~.a
Q\\

> ; i
p\.\n 2
) r'@(g% N\ .. =

YN\

Experiences Using MVAPICH in a Production
HPC Environment at TACC

Karl W. Schulz

Director, Scientific Applications
Texas Advanced Computing Center (TACC)

MVAPICH User’s Group ¢ August 2013, Columbus, OH

TAGCG TEXAS ADVANCED COMPUTING CENTER

Acknowledgements

 Sponsor: National Science Foundation

— NSF Grant #0Cl-1134872 Stampede Award,
“Enabling, Enhancing, and Extending
Petascale Computing for Science and
Engineering”

— NSF Grant #0CI-0926574 - “Topology-Aware
MPI Collectives and Scheduling”

* Professor D.K. Panda and his
team at OSU

TACC

Outline

* Brief clustering history at TACC
— InfiniBand evaluation
— MVAPICH usage
— Optimizations
e Stampede
— System overview
— MPI for heterogeneous computing

— Other new goodies

TACC

Brief Clustering History at TACC

e Like many sites, TACC was deploying small clusters in
early 2000 timeframe

* First “large” cluster was Lonestar2 in 2003
— 300 compute nodes originally

— Myrinet interconnect
— debuted at #26 on Top500

* |n 2005, we built another small research cluster:
Wrangler (128 compute hosts)
— 24 hosts had both Myrinet and early IB
— single 24-port Topspin switch

— used to evaluate price/performance of
commodity Linux Cluster hardware

TACC

Early InfiniBand Evaluation

* Try to think back to the 2004/2005 timeframe......
— only 296 systems on the Top500 list were clusters
— multiple IB vendors and stacks
— “multi-core” meant dual-socket
— we evaluated a variety of stacks across the two interconnects
— our first exposure to MVAPICH (0.9.2 via Topspin and 0.9.5 via

Mellanox)

Example MPI Latency Measurements, circa 2005
MPICH-GM 7.05 ps
Myrinet MPICH-MX 3.25 us
LAM-GM 7.77 us
VMI-GM 8.42 us
IB-Gold 4.68 us

Infiniband [IB-Topspin 5.24 us]
LAM-IB 14.96 ps
MPICH 35.06 us

GigE LAM-TCP 32.63 us -

T A@@ VMI-TCP 34.29 s

Early InfiniBand Evaluation

* In addition to latency considerations, we were also attracted
to BW performance and influence on applications

TACC Internal Benchmarking, circa 2005

MP1 Ping/Pong - 2 Processors MPI All_Reduce - 24 Processors
900
— 1000000 .
goo | —¢—Myrinet I Ty —o— Myrinet
S 700 +2fggband § 100000 —l—:\r:llyinibandl
9 | ! | = | GigE
2 600 N k" S g |
£ 500 | 2 10000
£ 400 &
© (}+]
- -
3 300 ,f 4 1000
S >
s 200 ©
“ 100 I — g 100
| <
T HATAIAY Lo -« , , 10
1 100 10000 1000000 1E+08 1 160 10000 1000000 1E+08

Message Size (bytes) Message Size (bytes)

TACC

Early InfiniBand Evaluation
TACC Internal Benchmarking, circa 2005

Application Scalability - WRF Application Scalability - HPL
35
| | |

\
16 || —e— Myrinet y 1 —e—Myrinet |
—&— Infiniband 30 || —=— Infiniband /I
14 GigE ﬁ% 05 || GigE I P
/

\

S S
0 12 T}
© ©
L w20 /p
s / =] 74
% 8 / - 15 =
S ¢ A :
o Q 10 -
0" 4 ’ N 7] .

2 | 4

0 '1 0!

0 10 20 30 40 50 0 10 20 30 40 50
of Processors # of Processors

TACC

Brief Clustering History at TACC

e Based on these evaluations and others within the
community, our next big cluster was IB based

* Lonestar3 entered production in 2006:

— OFED 1.0 was released in June
2006 (and we ran it!)

