Fault-Tolerance Support in MVAPICH2

MVAPICH2 User Group (MUG) Meeting

Raghunath Rajachandrasekar
The Ohio State University
E-mail: rajachan@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~rajachan

Agenda

e [ntroduction

e Checkpoint-Restart Schemes

* Process-Migration Schemes

e Automatic Path Migration

e Fault-Tolerance standardization effort in the MPI Forum

e Future directions

MUG ‘13 2

Why is Fault-Tolerance critical?

Filesystems

Performance
Optimizers

Job
Schedulers

MUG ‘13

Networking
Libraries

Operating
System
1y- —
's
Checkpoint
_ Software
Parallel
Programming
Middleware

Why is Fault-Tolerance critical?

e I|tisimperative to design resilient systems!

e Many of the s/w libraries and h/w architectures do tolerate failures — but

they act in isolation

e System components should be able to correlate information from
different sources to make informed decisions

e MVAPICH team’s R&D driven by the need for:

MUG ‘13

Performance
Scalability
Productivity

Fault-Tolerance

Fault-Tolerance in MVAPICH2

Fault-Tolerance in MVAPICH2

/\

System-Level Application-aware

Run-through

Checkpoint-Restart Process-migration App-aware CR
P 8 PP Stabilization

Automatic Path
Migration

MUG ‘13 5

Fault-Tolerance in MVAPICH2

Feature MVAPICH2 Release

version Year
BLCR-based system-level MPI application Checkpointing 0.9.8 2006
FTB-enabled Checkpoint-Restart 1.4 2008
FUSE-assisted Write-Aggregation Scheme 1.6 2010
Basic File-Copy based Process Migration 1.6 2010
Pipelined Process Migration using RDMA 1.7 2011
Checkpoint-Restart support for the Nemesis-IB channel 1.8 2012
Scalable Multi-level Checkpointing using SCR 1.9 2013
More features under development 2.X 2013

MUG ‘13

Agenda

e Checkpoint-Restart Schemes

System-Level Checkpoint Restart

Using the CR Feature

Multicore-Aware Checkpoint I/O Aggregation
Multi-Level Checkpointing with ScalableCR (SCR)

Quality-of-Service Aware Checkpoint-Restart

e Process-Migration Schemes

e Automatic Path Migration

e Future directions

MUG ‘13

Job

Launcher .
 System-Level Checkpoint-Restart

Job : Compute Node Compute Node

Start E— S —

] ___Phase 1: Suspend
communication between all
processes

Ckpt

Rgst :
|
| Phase 2: Use the checkpoint
| library (BLCR) to checkpoint
| the individual processes
I
|

Ckpt : _______

Rast | il

Phase 3: Re-establish

connections between the

processes, and continue
| execution
Y

K e e e = = = — -

MUG ‘13

e
Using the Checkpoint-Restart Feature

e Requires Berkeley Lab Checkpoint-Restart (BLCR) library

e Build with CR support: --enable-ckpt (or) —with-blcr=$PATH_TO_BLCR_INSTALLATION

e Launching the job:
$mpirun rsh -np 2 -hostfile ./hfile
MV2 CKPT FILE = /pfs/ckpt/appl
MV2_CKPT MAX SAVE CKPTS = 3
MV2_CKPT NO SYNC = 0 ./a.out

e Triggering a checkpoint:
- S cr_checkpoint -p <PID of mpirun rsh>
— Run SMV2_INSTALL_DIR/bin/mv2_checkpoint and select the job to checkpoint
— Call MVAPICH2_Sync_Checkpoint() from within the application
— Set MV2_CKPT_INTERVAL =30 for automated checkpointing

e Restarting from a checkpoint:
- Scr restart /pfs/ckpt/context.<pid>

Ref: Section 6.15.1 of the MVAPICH2-2.0a User-guide
MUG ‘13 9

Multicore-aware Checkpoint I/O Aggregation

* Requires FUSE version 2.8+, better performance for kernels newer than version 2.6.26
* Enable —enable-ckpt-aggregation or —with-fuse=<path_to fuse_installation>

