
Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.All information provided in this deck is subject to change without notice.
Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Implementing High-Performance MPI over
oneAPI Level Zero
Sayantan Sur
Principal Engineer, Intel

MUG, 2020

http://software.intel.com/en-us/articles/optimization-notice

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.

Introducing oneAPI
Challenges
• Growth in specialized workloads
• No common language or APIs
• Inconsistent tool support across platforms

Introducing oneAPI
• Unified and simplified language and

libraries for expressing parallelism
• Based on industry standards and open

specifications
• Interoperable with existing HPC

programming models
• Spec available at: www.oneapi.com

Industry Intel
Initiative Product

Middleware / Frameworks

Application Workloads Need Diverse Hardware

Scalar Vector Matrix Spatial

XPUs

CPU GPU FPGA Other accel.

http://software.intel.com/en-us/articles/optimization-notice
https://www.oneapi.com/

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.

oneAPI Level Zero
Motivation

• Expose underlying device capabilities to higher level languages

• More control and lower level access to rich device feature set
• Low latency direct-to-metal interface
• Support many core threaded applications (e.g. batching)

• Support broader language features such as
• Function pointers, Virtual functions, Unified Memory, I/O capability

APIs
• Core: Devices, Memory, Peer-to-Peer, Inter-Process …
• Tools: Metrics, Profiling, Debug …
• Sysman: Device configuration, diagnostics, firmware updates …

http://software.intel.com/en-us/articles/optimization-notice

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.

MPI Requirements

Ø Device enumeration, selection

o Distributing GPUs amongst ranks, selecting assigned accelerator

Ø Inter node Peer-to-peer communication

o RDMA over NICs

Ø Intra-node Peer-to-peer communication

o Copies across address spaces

http://software.intel.com/en-us/articles/optimization-notice

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.

Level ZeRo Device Model
Device → a physical device in the system

zeDeviceGet() to enumerate devices

Devices can be partitioned into sub-devices

zeDeviceGetSubDevices() to get a list

Subdevices used just like devices (same APIs)

NUMA / locality optimizations with subdevices

Memory allocations with subdevices APIs can
be used by the parent Device

HBM

0
HBM

1

HBM

2
HBM

3

Device

Sub-
Device

http://software.intel.com/en-us/articles/optimization-notice

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.

Device Assignment Requirements

Problem:

1. How do all libraries within a process see the same device/subdevice?

§ E.g. User obtains memory using OpenMP/DPC++, and uses MPI to
transfer the data

2. How do you distribute devices/subdevices between ranks?

§ E.g. Assign Device 0 to Rank 0, Device 1 to Rank 1 …

§ E.g. For 4 MPI ranks on one device:

– Assign Subdevice 0 to Rank 0, Subdevice 1 to Rank 1 ..

http://software.intel.com/en-us/articles/optimization-notice

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.

Device Affinity Mask

ZE_AFFINITY_MASK environment
variable controls which devices are
shown and their order
zeInit() reads ZE_AFFINITY_MASK env
var
zeDeviceGet() returns devices specified
by mask

zeDeviceGet()

MPI OpenMP

User App

Spawn Process with
ZE_AFFINITY_MASK=1.1,1.2

Report Device 1 as “Device 0” and
1.1 as “Subdevice 0” and 1.2 as
“Subdevice 1”

http://software.intel.com/en-us/articles/optimization-notice

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.

Assigning Devices to Ranks

Approaches:
1. Automatic NUMA node awareness in

Rank/Device assignment
§ Use OS specific techniques such as

PCI hierarchy [abstracted by
HWLOC]

§ Level Zero Sysman exposes PCI
device IDs

2. Distribute Devices per user specified
configuration

§ MPI implementers choice

Launch
Daemon

Automatic assignment option:
$ mpiexec –n 2 -hosts localhost ./a.out

Rank 0
ZE_A

FFIN
ITY_

MASK
=0

Rank 1
ZE_AFFINITY_MASK=1

Uses
Device 0

Uses
Device 1

Partitioning
logic

Node topology specific optimizations possible using apriori
knowledge of NUMA nodes and PCI device topology

Level Zero sysman APIs can be used to obtain PCI device IDs

http://software.intel.com/en-us/articles/optimization-notice

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.

MPI Requirements

Ø Device enumeration, selection

o Distributing GPUs amongst ranks, selecting assigned accelerator

Ø Inter node Peer-to-peer communication

o RDMA over NICs

Ø Intra-node Peer-to-peer communication

o Copies across address spaces

http://software.intel.com/en-us/articles/optimization-notice

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.

RDMA Using DMA-Buf

Courtesy: Jianxin Xiong (OFA Workshop 2020)

Dma-buf is a standard mechanism in
kernel for sharing buffers between
device drivers

File-descriptor that represents a
memory region

fd created by “exporting” driver, passed
to the “importing” driver, obtain DMA
addresses

zeMemGetIpcHandle() is the Level Zero
API used to obtain a Dma-buf handle by
the MPI library

Level Zero API Network API

MPI Rank

http://software.intel.com/en-us/articles/optimization-notice
https://www.openfabrics.org/wp-content/uploads/2020-workshop-presentations/303.-OFI-GPU-DMA-BUF-OFA2020v2.pdf

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.