— First production Lustre file system
(also using IB)

— MVAPICH was the primary MPI stack

— workhorse system for local and
national researchers, expanded in 2007

@ Debuted at #12 on Top500

TACG

Brief Clustering History at TACC

* These clustering successes ultimately
led to our next big deployment in
2008, the first NSF “Track 2” system,
Ranger:

— S$30M system acquisition
— 3,936 Sun four-socket blades
— 15,744 AMD “Barcelona” processors

— All IB all the time (SDR) - no ethernet
* Full non-blocking 7-stage Clos fabric
e ~4100 endpoint hosts
e >1350 MT47396 switches

* challenges encountered at this scale led
to more interactions and collaborations
with OSU team

@ Debuted at #4 on Top500

TACC

Ranger: MVAPICH Enhancements

* The challenges encountered at this scale led to more
direct interactions with the OSU team

* Fortunately, | originally met Professor Panda at IEEE
Cluster 2007

— original discussion focused on “mpirun_ rsh” for which
enhancements were released in MVAPICH 1.0

— subsequent interactions focused on ConnectX collective

performance, job startup scalability, SGE integration,
shared-memory optimizations, etc.

— DK and his team relentlessly worked to improve MPI
performance and resolve issues at scale; helped to make

Ranger a very productive resource with MVAPICH as the
default stack for thousands of system users

TACC

Ranger: MVAPICH Enhancements

Ranger - OFED 1.2 - MVAPICH 0.9.9
—=— Lonestar - OFED 1.1 MVAPICH 0.9.8
1000
8 800
K
m
=
< 600 -
5
3 i
2 Y :
] 400 ".. H
m :
v
200 . . .
Effective bandwidth was improved
at smaller message size
0 —a—a=i a-n—N | | | 1
1 10 100 1000 10000 100000 1000000 1000000 1E+08

Message Size (Bytes) 0

I A@@ Ranger Deployment, 2008

Ranger: MVAPICH Enhancements

Wallclock Runtime for MPI Hello World
1000

—
-
o

—
o
1

Average Runtime (secs)

—e—MVAPICH-0.9.9
~8—MVAPICH-1.0-devel

100 1000 10000 100000
Z or MPI Tasks (cores)

I A@@ Ranger Deployment, 2008

MVAPICH Improvements

Allgather, 256 Procs

10000000

——MVAPICH
1000000 ---------- ~@-MVAPICH-devel |--------- M-------g---------

OpenMPI
§1ooooo e L 7
= 1t large 16-
Q@ 10000 F---------m-m-mmmmmmmmmmm e g e
£ core IB system
= .
® available for
> 1000 -
e MVAPICH
> .
tunin
< 100 - g
10 . . . ' ' '
1 10 100 1000 10000 100000 1000000 10000000

Size (bytes)

I A@@ Ranger Deployment, 2008

Ranger MPI Comparisons

SendRecyv, 512 Procs

800
——MVAPICH
penMPI
600 OpenMPI --coll basic A / \
/ A
Q / \-+4
@ 400 - '
0) T
o) —
< 300 —
200 A8
100 ,'//
/-/
0 Bl
1 10 100 1000 10000 100000 1000000 10000000

Size (bytes)

100000
—+MVAPICH
~#-OpenMPI
10000
)
o)
()
2
o 1000
£
|_
© 1001
g 100
14 L
2
10 —_—
1

Bcast, 512 Procs

1 10 100

1000 10000 100000 1000000 10000000
Size (bytes)

Ranger Deployment, 2008

Ranger: Bisection BW Across 2 Magnums

120.0%

100.0% 1

80.0% 1

60.0% -

40.0% -

Full Bisection BW Efficiency

20.0% -

0.0% -

1 2 4 8 16 32 64 82
of Ranger Compute Racks

* Using MVAPICH, we were able to sustain ~73% bisection bandwidth efficiency with all
nodes communicating (82 racks)

e Subnet routing was key! — Using special fat-tree routing from OFED 1.3 which had
cached routing to minimize the overhead of remaps

I A@@ Ranger Deployment, 2008

Clustering History at TACC

* Ranger’s production lifespan was
extended for one extra year

— went offline in January 2013

— we supported both MVAPICH and
MVAPICH2 on this resource

* Our next deployment was Lonestar4 in
2011:
— 22,656 Intel Westmere cores
— QDR InfiniBand
— joint NSF and UT resource

— first TACC deployment with MVAPICH?2
only (v 1.6 at the time)

— only real deployment issue encountered
was MPI I/O support for Lustre

@ Debuted at #28 on Top500

TACC

* Qur latest large-scale
deployment began in
2012: Stampede

* A follow-on NSF Track 2
deployment targeted to
replace Ranger

* Includes a heterogeneous
compute environment

@ Currently #6 on Top500

TACC

Stampede - High Level Overview

* Base Cluster (Dell/Intel/Mellanox):
— Intel Sandy Bridge processors

— Dell dual-socket nodes w/32GB RAM
(2GB/core)