* Toggle at runtime using MV2_CKPT_USE_AGGREGATION variable

* Ensure that FUSE kernel module is loaded

B Native B Using CRFS

355 Cumulative Write time (LU.C.64)
(64 MPI processes on 8 nodes, 8 processes/node)

»
©
c
(@]
(&)
3
~ O | ©
O M
& ® —
= - EB
L }_ c ©
C o o)
= O L O
iy So
o9y
O - 0 9
() = 8
S g9
- S] g S\
o E = :
8 To R O o :
© o :
8) o - | | | |
o 1e+00 1e+02 1e+04 1e+06
= ext3 lustre nfs Write size (bytes)

—_—

128 MPI processes on 16 nodes, 8 processes/node)

X. Ouyang, R. Rajachandrasekar, X. Besseron, H. Wang, J. Huang and D. K. Panda, CRFS: A Lightweight User-Level Filesystem for
Generic Checkpoint/Restart, Int'l Conference on Parallel Processing (ICPP '11), Sept. 2011.

MUG ‘13 10

Multicore-aware Checkpoint I/O Aggregation

- Tunables
- MV2_CKPT_AGGREGATION_BUFPOOL_SIZE (size of buffer pool used to aggregate |/0)
- MV2_CKPT_AGGREGATION_CHUNK_SIZE (chunks in which coalesced data is written to disk)

900 ! ! ! ! ! ! 900 ! ! ! ! ! |

goo | M ChunkSize=64K goo | Chunk Size=64K
[0 Chunk Size=128K O Chunk Size=128K
B Chunk Size=256K B Chunk Size=256K
700 r@ Chunk Size=512K """~ o 1 B 700 r@ Chunk Size=512K
O Chunk Size=1M
BOO [wmmseerm e 600

= 500

400 [+ ome e 400
300 [----

200 (- -gpz--

300 f-ceeeee
200 |-

Total Bandwidth (MB/s)
Total Bandwidth (MB/s)

100 100 [~

0 1 2 4 8 16 32 0 2 4 8 16
Num of |O Processes Num of |O Processes
(a) Buffer Pool=1MB (b) Buffer Pool=8MB

MUG ‘13 11

Multi-Level Checkpointing with ScalableCR (SCR)

e LLNL’s Scalable Checkpoint/Restart
library

y
-y
-
-

e (Can be used for application guided and

application transparent checkpointing

Ly
 lly
Ly
LIy

Effective utilization of storage hierarchy

— Local: Store checkpoint data on node’s local
storage, e.g. local disk, ramdisk

E

Partner: Write to local storage and on a

eckpoint Cost and Re

m-i-
-
-
-

partner node

XOR: Write file to local storage and small sets
of nodes collectively compute and store parity
redundancy data (RAID-5)

Stable Storage: Write to parallel file system

?
v

12

MUG ‘13

Application-guided Multi-Level Checkpointing

SCR Start checkpt();

Ve : : i
SCR Route file (fn, £n2) ; First write checkpoints to node

" local storage
fwrite (data,..) ; * When checkpoint is complete,
apply redundancy schemes

7Y
/

SCR Complete checkpt();

void checkpoint() {
SCR_Start checkpoint();

int rank;
MPI Comm rank (MPI_COMM WORLD, &rank);

char file[256];
sprintf (file, “rank %d.ckpt”, rank);

char scr file[SCR MAX FILENAME];
SCR _Route file(file, scr file);
FILE* fs = fopen(scr file, “w”);
if (£s '= NULL) {
fwrite(state, ..., £fs);
fclose(fs) ;

* Users select which checkpoints are
transferred to global storage

* Automatically drain last checkpoint
of the job

SCR_Complete checkpoint (1) ;
return;

MUG ‘13 13

Application-guided Multi-Level Checkpointing

Representative SCR-Enabled Application

80 -
60 -
40
H B

MVAPICH2+SCR MVAPICH2+SCR MVAPICH2+SCR
(Local) (Partner) (XOR)

