List (http://www.top500.org)
Drivers of Modern HPC Cluster Architectures

- Multi-core processors are ubiquitous
- InfiniBand very popular in HPC clusters
- Accelerators/Coprocessors becoming common in high-end systems
- Pushing the envelope for Exascale computing

Multi-core Processors

High Performance Interconnects - InfiniBand
<1usec latency, >100Gbps Bandwidth

Accelerators / Coprocessors
high compute density, high performance/watt
>1 TFlop DP on a chip
Parallel Programming Models Overview

- Programming models provide abstract machine models
- Models can be mapped on different types of systems
 - e.g. Distributed Shared Memory (DSM), MPI within a node, etc.
- PGAS models and Hybrid MPI+PGAS models are gradually receiving importance
Supporting Programming Models for Multi-Petaflop and Exaflop Systems: Challenges

Application Kernels/Applications

Middleware

Programming Models
MPI, PGAS (UPC, Global Arrays, OpenSHMEM), CUDA, OpenACC, Cilk, Hadoop, MapReduce, etc.

Co-Design Opportunities and Challenges across Various Layers

Communication Library or Runtime for Programming Models

Networking Technologies (InfiniBand, 10/40GigE, Aries, BlueGene)

Multi/Many-core Architectures

Accelerators (NVIDIA and MIC)

MVAPICH User Group Meeting 2013
Designing (MPI+X) at Exascale

• Scalability for million to billion processors
 – Support for highly-efficient inter-node and intra-node communication (both two-sided and one-sided)
 – Extremely minimum memory footprint
• Hybrid programming (MPI + OpenMP, MPI + UPC, MPI + OpenSHMEM, ...)
• Balancing intra-node and inter-node communication for next generation multi-core (128-1024 cores/node)
 – Multiple end-points per node
• Support for efficient multi-threading
• Scalable Collective communication
 – Offload
 – Non-blocking
 – Topology-aware
 – Power-aware
• Support for MPI-3 RMA Model
• Support for GPGPUs and Accelerators
• Fault-tolerance/resiliency
• QoS support for communication and I/O
MVAPICH2/MVAPICH2-X Software

- http://mvapich.cse.ohio-state.edu
- High Performance open-source MPI Library for InfiniBand, 10Gig/iWARP, and RDMA over Converged Enhanced Ethernet (RoCE)
 - MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Available since 2002
 - MVAPICH2-X (MPI + PGAS), Available since 2012
 - Used by more than 2,077 organizations (HPC Centers, Industry and Universities) in 70 countries
MVAPICH Team Projects

Timeline

- Oct-00
- Jan-02
- Nov-04
- Jan-10
- Nov-12
- Aug-13

- MVAPICH
- MVAPICH2
- OMB
- MVAPICH2-X
- EOL
• Download counts from MVAPICH2 website
• Available with software stacks of many IB, HSE, and server vendors including Linux Distros (RedHat and SuSE)

• Empowering many TOP500 clusters
 – 6th ranked 462,462-core cluster (Stampede) at TACC
 – 19th ranked 125,980-core cluster (Pleiades) at NASA
 – 21st ranked 73,278-core cluster (Tsubame 2.0) at Tokyo Institute of Technology and many others

• Partner in the U.S. NSF-TACC Stampede System
Strong Procedure for Design, Development and Release

• Research is done for exploring new designs
• Designs are first presented to conference/journal publications
• Best performing designs are incorporated into the codebase
• Rigorous Q&A procedure before making a release
 – Exhaustive unit testing
 – Various test procedures on diverse range of platforms and interconnects
 – Performance tuning
 – Applications-based evaluation
 – Evaluation on large-scale systems
• Even alpha and beta versions go through the above testing
MVAPICH2 Architecture (Latest Release 2.0)

Major Computing Platforms: IA-32, EM64T, Nehalem, Westmere, Sandybridge, Opteron, Magny, ..
MVAPICH2 1.9 and MVAPICH2-X 1.9