— 6,400 compute nodes

— 56 Gb/s Mellanox FDR InfiniBand
interconnect

— More than 100,000 cores, 2.2 PF peak
performance
* Co-Processors:

— Intel Xeon Phi “MIC” Many Integrated
Core processors

— Special release of “Knight’s Corner” (61
cores)

— All MICs were installed on site at TACC
— 7.3 PF peak performance

e Entered production operations on
January 7, 2013

TACC

.
-~

Ranger

Stampede Footprint

e
)

fmaaa

E =
Sl

EBEEEs

aaaaeaa»gaqama
EEEN IBEEEE }

888 aam}
88l

a}gz%h

Pretre-e

[

FIRE SPRINKLER

Stampede

_SURLS SURLE RUR SURLE SUR SR

ERE

‘.-.jlllﬂﬂlﬂlllllllﬂl.;i

L a4

)

- - -

.,-x:aaﬁsn!m!umm
S EERREERERERRRE]
’?r.; !!!!!IIE!H!EI!!!!E!

.....................................

.....

.............................

......

.......

‘ - PSS TS SRR S EEEE S BES NS

.HHHIBH_‘!HHDBBH!H!;:; '

prrerererettee
R N N
e i S
- o o o - w00
- o -—-—-0 o -
F e v e emere-
LR R R N N A
.......
........

........

- - ---‘0&--.”0<.

........

oooooo * e e

............

Innovative Component

* One of the goals of the NSF solicitation was to “introduce a major
new innovative capability component to science and engineering
research communities”

* We proposed the Intel Xeon Phi coprocessor (MIC or KNC)
— one first generation Phi installed per host during initial deployment
— in addition, 480 of of these 6400 hosts now have 2 MICs/host

— project also has a confirmed injection of 1600 future generation MICs
in 2015

@ Note: base cluster formally accepted in January, 2013. The Xeon Phi
co-processor component just recently completed acceptance.

. _ [
@& MVAPICH team involved in both facets - — MVAPICH

TACC

Additional Integrated Subsystems

e Stampede includes 16 1TB Sandy Bridge shared memory nodes with
dual GPUs

128 of the compute nodes are also equipped with NVIDIA Kepler K20

GPUs for visualization analysis (and also include MICs for performance
bake-offs)

* 16 login, data mover and management servers (batch, subnet
manager, provisioning, etc)

» Software included for high throughput computing, N
remote visualization

» Storage subsystem (Lustre) driven by Dell H/W:
— Aggregate Bandwidth greater than 150GB/s
— More than 14PB of capacity

TACC

System Deployment History

Stampede Initial Provisioning History

1
Initial I LastMiC |
7000 Production : Install :
____________________________________ (1/7/13) | _(3/23/13) 1
6000 | -
*c547-103 Stability |
5000 e55. tests begin
(12/23/12) : |
¢542-703 : ! '
4000 : | Full System HPL
Early user i i May 2013
cal program ! ! .
3000 Sy begins | | :
! l 12/6/12) ! | |
5000 c486-802 1 SB + 2000 MICs ! (/,/) : ! :
| (10/25/12) | | i i
A EE S SERES ' : | |
1000 : | i i |
c473-903 | | |
0 ' — ' T ' T ' 1
July August October November December January February March

TACC

Stampede InfiniBand Topology

8 Core Switches

\ A

.
;

T

/f‘(i/‘

-
>
-
4
b
B
=
-
-
-

Stampede InfiniBand (fat-tree)
~75 Miles of InfiniBand Cables

MPI| Data Movement
- Historical Perspective Across Platforms -

7000
6000 —=Stampede
§ ~==Lonestar 4
& 5000
1] R
s anger
< 4000
B
2 3000
c
©
m 2000
o
= 1000
0
A AQ QQ QQ Q0 QQ QO QQ Q0
A \ Q Q \ 0 Q

Message Size (Bytes)

What is this MIC thing?

Basic Design ldeas:

* Leverage x86 architecture (a CPU with many cores)

* Use x86 cores that are simpler, but allow for more
compute throughput

* Leverage existing x86 programming models

* Dedicate much of the silicon to floating point ops.,
keep some cache(s)

 Keep cache-coherency protocol
* Increase floating-point throughput per core
* Implement as a separate device

« Strip expensive features (out-of-order execution
branch prediction etc.)