=
o
o

Checkpoint Writing Time (s)

e Checkpoint writing phase times of representative SCR-enabled MPI application
e 512 MPI processes (8 procs/node)
e Approx. 51 GB checkpoints

MUG ‘13 14

Transparent Multi-Level Checkpointing

M Suspend N/W M Reactivate N/W B Write Checkpoint
10000

8000

o))

-

o

o
|

I

o

o

o
|

Checkpointing Time (ms)

e

MVAPICH2-CR (PFS) MVAPICH2+SCR (Multi-Level)

e ENZO Cosmology application — Radiation Transport workload

e Using MVAPICH2’s CR protocol instead of the application’s in-built CR mechanism
e 512 MPI processes (8 procs/node)

e Approx. 12.8 GB checkpoints

MUG ‘13 15

Quality-of-Service Aware Checkpoint-Restart

- VLO VLO]
| VLA VLA]
- VL2)] VL2]
Physical Link
|
| VL15 VL15]
Host Channel Switch
Adapter Port

e QoS toincrease or limit priority of different data-flows
e Multiple virtual ‘lanes’ share the same physical link
e Exclusive buffering and flow-control for each virtual lane

e Abstractions to configure priority
- Service Level (SL) at switch-level

- Traffic Class (TClass) at the router-level

* opensm.conf: SL-VL mapping and VL arbitration
MUG ‘13 16

Quality-of-Service Aware Checkpoint-Restart

MPI Message Latency MPI Message Bandwidth
1800 —— default] - 3500 ' e 1
1600 | oo with 1/O noise B % 3000 |
1400 - - With noise isolated 1 3-; s g S |
—_ 4 M O 1
g 1200 | e
> 1000 | 2 2000 |
g 8007 < 1500 | -
5 6007 5 1000
400 | = default
200 + = 500 | wewwenens with /O noise 1
0 S BS J @ o Lo With noise isolated ,
64K 256K ™ 4M 64K 256K 1M 4M
Message Size (Byte) Message Size (Byte)
Anelastic Wave Propagation NAS Parallel Benchmark
(64 MPI processes) Conjugate Gradient Class D
1.2 (64 MPI processes)
1.15 1.4
1.1 13
1.05 1.2
! 1.1
0.95 1
0.9

0.9

default with 1/0 I/0O noise
noise isolated

default with /O I/0 noise

noise isolated
B Normalized Runtime
B Normalized Runtime

MUG ‘13 17

Agenda

* Process-Migration Schemes
— RDMA-Based Process Migration

— Using the Process-Migration Feature

— Low-Overhead Failure Prediction with FTB-IPMI

e Automatic Path Migration

e Future directions

MUG ‘13 18

RDMA-based Pipelined Process-Migration

Migration Source Node Migration Target Node

——

Process Migrated

Susp?end Reaictivate

charimels channels
Write Buffer s Buffer Read
Manager ; Manager
Transfer
RDMA Buffer Pool i : RDMA Buffer Pool

MUG ‘13 19

RDMA-based Pipelined Process-Migration

MUG ‘13 20

Using the Process-Migration Feature

e Requires BLCR, Fault-Tolerance Backplane (FTB), and FUSE (RDMA-based)

Build with Migration support: --enable-ckpt-migration

Setup FTB and launch the job:
$mpirun rsh -np 4 -hostfile ./hosts —-sparehosts ./spares ./a.out
e Triggering a migration:
— Send SIGUSR2 signal to ‘mpispawn ‘on source/failing node
— $MV2 INSTALL PATH/bin/mv2 trigger <hostname of source node>
— Automatically triggered by FTB-IPMI available at
http://nowlab.cse.ohio-state.edu/projects/ftb-ib/#FTB-IPMI

Ref: Section 6.15.3 of the MVAPICH2-2.0a User-guide
MUG ‘13 21

Low-Overhead Failure Prediction with IPMI

* Real-time failure prediction needed for proactive fault-tolerance mechanisms like process migration
* System-wide failure information coordination necessary to make informed decisions
* FTB-IPMI — provides low-overhead distributed fault-monitoring and failure event propagation