• Released on 05/06/13

• Major Features and Enhancements
 – Based on MPICH-3.0.3
 • Support for MPI-3 features
 – Support for single copy intra-node communication using Linux supported CMA (Cross Memory Attach)
 • Provides flexibility for intra-node communication: shared memory, LiMIC2, and CMA
 – Checkpoint/Restart using LLNL's Scalable Checkpoint/Restart Library (SCR)
 • Support for application-level checkpointing
 • Support for hierarchical system-level checkpointing
 – Scalable UD-multicast-based designs and tuned algorithm selection for collectives
 – Improved and tuned MPI communication from GPU device memory
 – Improved job startup time
 • Provided a new runtime variable MV2_HOMOGENEOUS_CLUSTER for optimized startup on homogeneous clusters
 – Revamped Build system with support for parallel builds

• MVAPICH2-X 1.9 supports hybrid MPI + PGAS (UPC and OpenSHMEM) programming models.
 – Based on MVAPICH2 1.9 including MPI-3 features; Compliant with UPC 2.16.2 and OpenSHMEM v1.0d
MVAPICH2 2.0a and MVAPICH2-X 2.0a

- Released on 08/24/13

- Major Features and Enhancements
 - Based on MPICH-3.0.4
 - Dynamic CUDA initialization. Support GPU device selection after MPI_Init
 - Support for running on heterogeneous clusters with GPU and non-GPU nodes
 - Supporting MPI-3 RMA atomic operations and flush operations with CH3-Gen2 interface
 - Exposing internal performance variables to MPI-3 Tools information interface (MPIT)
 - Enhanced MPI_Bcast performance
 - Enhanced performance for large message MPI_Scatter and MPI_Gather
 - Enhanced intra-node SMP performance
 - Reduced memory footprint
 - Improved job-startup performance

- MVAPICH2-X 2.0a supports hybrid MPI + PGAS (UPC and OpenSHMEM) programming models.
 - Based on MVAPICH2 2.0a including MPI-3 features; Compliant with UPC 2.16.2 and OpenSHMEM v1.0d
 - Improved OpenSHMEM collectives
One-way Latency: MPI over IB

Small Message Latency

- DDR, QDR - 2.4 GHz Quad-core (Westmere) Intel PCI Gen2 with IB switch
- FDR - 2.6 GHz Octa-core (Sandybridge) Intel PCI Gen3 with IB switch
- ConnectIB-Dual FDR - 2.6 GHz Octa-core (Sandybridge) Intel PCI Gen3 with IB switch

Large Message Latency
Bandwidth: MPI over IB

Unidirectional Bandwidth

Bidirectional Bandwidth

DDR, QDR - 2.4 GHz Quad-core (Westmere) Intel PCI Gen2 with IB switch
FDR - 2.6 GHz Octa-core (Sandybridge) Intel PCI Gen3 with IB switch
ConnectIB-Dual FDR - 2.6 GHz Octa-core (Sandybridge) Intel PCI Gen3 with IB switch

MVAPICH User Group Meeting 2013
MVAPICH2 Two-Sided Intra-Node Performance
(Shared memory and Kernel-based Zero-copy Support (LiMIC and CMA))

Latency

- Intra-Socket
- Inter-Socket

Latest MVAPICH2 2.0a
Intel Sandy-bridge

Bandwidth (intra-socket)

- intra-Socket-CMA
- intra-Socket-Shmem
- intra-Socket-LiMIC

12,000MB/s

Bandwidth (inter-socket)

- inter-Socket-CMA
- inter-Socket-Shmem
- inter-Socket-LiMIC

12,000MB/s
Scalable OpenSHMEM/UPC and Hybrid (MPI, UPC and OpenSHMEM) designs

- Based on OpenSHMEM Reference Implementation (http://openshmem.org/) & UPC version 2.14.2 (http://upc.lbl.gov/)
 - Provides a design over GASNet
 - **Does not take advantage of all OFED features**
- Design Scalable and High-Performance OpenSHMEM & UPC over OFED
- Designing a Hybrid MPI + OpenSHMEM/UPC Model
 - Current Model – Separate Runtimes for OpenSHMEM/UPC and MPI
 - Possible deadlock if both runtimes are not progressed
 - Consumes more network resource
 - **Our Approach** – Single Unified Runtime for MPI and OpenSHMEM/UPC