 Widened SIMD registers for more
throughput (512 bit)

* Fast (GDDR5) memory on card

TACC

Programming Models for MIC

 MIC adopts familiar X86-like instruction set (with 61 cores,244
threads in our case)

e Supports full or partial offloads (offload everything or directive-
driven offload)

* Predominant parallel programming model(s) with MPI:
— Fortran: OpenMP, MKL
— C: OpenMP/Pthreads, MKL, Cilk
— C++: OpenMP/Pthreads, MKL, Cilk, TBB

* Has familiar Linux environment
— you can logininto it
— you can run “top”, debuggers, your native binary, etc

TACC

Example of Native Execution

loginl$ srun —p devel --pty /bin/bash —1
c401-102$ cat hello.c

#include<stdio.h>

int main()

{

printf("Hook 'em Horns!\n");

#ifdef MIC
printf(" --> Ditto from MIC\n");
#endif

}

c401-102$ icc hello.c
c401-102$./a.out
Hook 'em Horns!

c401-102$ icc —mmic hello.c
c401-102$./a.out
bash: ./a.out: cannot execute binary file

c401-1028 ssh mic0 ./a.out
Hook 'em Horns!
—--> Ditto from MIC

Interactive Hello World

Interactive programming example
— Request interactive job (srun)
— Compile on the compute node
— Using the Intel compiler toolchain
— Here, we are building a simple hello world...

First, compile for SNB and run on the host

— notethe MIC macro can be used to isolate
MIC only execution, in this case no extra output is

generated on the host

Next, build again and add “-mmic” to ask the
compiler to cross-compile a binary for native
MIC execution

— note that when we try to run the resulting binary
on the host, it throws an error

— ssh to the MIC (mic0) and run the executable out
of SHOME directory

— this time, we see extra output from within the
guarded__MIC__ macro

TACC

Example of Offload Execution

!dec$ offload target(mic:0) in(a, b, c) in(x) out(y)
!Somp parallel
!Somp single
call system clock(il)
!Somp end single
!Somp do
do j=1, n
do i=1, n
y(i,j) = a * (x(i-1,3j-1) + x(i-1,3j+1) + x(i+1,3j-1) + x(i+1,j+1)) +
b * (X(i_orj_l) + X(i—O,j+1) + X(i—l,j—O) + X(i+1rj+0)) +
c * x(i,3)

2

enddo
do k=1, 10000
do i=1, n

y(i,j) = a * (x(i-1,3j-1) + x(i-1,j+1) + x(i+1,j-1) + x(i+1,j+1)) + &
b * (X(i_orj_l) + X(i—O,j+1) + X(i—l,j—O) + X(i+1rj+0)) t &
c * x(i,3) + y(i,3)
enddo
enddo
enddo
!Somp single
call system clock(i2) L. .
!$omp end single Kernel ofaﬁnlte-dljj‘erence

!$Somp end parallel stencil code (f90)

TACC

Stampede Data Movement

* One of the attractive features of the Xeon Phi environment is the ability to

utilize MPI directly between host and MIC pairs
— leverage capability of existing code bases with MPI+OpenMP
— requires extensions to MPI stacks in order to facilitate

— reacquaints users with MIPMD model as we need:
* MPI binary for Sandy Bridge
* MPI binary for MIC
— provides many degrees of tuning freedom for load balancing

 With new software developments, we can support symmetric MPlI mode runs

/ Native NeW models Symmetric \

, ‘.‘ \/ | Grond :
CPU 'Cbocsso /

* But, let’s first compare some basic performance...

[from Bill Magro
Intel MPI Library,
OpenFabrics 2013]

TACG

Stampede Data Movement

e Efficient data movement
is critical in a
heterogeneous compute
environment (SB+MIC)

 Let’s look at current
throughput between host
CPU and MIC using
standard “offload”
semantics
— bandwidth

measurements are likely
what you would expect

— symmetric data
exchange rates

— capped by PCI XFER max

Bandwidth (GB/sec)

«=%=CPU to MIC (offload)
«=E=MIC to CPU (offload)

