Best Practices for Running HPC Applications on Microsoft Azure using MVAPICH2

Jithin Jose, Jon Shelley
Azure HPC Team
Agenda

✓ Overview of Microsoft Azure
✓ Azure HPC Offerings
✓ HPC Software Ecosystem
✓ HPC Deployment Models and Demo
✓ Performance Characteristics
✓ Best Practice Recommendations
Microsoft Azure

✓ Cost
✓ Global Scale
✓ Performance
✓ Security
✓ Speed
✓ Productivity
✓ Reliability
HPC Fleet in Azure

H-Series (InfiniBand)

- H16r (FDR)
- HB60rs (EDR)
- HC44rs (EDR)
- **HB120rs_v2** (HDR)

N-Series (NVIDIA GPU + InfiniBand)*

- NC24r (2 x NVIDIA K80 + FDR)
- NC24rs_v2 (4 x NVIDIA P100 + FDR)
- NC24rs_v3 (4 x NVIDIA V100 + FDR)
- ND24rs (4 x NVIDIA P40 + FDR)
- **ND40rs_v2** (8 x NVIDIA V100, EDR)

- SKU Name indicates core count
- “r” indicates RDMA support
- “s” indicates Premium Storage support

*GPU-only sizes not listed
HB120rs_v2 VM Instances

- AMD Rome
- VM Cores: 120
- Clock Speed: 3.3 GHz
- Memory Bandwidth: 340 GB/sec
- Memory: 480 GB (4GB/core)
- Local Disk: 900 GB NVMe
- NVIDIA Mellanox InfiniBand Network: 200 Gbps HDR (SR-IOV)
ND40rs_v2 VM
Instances

- Intel Skylake
- VM Cores: 40
- Memory: 672 GB
- NVIDIA Mellanox InfiniBand Network: 100 Gbps EDR (SR-IOV)
- 8 x NVIDIA V100 NVIDIA NVLINK connected GPUs
 - 32 GB GPU memory per GPU
Network Features

- **HB, HC, NDv2:**
 - EDR 100Gb/s NVIDIA Mellanox InfiniBand
 - Up to 200M messages/second

- **HBv2:**
 - HDR 200Gb/s NVIDIA Mellanox InfiniBand
 - Up to 215M messages/second

- Dynamically Connected Transport (DCT)
 - Reliable and scalable transport
 - Lesser Memory footprint

- Hardware collectives (hcoll)
 - Collectives offload framework
 - Asynchronous execution
 - Supports blocking/non-blocking collectives

- UD multicast (MCAST)
 - Unreliable datagram (UD) based multicast
 - Create a mcast group and broadcast

- Hardware Tag Matching

- Reliability/Congestion Control
 - SHIELD, Adaptive Routing
Outline

✓ Overview of Microsoft Azure
✓ Azure HPC Offerings
✓ **HPC Software Ecosystem**
✓ HPC Deployment Models and Demo
✓ Performance Characteristics
✓ Best Practice Recommendations
HPC Software Ecosystem

- Out-of-the Box CentOS-HPC VM Images
 - NVIDIA Mellanox OFED
 - MPI Libraries
 - Includes MVAPICH2, MVAPICH2X-Azure
 - HPC Libraries
 - Optimization Configurations
 - All recipes in GitHub repository
 - https://github.com/Azure/azhpc-images/

- Or, BYO Software Stack
 - Any Linux/Windows OS flavor
 - Build/Configure custom HPC Software stack
 - Prepare custom image
MVAPICH2-X Azure

- Available in all Azure CentOS-HPC images

- Feature Highlights:
 - Enhanced tuning for point-to-point and collectives
 - XPMEM Support
 - DC Support
 - Cooperative Protocol
 - Hybrid RC/UD Support
Outline

✓ Overview of Microsoft Azure
✓ Azure HPC Offerings
✓ HPC Software Ecosystem
✓ **HPC Deployment Models and Demo**
✓ Performance Characteristics
✓ Best Practice Recommendations
Prerequisites:

- Azure Account
- Azure Subscription
- Sufficient Quota
 - # Cores
 - Specific to Region/ SKU Type
Deployment Options:

- **AzureHPC Scripts**
 - Deployment Scripts tailored for HPC needs

- **CycleCloud**
 - HPC Workload manager

- **Azure Batch**
 - Cloud scale job scheduling and Compute Management

- **ARM Templates**
 - Azure Resource Manager Templates
Setting up Azure HPC Scripts

- Prerequisites for AzureHPC
 - Azure CLI
 - https://docs.microsoft.com/cli/azure/install-azure-cli
 - Other utilities: bash, jq and ssh

- Can be invoked from:
 - Azure Cloud Shell
 - Linux VM
 - Windows Ubuntu Shell

- Detailed instructions:
 - https://github.com/Azure/azurehpc/blob/master/README.md
AzureHPC for Deployment

- Install AzureHPC

  ```
  source ~/azurehpc/install.sh
  ```

- Initialize/Configure Cluster

  ```
  azhpc-init -c $azhpc_dir/examples/simple_hpc_pbs -d hbv2_cluster
  # Update config.json
  # Select SKU type, instance count, region, etc.
  ```