FTB-Enabled Software

Parallel N e HPC Middleware . CPU Utilization with Varying #threads
Applications L) D —128 64 32 1
MPI Checkpointing Parallel AlO A
Libraries C Libraries A Filesystems J g:, 8 \
26
Rule-Based Prediction Engine S \
4
()
CIFTS Fault-Tolerance Backplane (FTB) e 2 \, \'\:;
FTB-IPMI 0
O 10 20 30 40 50 60 70
IPMI Libraries Execution Time
{ FreelPMI) OpenlIPMI * |teration delay — 10secs; 128-node tasklist
* Avg CPU utilization —0.35%
Intelligent Platform Management Interface (IPMI) Hardware * Single iteration of sensor sweep — 0.75 seconds

R. Rajachandrasekar, X. Besseron and D. K. Panda, Monitoring and Predicting Hardware Failures in HPC Clusters with FTB-IPMI, Int'l
Workshop on System Management Techniques, Processes, and Services ; in conjunction with IPDPS '12, May 2012

MUG ‘13 22

Performance of Pipelined Process-Migration

| | T
300 - @ No Migration]
[] 3 Migrations{PPMR)
B 3 Migrations(Shared)
250 + B 3 Migrations{Local) e m
o
B 200
o
<
A
— 150 -
@
E
I._
100 -
50 -

LU.C.64 BT.C.64 SP.C.64

X. Ouyang, R. Rajachandrasekar, X. Besseron, D. K. Panda, High Performance Pipelined Process Migration with RDMA, CCGrid 2011

MUG ‘13 23

Network-Level FT with Automatic Path Migration (APM)

e Allows recovery from network faults in the presence of multiple paths
e Enabled by the LID-Mask Count (LMC) mechanism
e Run with APM support:

— $ mpirun rsh -np 2 hostl host2 MV2 USE APM=1 ./a.out

e Test APM in the absence of actual network faults:

- $ mpirun rsh -np 2 hostl host2
MV2 USE APM=1 MV2_USE_APM_TEST=1./a.out

— Periodically migrates between primary and alternate paths

Ref: Section 6.15.5 of the MVAPICH2-2.0a User-guide

MUG ‘13 24

Fault-Tolerance standardization effort in the MPI Forum

e FT working-group working on a proposal

e Earlier proposals did not make it to MPI 3.0

— https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/FaultToleranceWikiPage

e Current Proposal for MPI 3.1/4.0 (ULFM)

— Process failures

e Explicitly handle fail-stop failures
— Silent (memory) errors & Byzantine errors are outside of the scope

— Failure detectors are very specific to the system they run on

e Some systems may have hardware support for monitoring

e All systems can fall back to arbitrary/configurable timeouts if necessary
— Minimal set of tools for MPI FT

e Failure Notification

e Failure Propagation

e Failure Recovery

e Fault Tolerant Consensus

MUG ‘13 25

Run-Through Stabilization

Proposal made to the MPI Forum’s FT working group pre-3.0
Communication failures not treated as fatal errors
Return error code on process failure to user-set handler

Outstanding send/recv/wild-card recv (with MPI_ANY_SOURCE) posted to

failed communicator returns error code
Supported in the Nemesis-IB channel (--with-device=ch3:nemesis:ib)

Run with mpiexec.hydra

— Set MV2_RUN_THROUGH_STABILIZATION =1
— Add --disable-auto-cleanup flag

Query list of failed processes from application:

- MPI Comm get attr (MPI COMM WORLD,
MPICH ATTR FAILED PROCESSES, &failed procs, &flag);

https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/276

MUG ‘13 26

Future Directions

e In-memory checkpointing with SCR

e Support for more resource managers (Slurm, Torque, etc)
e Incremental checkpointing

e Checkpoint compression

e Parity-based process-snapshot migration using SCR

e N-N vs N-1 checkpointing schemes

MUG ‘13

27

Web Pointers

MUG ‘13

NOWLAB Web Page
http://nowlab.cse.ohio-state.edu

MVAPICH Web Page
http://mvapich.cse.ohio-state.edu

MVAPICH

(i

28