O & & A & A QO QO
\%%’b&c)@r\,%%f\,&%&

Data Tranfer Size

TACC

Stampede Host/MIC MPI Example

loginl$ srun —p devel -n 32 --pty /bin/bash -1

$ export MV2 DIR=/homel/apps/intell3/ mvapich2-mic/76a7650/
$ $MV2 DIR/intel64/bin/mpicc -03 -o hello.host hello.c Compilat‘ion
$ $MV2 DIR/klom/bin/mpicc -03 -o hello.mic hello.c . .
- (2 binaries)
$ cat hosts
c557-503
c557-504
c557-503-mic0
c557-504-mic0 Conﬁguraﬁon
$ cat paramfile .
MV2_ IBA HCA=mlx4 0 Files
$ cat config
-n 2 : ./hello.host
-n 2 : ./hello.mic

$ MV2 MIC INSTALL PATH=$MV2 DIR/klom/ MV2 USER CONFIG=./paramfile $MV2 DIR/intel64/
bin/mpirun rsh -hostfile hosts -config config

Execution
Hello, world (4 procs total)
—--> Process 0 of 4 is alive. ->c557-503.stampede.tacc.utexas.edu
—--> Process 1 of 4 is alive. ->c557-504.stampede.tacc.utexas.edu
—--> Process 2 of 4 is alive. ->c557-503-mic0.stampede.tacc.utexas.edu
--> Process 3 of 4 is alive. ->c557-504-mic0.stampede.tacc.utexas.ed

FH HFH HH

TACC

Phi Data Movement

Offload Test (Baseline)
7
6 4 «=4=CPU to MIC (offload)
—_ =E=M)IC to CPU (offload)
(8]
Q5
<
o 4
_‘f; 3
32
[
s 1
O 1 T T T T T
Voo o
AP PSS

Data Tranfer Size

Bandwidth (GB/sec)
o = N w B (O] (e))] ~N

OSU Bandwidth Test

Intel MPI 4.1.0.030 (Feb 2013)
DAPL: ofa-v2-mix4_0-1u

===CPU to MIC (MPI)

| ===MIC to CPU (MPI)

asymmetry undesired for tightly
coupled scientific applications...

TACC

Phi Data Movement (improvement)

OSU Bandwidth Test

Offload Test (Baseline) Intel MP14.1.1.036 (June 2013)
DAPL:
7 7
i «=%=CPU to MIC (offload) 1 ==4%=CPU to MIC (MPI)“
. 6 «=B=|\1IC to CPU (offload) . 6 1 =m=mic to cPu (MPI)
o [3)
Q5 A @ 5 1
E ~
o4 7 Q4 -
i o a N o -
'C;S 2 % 2
c c
g 1 g 1 A
0 - T 0 -
R I N S G G ORI O S SN SN GG
%io\,%%f\,\:go%,@qs‘oo@ %Q%xW%%%&%Qf\,@%@
Data Tranfer Size Data Tranfer Size

TACC

Phi Data Movement (improvement)

Offload Test (Baseline)
7
6 - «=4=CPU to MIC (offload)
—_ =E=M)IC to CPU (offload)
(8}
@5 -
<
G4 -
£3]
30
c
31 -
0 -

Data Tranfer Size

Bandwidth (GB/sec)

O = N W »~ U1 O

OSU Bandwidth Test

Intel MPI4.1.1.036 (June 2013)
DAPL:

=4=CPU to MIC (MPI)
| ===MIC to CPU (MPI)

WS - TR A D S P P
Data Tranfer Size

New developments to improve data transfer paths:
CCL Direct
CCL-proxy (hybrid provider)

TACC

Phi Data Movement (improvement)

OSU Bandwidth Test

Offload Test (Baseline .
i () MVAPICH2 Dev Version (July 2013)
7 7
i «=4=CPU to MIC (offload) ==4=CPU to MIC (MPI) l>
_° T ===micto cPU (offload) _ %7 =m=wmictocpu (mP)
@5 - 85 A
= <
g 4 A g 4 -
=) —
53 53
'C;S 2 % 2 A
c c
g 1 1 g 1 4
O-‘ ! O' r 1 1 1 1 1°r 1 1 1T 1T 1T 1
% o & & & &
A N VI L N RPN A eF %’\%'\:&%%@b N
Data Tranfer Size Data Tranfer Size

New developments to proxy messages through HOST

TACC

Additional MPI Considerations

TACC

Job Startup Scalability
Improvements (1 Way)