Where is the Buffer?
MPI_Send() does not specify if user is trying to send a
Device or CPU buffer
MPI library must find out dynamically
• zeMemGetAllocProperties(context, send_buffer,

&prop, &device)
• prop: [output] properties of buffer

• prop.id will change if VA has been re-assigned
to different PA
• Used for MPI registration caching

• device: [output] device on which buffer is resident
• Returns ZE_MEMORY_TYPE_UNKNOWN if buffer

wasn’t allocated by Level Zero for specified context

struct ze_memory_allocation_properties_t
{

[…]
ze_memory_type_t type;
uint64_t id;
uint64_t pageSize;

};

enum ze_memory_type_t
{

ZE_MEMORY_TYPE_UNKNOWN,
ZE_MEMORY_TYPE_HOST,
ZE_MEMORY_TYPE_DEVICE,
ZE_MEMORY_TYPE_SHARED,
…

}

http://software.intel.com/en-us/articles/optimization-notice

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.

Sample Inter-node P2P Pseudocode
MPI_Send(sbuf, size…)
{

zeMemGetAllocProperties(..sbuf, &prop);
if (prop.type == ZE_MEMORY_TYPE_DEVICE) {

zeMemGetAddressRange(sbuf, &base_ptr, &base_size);
present = registration_cache_check(base_ptr, base_size,

®_cache_entry);
if (present && reg_cache_entry.id == prop.id)

fi_send(sbuf..);
} else {

zeMemGetIpcHandle(base_ptr, &fd);
..
fi_mr_regattr(..&mr_attr, &mr);
fi_send(sbuf..);
reg_cache_insert(base_ptr, base_size, prop.id);

}
} else {

fi_send(sbuf..);
..

http://software.intel.com/en-us/articles/optimization-notice

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.

MPI Requirements

Ø Device enumeration, selection

o Distributing GPUs amongst ranks, selecting assigned accelerator

Ø Inter node Peer-to-peer communication

o RDMA over NICs

Ø Intra-node Peer-to-peer communication

o Copies across address spaces

http://software.intel.com/en-us/articles/optimization-notice

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.

Peer Devices
Compute API

• Use this in the main MPI Library

• zeCanAccessPeer(dev,
peer_dev, &access)

• Access == TRUE when:

• Dev == Peer Dev

• Connected via Scale Up
fabric or under same PCIe
root complex

Sysman API
• Use this in tools; diagnostics
• Fabric Ports, Port Properties …

struct zes_fabric_port_properties_t
{

[…]
char model[..];
ze_bool_t onSubDevice;
uint32_t subdeviceId;
zes_fabric_port_id_t portId;
zes_fabric_port_speed_t max{Rx/Tx}Speed;

};

struct zes_fabric_port_t
{

[…]
zes_fabric_port_status_t status;
zes_fabric_port_id_t remotePortId;
…

}

http://software.intel.com/en-us/articles/optimization-notice

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.

Inter Process Communication (IPC)

IPC enables a process to map a buffer belonging
to another process into its own address space

Ld/St and DMA operations can be used

zeGetMemIpcHandle() used to create IPC Handle
on exporting process

zeOpenMemIpcHandle() used to create the
mapping in the importing process

IPC Handle is a ‘fd’ of type Dma-buf (for Linux, and
specified by Level Zero implementation)

Process A

Buffer

Process B

Buffer

IPC Handle A’

Buffer

Mapped using A’

Ld/St/DMA

http://software.intel.com/en-us/articles/optimization-notice

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.

Events, Fences, Concurrency

ze_fence_handle_t hFence;
zeFenceCreate(hCommandQueue,

&fenceDesc, &hFence);

zeCommandListAppendMemoryCopy(hCommandList,
dst, src, size,
hSignalEvent,
numWaitEvents, *phWaitEvents)

// Execute command list + signal of the fence

zeCommandQueueExecuteCommandLists(hCommandQueue, 1,
&hCommandList, hFence);

// Wait for fence to be signaled
zeFenceHostSynchronize(hFence, UINT32_MAX);
zeFenceReset(hFence);

Start Copy operation when
Wait Events have triggered
and signal the Event when

copy is complete

For Inter-process signaling,
use exchange Event Pool IPC

Handles
(zeEventPoolGetIpcHandle,

zeEventPoolOpenIpcHandle)

Command List executed
FIFO manner, completion

can be out of order

“COPY only” hint during
command queue creation lets

device use DMA engines

Host waits until Fence
signaled (all submitted
operations complete)

http://software.intel.com/en-us/articles/optimization-notice

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.

Sample Intra-node Protocol
MPI Rank 0

MPI Send

MPI Rank 1

MPI ReceiveReady-to-Send

Message Match

Buffer IPC Handle

Event Index

zeGetMemIpcHandle()
Allocate IPC Event

zeOpenMemIpcHandle() Memory Copy

IPC Event Signaled

Done

zeCloseMemIpcHandle()

Note: IPC Handle is a process specific file
descriptor and inter-process exchange of file
descriptors follows standard fd-passing
mechanism using UNIX domain sockets
(https://www.man7.org/linux/man-
pages/man7/unix.7.html → SCM_RIGHTS)

Illustrative protocol, MPI
implementations can optimize

http://software.intel.com/en-us/articles/optimization-notice
https://www.man7.org/linux/man-pages/man7/unix.7.html

Copyright ©, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.

Summary

oneAPI Level Zero Spec: https://spec.oneapi.com/level-zero/latest/index.html

Incorporates state-of-the-art features required for MPI

RDMA operation using Level Zero, Libfabric, Verbs under progress

• Level Zero exports Dma-buf

Open-source MPI implementations in progress

• MPICH: MPL layer ported to Level Zero code, rest coming soon

• Looking forward to additional MPI stacks adopting Level Zero

http://software.intel.com/en-us/articles/optimization-notice
https://spec.oneapi.com/level-zero/latest/index.html