- Deploy Cluster

  ```
  azhpc-build
  ```

- Connect to your Azure Cluster

  ```
  azhpc-connect -u hpcadmin headnode
  ```
Demo: Deploy an HPC Cluster on Azure
Overview of Microsoft Azure

Azure HPC Offerings

HPC Software Ecosystem

HPC Deployment Models and Demo

Performance Characteristics

Best Practice Recommendations
Experiment Setup

- HBv2 VM Instances
- CentOS 7.7 HPC Image
- MPI Libraries
 - MVAPICHR2 2.3.4
 - MVAPICHR2-X 2.3
- NVIDIA Mellanox OFED 5.1
• MVAPICH2, MVAPICH2-X achieves < 2us latencies
• MVAPICH2-X offers better large message latencies for intra-node transfers (XPMEM)
• MVAPICH2, MVAPICH2-X close to line rates
• Both uses same inter-node protocols
• RPUT Rendezvous protocol (MV2_RNDV_PROTOCOL=RPUT)
• MVAPICH2-X XPMEM Collectives offers better large message allreduce latencies
• 16 HBv2 nodes, 120 PPN
MiniFE

- Finite Element Mini-Application
- Proxy application for unstructured implicit FE codes
- Strong scaling experiment
- Version: openmp-opt
- Problem Size
 - nx=1024, ny=1024, nz=1024
CloverLeaf

- Hydrodynamics mini0app to solve compressible Euler equations in 2D
- Version: CloverLeaf_MPI
- DataSet: clover_bm256.in
 - x_cells: 15360, y_cells: 15360
 - Steps: 2955
Outline

- Overview of Microsoft Azure
- Azure HPC Offerings
- What's unique
- HPC Software Ecosystem
- HPC Deployment Models and Demo
- Performance Characteristics
- Best Practice Recommendations
Prerequisite for InfiniBand support

- If using VMs:
 - Use single Availability Set for all VMs
 - Logical Grouping of Virtual Machines
 - All VMs in Availability Set will have same PKEY (InfiniBand partition key)

- If using Virtual Machine Scale Set (VMSS):
 - All VMs in VMSS will have same PKEY
 - VMSS:
 - Set of VM instances
 - Supports flexible scale up/scale down

- Check PKEY

  ```
  $ cat /sys/class/infiniband/mlx5_0/ports/1/pkeys/0
  $ 0x801d
  ```
Best Practices: Guest Agent Configuration

- Minimal Guest Agent Configuration
 - "Extensions.GoalStatePeriod": 300
 - "OS.EnableFirewallPeriod": 300
 - "OS.RemovePersistentNetRulesPeriod": 300
 - "OS.RootDeviceScsiTimeoutPeriod": 300
 - "OS.MonitorDhcpClientRestartPeriod": 60
 - "Provisioning.MonitorHostNamePeriod": 60

- For extremely sensitive workloads:
 - eg:
    ```
    sudo systemctl disable waagent
    <run hpc job>
    sudo systemctl enable waagent
    ```
Best Practices: Large Scale Jobs

- Use Scalable Transports
 - **Dynamic Connected Transport (DCT)**
 - Highly scalable, and supports all features of RC
 - Lesser memory footprint
 - Eg: MV2_USE_DC=1
 - **Hybrid RC/UD Transports**
 - RC for frequently communicating pairs
 - Lesser memory footprint, Avoids QP Thrashing
 - Eg: MV2_USE_UD_HYBRID

- Enable Adaptive Routing (AR)
 - AR is enabled in all non-zero Service Levels (SL)
 - To make use of AR, specify SL during job launch
 - Eg: MV2_DEFAULT_SL=1
Best Practices: NUMA Awareness

- NUMA Affinity
 - SKU/Workload Specific
 - Bind to NUMA node closer to NIC
 - Eg: `MV2_CPU_MAPPING=X`

- NUMA Binding
 - Workload specific (MV2_CPU_BINDING=numanode)

- NUMA Aware Collectives
 - NUMA Hierarchy
Best Practices: MVAPICH2 Protocols/Thresholds

- Internode:
 - RPUT protocol for Rndv Transfers
 - `MV2_RNDV_PROTOCOL=RPUT`

- Intra-node
 - Enable XPMEM (MVAPICH2-X)
 - `MV2_SMP_USE_XPMEM=1`
 - Enable XPMEM for Collectives
 - `MV2_SMP_USE_XPMEM=1 MV2_USE_XPMEM_COLL=1`
Pointers

- AzureHPC Deployment Scripts
 - https://github.com/Azure/azurehpc

- Azure HPC/GPU VM Sizes
 - https://docs.microsoft.com/azure/virtual-machines/sizes-hpc
 - https://docs.microsoft.com/azure/virtual-machines/sizes-gpu

- HPC Marketplace Images

- MVAPICH2 on Azure

- Adaptive Routing on Azure HPC
Thank You!

jijos@microsoft.com, joshelle@microsoft.com
Microsoft