 Less than 20
seconds to
launch MPI
across all 6K
hosts

100

Time (secs)

0.1

1 MPI Task/Host

N
o
1

1 W

=+=MVAPICH2/1.9b

Intel MP1/4.1.0.030 /
A‘/‘Nr/

4 16 64 256 1024 4096
of Hosts

TACC

Job Startup Scalability - 16 Way

* Repeat the same 16 MPI Tasks/Host

process with 16-
way jobs

1000
=+=MVAPICH/1.9b

Intel MP1/4.1.0.030 |

RN
o
o

* Majority of our
users use 1 MPI
task/core

Time (secs)
o

4~

—

* 2.5 minutesto
complete at 32K 01

(but this is still 1 8 64 512 4096 32768
improving) # of Hosts

TACC

MPI Latency Improvements

2 MVAPICH2 Intel MPI

Optimizations'efifg? ~ 'mtelMP

1provided improvement in
inewer releases

14 A

1.8 1

1.6 1

9L0°0'L'y A
0€0°0°'L'Y A

14 A

9€0°'L° LY A

o 'Bést case latencyat the
1 1 ‘

moment is 1.04 psecs
“with MVAPICH2 189

06 T T 06 I

MPI Latency (usecs)
MPbLatency (usecs)

8LA

0.8 A

a6'L A
6"1‘ A

—_—

Socket 1 XFER Socket 0 XFER
e Noterthesearebest case

8 8 resellts[(dore 8 to[odire[8)
Host 1 Host 2 Host 1 Host 2

TA@ @ OSU Microbenchmarks (v3.6)

Performance Characteristics:
MPI Latencies

 Minimum value approaching
1 microsecond latencies

* Notes: -
— switch hops are not free # switch Avg Latency
— maximum distance across hops (usec)
Stampede fabric is 5 switch
hops 1 1.07
These latency diff > =7
. ese latency differences
y 5 2.54

continue to motivate our
topology-aware efforts

TACC

Topology Considerations

* At scale, process mapping with respect to topology can
have significant impact on applications

Fat-tree (Stampede, TACC)

r

4x4x4 3D Torus (Gordon, SDSC)

TACC

Topology Considerations

o Topology query service (now in production Nearest neighbor application benchmark
. from Stamped tesy H. Sub ,SC 12
on Stampede) - NSF STCI with OSU, SDSC rom Stampede [courtesy H. Subramon, SC12]
— caches the entire linear forwarding table (LFT) 700 45%
for each IB switch - via OpenSM plugin or 600 | Default
ibnetdiscover tools =500 | " ToPo-Aware
=

— exposed via network (socket) interface such that < 400
an MPI stack (or user application) can query the 2

: S 300 -
service remotely ® 00 -
— can return # of hops between each host or
: 100 -
full directed route between any two hosts 0

Q’b‘\""bff?@"q'&'f!" Sl

Number of Processes

query c401-101:c405-101
c401-101 0x0002c90300776490 0x0002c903006£9010 0x0002c9030077c090 c405-101

TACG

Stampede/MVAPICH2 Multicast Features

* Hardware support for multi-cast in this new generation of IB
— MVAPICH2 has support to use this
— means that very large MPI_bcasts() can be much more efficient
— dramatic improvement with increasing node count
— factors of 3-5X reduction at 16K cores

8-Byte MPI Bcast 256-Byte MPI Bcast
20 25
18 71— e=e=\Nithout Multicast | =¢=\\/ithout Multicast
g 16 1 With Multicast [§ 20 With Multicast [
w 14 A "
A)
g 12 1 QEJ 15 -
B 107 =
¢ 8 1 o 10 1
© ©
S 6 - S
g g
< 47 < 5 1
2 A & C
0 T T T T O T T T T
16 64 256 1024 4096 16384 16 64 256 1024 4096 16384

of MPI Tasks # of MPI Tasks

I A@@ Use MV2_USE_IMCAST=1 on Stampede to enable

A Community Thank You

DK and his team have consistently gone well above and beyond
the role of traditional academic software providers

 MVAPICH has evolved into production software that is
supporting science in virtually all disciplines on systems around
the world

 Performance is critical and the team consistently delivers novel
methods to improve performance on fast-changing hardware

* The open-source HPC community benefits tremendously from
this effort:

MPI_Send (&THANK YOU,1000,MPI INT,OSU,42,MPI COMMUNITY);

TACC