Hybrid (UPC/OpenSHMEM+MPI) Application

- UPC/OpenSHMEM Interface
- MPI Interface
- Unified Communication Runtime
- InfiniBand Network

Hybrid MPI+OpenSHMEM/UPC

Available since MVAPICH2-X 1.9
OSU Micro-Benchmarks (OMB)

- Started in 2004 and continuing steadily
- Allows MPI developers and users to
 - Test and evaluate MPI libraries
- Has a wide-range of benchmarks
 - Two-sided (MPI-1, MPI-2 and MPI-3)
 - One-sided (MPI-2 and MPI-3)
 - RMA (MPI-3)
 - Collectives (MPI-1, MPI-2 and MPI-3)
 - Extensions for GPU-aware communication (CUDA and OpenACC)
 - UPC (Pt-to-Pt)
 - OpenSHMEM (Pt-to-Pt and Collectives)
- Widely-used in the MPI community
Designing GPU-Aware MPI Library

- OSU started this research and development direction in 2011
- Initial support was provided in MVAPICH2 1.8a (SC ‘11)
- Since then many enhancements and new designs related to GPU communication have been incorporated in 1.8, 1.9 and 2.0a series
- Have also extended OSU Micro-Benchmark Suite (OMB) to test and evaluate GPU-aware MPI communication
 - CUDA
 - OpenACC
- MVAPICH2 Design for GPUDirect RDMA (GDR)
 - Available based on 1.9
MPI Applications on MIC Clusters

- Flexibility in launching MPI jobs on clusters with Xeon Phi

Multi-core Centric

Host-only

Offload (/reverse Offload)

Symmetric

Coprocessor-only

Many-core Centric

Xeon

- MPI Program
- MPI Program
- Offloaded Computation

Xeon Phi

- MPI Program
- MPI Program
- MPI Program
Data Movement on Intel Xeon Phi Clusters

- Connected as PCIe devices – Flexibility but Complexity

1. Intra-Socket
2. Inter-Socket
3. Inter-Node
4. Intra-MIC
5. Intra-Socket MIC-MIC
6. Inter-Socket MIC-MIC
7. Inter-Node MIC-MIC
8. Intra-Socket MIC-Host
9. Inter-Socket MIC-Host
10. Inter-Node MIC-Host
11. Inter-Node MIC-MIC with IB adapter on remote socket and more . . .

- Critical for runtimes to optimize data movement, hiding the complexity
MVAPICH2-MIC Design for Clusters with IB and Xeon Phi

- Offload Mode
- Intranode Communication
 - Coprocessor-only Mode
 - Symmetric Mode
- Internode Communication
 - Coprocessors-only
 - Symmetric Mode
- Multi-MIC Node Configurations
- Based on MVAPICH2 1.9
- Being tested and deployed on TACC Stampede
MVAPICH2 – Plans for Exascale

- Performance and Memory scalability toward 500K-1M cores
 - Dynamically Connected Transport (DCT) service with Connect-IB
- Hybrid programming (MPI + OpenSHMEM, MPI + UPC, MPI + CAF …)
- Enhanced Optimization for GPU Support and Accelerators
- Taking advantage of Collective Offload framework
 - Including support for non-blocking collectives (MPI 3.0)
 - Core-Direct support
- Extended RMA support (as in MPI 3.0)
- Extended topology-aware collectives
- Power-aware collectives
- Extended Support for MPI Tools Interface (as in MPI 3.0)
- Extended Checkpoint-Restart and migration support with SCR
Web Pointers

NOWLAB Web Page
http://nowlab.cse.ohio-state.edu

MVAPICH Web Page
http://mvapich.cse.ohio-state.edu